Site Investigation Report/ Targeted Brownfields Assessment Former Woonsocket Middle School

357 Park Avenue Woonsocket, Rhode Island

Rhode Island Department of Environmental Management

June 2013

317 Iron Horse Way Suite 204 Providence, RI 02908

June 4, 2013

Ms. Cynthia Gianfrancesco Principal Environmental Scientist Rhode Island Department of Environmental Management Office of Waste Management 235 Promenade Street Providence, RI 02908-5767

RE: Site Investigation Report/Targeted Brownfields Assessment Former Woonsocket Middle School City of Woonsocket Tax Assessor's 27E Lot 113-16 357 Park Place Woonsocket, Rhode Island

Dear Ms. Gianfrancesco:

The purpose of this letter is to provide you with the attached Site Investigation Report/Targeted Brownfields Assessment for the above-referenced property. Fuss & O'Neill, Inc. (Fuss & O'Neill) prepared this report on behalf of the Rhode Island Department of Environmental Management (RIDEM), pursuant to your request. Please contact the undersigned if you have any questions or require additional information regarding this report, or the project in general.

Sincerely,

Patrick J. Dowling, CPG Senior Project Manager

Attachments:

CC:

nts: Site Investigation Report Checklist Site Investigation Report/Targeted Brownfields Assessment

Suite 204 Providence, RI 02908 t 401.861.3070 800.286.2469 f 401.861.3076

317 Iron Horse Way

www.fando.com

Connecticut Massachusetts Rhode Island

South Carolina

F:\P2010\0607\A20\SIR\sah-SIR-Fmr-Woonsocket-MS-20110715.doc

Mr. Matthew Wojcik, City of Woonsocket

John A. Chambers, PG, LSP Vice President

Section 7 of the "Remediation Regulations" Site Investigation Report (SIR) Checklist

(The following information shall be completed and submitted with the SIR)

Contact Name: Mr. Matthew Wojcik, Director of Economic Development, City of Woonsocket Contact Address: 169 Main Street, Woonsocket RI 02895 Contact Telephone: 401-767-9203

Site Name: Former Woonsocket Middle School Site Address: 357 Park Place, Woonsocket RI

OFFICE USE ONLY SITE INVESTIGATION REPORT (SIR)SITE: PROJECT CODE: SIR SUBMITTAL DATE: CHECKLIST SUBMITTAL DATE:

DIRECTIONS: The box to the left of each item listed below is for the administrative review of the SIR submission and is for **RIDEM USE ONLY**. Under each item listed below, cross-reference the specific sections and pages in the SIR that provide detailed information that addresses each stated requirement. Failure to include cross-references shall delay review and approval. If an item is not applicable, simply state that it is not applicable and provide an explanation in the SIR.

7.03A List specific objectives of the SIR related to characterization of the Release, impacts of the Release and remedy.

<u>Section 1.1</u> lists the specific objectives of the SIR.

7.03B Include information reported in the Notification Of Release. A copy of the Release notification form should be included in the SIR. Include information relating to short-term response, if applicable.

A Notification of Release is not warranted as documented in <u>Section 6</u> of the SIR.

7.03C Include documentation of any past incidents or Releases.

Section 2.7 documents previous investigations at the site.

7.03D Include list of prior property Owners and Operators, as well as sequencing of property transfers and time periods of occupancy.

Available ownership and historical operations information is provided in Section 2.1.

7.03E Include previously existing environmental information which characterizes the Contaminated-Site and all information that led to the discovery of the Contaminated- Site.

This information is provided in <u>Section 2</u>.

7.03F Include current uses and zoning of the Contaminated-Site, including brief statements of operations, processes employed, waste generated, Hazardous Materials handled, and any residential activities on the site, if applicable. (This section should be linked to the specific objectives section demonstrating how the compounds of concern in the investigation are those that are used or may have been used on the site or are those that may have impacted the site from an off-site source.)

Background information is summarized in <u>Section 2.1</u>. The objectives of the Site Investigation are included in <u>Section</u> <u>1.1</u>.

7.03G Include a locus map showing the location of the site using US Geological Survey 7.5min quadrangle map or a copy of a section of that USGS map.

Refer to Figure 1 for a site locus map.

7.03H Include a site plan, to scale, showing:

- Buildings
- Activities
- Structures
- North Arrow
- Wells
- UIC Systems, septic tanks, UST, piping and other underground structures
- Outdoor Hazardous Materials storage and handling areas
- Extent of paved areas
- Location of environmental samples previously taken with analytical results
- Waste management and disposal areas
- Property Lines

A site plan, depicting applicable features, is included as Figure 2.

7.031 Include a general characterization of the property surrounding the area including, but not limited to:

- Location and distance to any surface water bodies within 500 ft of the site
- Location and distance to any Environmentally Sensitive Areas within 500 ft of the site
- Actual sources of potable water for all properties immediately abutting the site
- Location and distance to all public water supplies, which have been active within the previous 2 years and within one mile of the site
- Determination as to whether the Release impacts any off-site area utilized for residential or industrial/commercial property or both
- Determination of the underlying groundwater classification and if the classification is GB, the distance to the nearest GA area

This information is provided in <u>Section 2</u>. The site is located within a GB groundwater area greater than 0.5 mile from a public water supply or GA area. The nearest surface water body, the Blackstone River, is located approximately 300 feet north of the site.

7.03J Include classifications of surface and ground water at and surrounding the site that could be impacted by a Release.

This information is provided in <u>Section 2</u>.

- 7.03K Include a description of the contamination from the Release, including:
 - Free liquids on the surface
 - LNAPL and DNAPL
 - Concentrations of Hazardous Substances which can be shown to present an actual or potential threat to human health and any concentrations in excess of any of the remedial objectives; (reference Section 12 for requirements related to arsenic in soil).
 - Impact to Environmentally Sensitive Areas Contamination of man-made structures Odors or stained soil
 - Stressed vegetation
 - Presence of excavated or stockpiled material and an estimate of its total volume
 - Environmental sampling locations, procedures and copies of the results of any analytical testing at the site
 - List of Hazardous Substances at the site
 - Discuss if the contamination falls outside of the jurisdiction of the Remediation Regulations, including but not limited to USTs, UICs, and wetlands

A discussion of the analytical results obtained during the Site Investigation is included in <u>Sections 4, 6, and 7</u>. Arsenic was the only target analyte identified at a concentration above applicable regulatory criteria. As discussed in <u>Section</u> <u>6.2</u>, arsenic in soil at the site was determined to be non-jurisdictional under the Remediation Regulations.

7.03L Include the concentration gradients of Hazardous Substances throughout the site for each media impacted by the Release.

Concentrations of hazardous substances in environmental media sampled during Site Investigation activities are discussed in <u>Sections 4 and 6</u>, and are included in <u>Tables 4, 5, and 6</u>.

7.03M Include the methodology and results of any investigation conducted to determine background concentrations of Hazardous Substances identified at the Contaminated-Site (see Section 12 for Special Requirements for Managing Arsenic in Soil).

A separate evaluation of arsenic concentrations identified during the Site Investigation was conducted in accordance with Rule 12 of the Remediation Regulations, and is discussed in <u>Section 6.2</u>.

7.03N Include a listing and evaluation of the site specific hydrogeological properties which could influence the migration of Hazardous Substances throughout and away from the site, including but not limited to, where appropriate:

• Depth to GW

As discussed in <u>Section 3.2.3</u>, groundwater was not encountered in borings advanced up to 39 feet below grade at the site.

• Presence and effects of both the natural and man-made barriers to and conduits for contaminant migration

No barriers or conduits affecting contaminant migration were identified during the investigation.

• Characterization of bedrock

Bedrock mapping is characterized in <u>Section 2.2</u>. Refusal, most likely due to the presence of boulder-rich glacial till, was encountered in all borings at depths between approximately 5.5 to 17 fbg, except at boring SB-2. At boring SB-2 a small-diameter solid point was driven by the Geoprobe to a depth of 39 feet without encountering refusal. Based on these results, bedrock is anticipated to be greater than 39 feet below grade at the site. Bedrock impacts were not anticipated as a result of the identified release.

- Groundwater contours, flow rates and gradients throughout the site Groundwater was not encountered in the borings advanced at the site.
- 7.03O Include a characterization of the topography, surface water and run-off flow patterns, including the flooding potential, of the site

The site is not located within a mapped flood hazard area. Topography and surface water proximal to the site are discussed in <u>Section 2</u>.

7.03P Include the potential for Hazardous Substances from the site to volatilize and any and all potential impacts of the volatilization to structures within the site.

A soil-vapor survey was conducted as described in <u>Sections 3.2.4, 4.3, and 6.3</u> to evaluate the potential for vapor intrusion into the on-site building.

7.03Q Include the potential for entrainment of Hazardous Substances from the site by wind or erosion actions.

Current risks posed by the site are described in <u>Section 6</u>.

7.03R Include detailed protocols for all fate and transport models used in the Site Investigation.

Fate and transport models were not prepared as part of this investigation.

7.03S Include a complete list of all samples taken, the location of all samples, parameters tested for and analytical methods used during the Site Investigation. (Be sure to include the samples locations and analytical results on a site figure).

Sample collection is discussed in <u>Section 3</u> and the locations of all samples collected are depicted on <u>Figure 2</u>. The locations of all samples and requested laboratory analyses are included in <u>Tables 1, 2, and 3</u> and <u>Section 3.2</u>.

7.03T Include construction plans and development procedures for all monitoring wells. Well construction shall be consistent with the requirements of Appendix 1 of the <u>Groundwater</u> <u>Quality Rules.</u>

Groundwater was not encountered in the soil borings advanced at the site. Therefore monitoring wells were not installed as part of the Site Investigation. In lieu of groundwater monitoring, a soil-gas sampling program was conducted to assess the potential for volatile contaminants to migrate into the on-site building.

7.03U Include procedures for the handling, storage and disposal of wastes derived from and during the investigation.

No wastes were derived during the investigation. Soil cuttings generated during sampling were retained on-site.

7.03V Include a quality assurance and quality control evaluation summary report for sample handling and analytical procedures, including, but not limited to, chain-of-custody procedures and sample preservation techniques.

All samples were collected and analyzed in accordance with EPA SW-846 protocols and industry standards. The sampling locations and analytes of concern were documented in a Site-Specific Quality Assurance Project Plan Addendum approved by RIDEM. A discussion of sampling techniques is included in <u>Section 3</u>. A discussion of data validation and usability is included in <u>Section 5</u>. Laboratory quality assurance information is provided in <u>Appendix D</u>.

7.03W Include any other site-specific factor, that the Director believes, is necessary to make an accurate decision as to the appropriate Remedial Action to be taken at the site.

No additional information has been requested at this time.

7.04 Include Remedial Alternatives. The Site Investigation Report shall contain a minimum of
 2 remedial alternatives other than no action/natural attenuation alternative, unless this requirement is waived by the Department. It should be clear which of these alternatives is most preferable. All alternatives shall be supported by relevant data contained in the Site Investigation Report and consistent with the current and reasonably forseeable land usage, and documentation of the following:

- Compliance with Section 8 (RISK MANGEMENT); Technical feasibility of the preferred remedial alternative;
- Compliance with Federal, State and local laws or other public concerns; and
- The ability of the Performing Party to perform the preferred remedial alternative

Based on the results of the Site Investigation, no further action with respect to environmental conditions at the site is recommended and an evaluation of remedial alternatives is not warranted.

- 7.05 **Certification Requirements:** The Site Investigation Report and all associated progress reports shall include the following statements signed by an authorized representative of the party specified:
 - A statement signed by an authorized representative of the Person who prepared the Site Investigation Report certifying the completeness and accuracy of the information contained in that report to the best of their knowledge; and
 - A statement signed by the Performing Party responsible for the submittal of the Site Investigation Report certifying that the report is a complete and accurate representation of the site and the Release and contains all known facts surrounding the Release to the best of their knowledge

The applicable certification requirements are included in <u>Section 8</u>.

7.06 **Progress Reports:** If the Site Investigation is not complete, include a schedule for the submission of periodic progress reports on the status of the investigation and interim reports on any milestones achieved in the project

The site investigation is complete.

7.07 **Public Involvement and Notice:** Be prepared to implement public notice requirements per Section 7.07 and 7.09 of the Remediation Regulations when the Department deems the Site Investigation Report to be complete.

Fuss & O'Neill will conduct public notice when the Site Investigation is deemed complete by RIDEM.

Table of Contents

Site Investigation Report/Targeted Brownfields Assessment Former Woonsocket Middle School

1	Intro	duction	.1
	1.1	Objectives	1
	1.2	Assessment Planning and Regulatory Approvals	1
2	Back	ground	.2
	2.1	Site Description and History	
	2.2	Geographic and Physiographic Setting	2
	2.3	Groundwater	3
	2.4	Surface Water	
	2.5	Location of Public Water Supply Sources	3
	2.6	Potential Receptors	
	2.7	Previous Environmental Investigations	
	2.8	SI/TBA Timeline and Regulatory Status	
	2.9	Contaminants of Concern	5
3	Site I	nvestigation	
	3.1	Public Notice Activities	
	3.2	Site Investigation Field Activities	7
		3.2.1 Ground Penetrating Radar (GPR) Survey	7
		3.2.2 Soil Borings	7
		3.2.3 Groundwater	8
		3.2.4 Soil Gas	8
		3.2.5 Hazardous Building Materials Inspection and Sampling	.10
		3.2.6 Summary of Quality Control Samples	.10
4	Inves	stigation Results	11
	4.1	GPR Survey	11
	4.2	Soil Borings	11
	4.3	Soil Gas	
	4.4	Hazardous Building Materials Inspection and Sampling	12
5		Verification and Usability	
	5.1	Data Verification	
	5.2	Detection Limits and Applicable Regulatory Criteria	
	5.3	Data Usability	15

Table of Contents

Site Investigation Report/Targeted Brownfields Assessment Former Woonsocket Middle School

Data Analysis and Risk Characterization	
6.1 Soil Data Analysis and Risk Characterization	
6.2 Evaluation of Arsenic in Soil	
6.3 Soil Gas Data Analysis and Risk Characterization	on17
6.4 Building Materials	
Conceptual Site Model and Conclusions	
Certifications	20
References	21
Limitations of Work Product	22
	 6.2 Evaluation of Arsenic in Soil 6.3 Soil Gas Data Analysis and Risk Characterization 6.4 Building Materials Conceptual Site Model and Conclusions Certifications References

Tab	les	Page
1	Summary of Soil Sampling Activities	8
2	Summary of Soil Gas Sampling Activities	9
3	Summary of Quality Control Samples	10
4	Summary of Soil Analytical Data and Objectives	End of Report
5	Summary of Soil Gas Analytical Data and Objectives	End of Report
6	Evaluation of Arsenic in Soil	End of Report

Figures

Site Location Map

2 Site Plan

App	pendices
A	Public Notice Letter
D	

- **GPR** Memorandum
- B C Hazardous Building Materials Inspection Report
- D Soil Boring Logs
- Laboratory Analytical Reports and Quality Control Certifications Е

End of Report

End of Report

1 Introduction

1.1 Objectives

The Rhode Island Department of Environmental Management (RIDEM) retained Fuss & O'Neill, Inc. (Fuss & O'Neill) to conduct a Site Investigation (SI) and Targeted Brownfields Assessment (TBA) at the former Woonsocket Middle School (the "site") located at 357 Park Place in the City of Woonsocket, Rhode Island (Providence County). This work was conducted and funded by RIDEM at the request of the City of Woonsocket, the owner of the property, to aid in the sale and redevelopment of the subject site.

The objective of the SI/TBA documented herein was to compile environmental information regarding the subject site through research, inspections, and field work. The SI/TBA was conducted to evaluate the absence or presence of contaminants in environmental media at the subject property and to prepare a *Site Investigation Report (SIR)* to fulfill requirements of *Section 7.0* of the RIDEM *Rules and Regulations for the Investigation and Remediation of Hazardous Material Releases (Remediation Regulations)*. The work also included the evaluation of hazardous building materials within the existing school structure to evaluate the anticipated scope, magnitude, and cost of potential abatement activities.

1.2 Assessment Planning and Regulatory Approvals

RIDEM granted final authorization to commence SI/TBA activities to Fuss & O'Neill on May 31, 2011. Because this investigation was funded by the RIDEM with financing from the United States Environmental Protection Agency (USEPA) Brownfields Program, Fuss & O'Neill prepared a site-specific *Quality Assurance Project Plan (QAPP) Addendum*, prior to initiation of field activities. The *QAPP Addendum* (Revision 0.0) was submitted to RIDEM and USEPA Region 1 on April 13, 2011. A subsequent *QAPP Addendum* (Revision 1.0) was submitted to RIDEM and the USEPA Region 1 on May 13, 2011. Approval of the *QAPP Addendum* (Revision 1.0) was granted by USEPA on May 18, 2011, and by RIDEM on May 19, 2011.

Based on preliminary results obtained during the initial phases of the SI/TBA activities documented herein, , Fuss & O'Neill submitted the following modifications to the *QAPP Addendum* ("*QAPP Modifications*") to facilitate the modification of the originally proposed scope of work including the supplemental analysis of soil gas and suspect building materials:

- *Site-Specific QAPP Addendum Modification for Soil Gas Sampling*, August 25, 2011, approved by USEPA on August 30, 2011.
- *Site-Specific QAPP Addendum Modification for PCBs in Building Materials Sampling*, Revision 1.0, March 6, 2012, approved by USEPA on May 11, 2012.

The *QAPP Addendum* and subsequent *QAPP Modifications*, which were developed in accordance with the USEPA Brownfields Quality Assurance Project Plan Guidance Document, detailed the field and analytical scope and quality control procedures for the SI/TBA.

2 Background

2.1 Site Description and History

The subject site, the former Woonsocket Middle School, is identified as the City of Woonsocket Tax Assessor's Plat 27E Lot 113-16 and is located in the center of Park Place in a R4 High Density Single and Multi-family Residential zone of Woonsocket Rhode Island (Providence County). A map consisting of portions of several United States Geological Survey (USGS) topographic maps showing the subject site location is provided as *Figure 1*.

According to City records, the subject site is a 2.98-acre rectangular-shaped parcel owned by the Woonsocket Education Department. Structures located on the subject site include a three to four story, 484,546-square foot school building. According to City records, the City purchased the site in 1913 and the oldest southwestern portion of the present-day building was constructed in 1915 as the City's high school. The remainder of the building was constructed between 1925 and 1926. A site plan is provided as *Figure 2*.

Since initial development, the subject site was used as a public high school from 1915 to the 1920s, a public middle school and high school from the 1920s to the 1970's, and as a public middle school from the 1970s until the building was vacated. Use of the subject site for educational purposes ceased in January 2010 when two new middle schools constructed southeast of the subject site were opened. The subject site has been vacant since 2010, and the City is marketing the site for sale and redevelopment, most likely as a multi-unit residential facility. Currently proposed development plans by a prospective developer of the site call for demolition of portions of the building. However, these plans have not yet been finalized, and the City still maintains ownership of the site.

2.2 Geographic and Physiographic Setting

The topography of the subject site is generally flat. The regional topography generally slopes down gradually to the north, east, and west, towards the Blackstone River (USGS, 1982).

Surficial material at the subject site is mapped as Merrimac Urban Land Complex, which is described as well drained sandy loam and soil covered by streets, parking lots, buildings, and other urban structures (RIGIS, 2008). Subsurface soil encountered during the field study performed for this assessment generally consisted of yellow-brown, fine to medium sand and gravel. A thin layer of fill material consisting of fine to medium sand and coal ash, was observed in the upper foot of soil encountered in borings SB-3 and SB-4, which were located in the paved areas adjacent to the boiler room as depicted on *Figure 2*.

Bedrock beneath the subject site is mapped as grey to pink, medium to coarse grained granite of the Esmond Igneous Suite (Hermes, et al, 1994). Depth to bedrock was not documented in available records reviewed for this assessment.

2.3 Groundwater

Groundwater beneath the site was classified by the Rhode Island Department of Environmental Management (RIDEM) as GB (RIDEM, 2010b). GB groundwater is designated to be not suitable for public or private drinking water use. GB groundwater areas are typically located beneath highly urbanized areas, permanent waste disposal areas and the area immediately surrounding the permanent waste disposal areas (RIDEM, 2010a).

Soil borings advanced during the SI/TBA encountered refusal at every boring location, with the exception of soil boring SB-2 which extended to 39 fbg. Groundwater was not encountered in any of these soil borings. Due to these subsurface conditions, groundwater monitoring wells were not installed at the site. Based on USGS mapping and the local topography and surface water hydrology, the inferred groundwater flow direction at the site is to the north, northwest, and east towards the Blackstone River.

2.4 Surface Water

The nearest surface water body, the Blackstone River, is located to the west, north, and east of the subject site. In the area northwest of the subject site, the Blackstone River is located within approximately 300 feet of the subject site, though at an elevation approximately 40 to 50 feet lower than that of the site (USGS, 1982). The Blackstone River was classified by RIDEM as Class B1 surface water (RIDEM, 2010c).

Class B1 waters are designated for primary and secondary contact recreational activities and fish and wildlife habitat. They should be suitable for compatible industrial processes and cooling, hydropower, aquacultural uses, navigation, and irrigation and other agricultural uses. These waters should have good aesthetic value. Primary contact recreational activities may be impacted due to pathogens from approved wastewater discharges. However, all Class B criteria must be met (RIDEM, 2010c).

According to Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) Panel #44007C0069G, the subject site was not located within a flood hazard area.

2.5 Location of Public Water Supply Sources

The Groundwater Classification & Wellhead Protection Area Maps of the Blackstone, Franklin, Georgiaville, and Pawtucket quadrangles, available from RIDEM, showed no public water supply wells or wellhead protection areas (WHPAs) within a one-half mile radius of the subject site.

2.6 Potential Receptors

Occupants and visitors of the site building and nearby residential properties which abut the site to the north, south, east and west were considered potential receptors of contamination potentially present at the site. The activities conducted by individuals working at, visiting, or trespassing at the site should be evaluated under current and foreseeable uses to determine whether compounds present in the subsurface pose a risk to those individuals.

2.7 Previous Environmental Investigations

On behalf of RIDEM, Fuss & O'Neill completed a Phase I Environmental Site Assessment (ESA) for the site in February 2011 as part of the SI/TBA process. Additional detail regarding the history of the site was included in the *Phase I ESA Report* submitted to RIDEM on February 8, 2011. The Phase I ESA identified the following Recognized Environmental Conditions (RECs) associated with the site:

- REC No. 1: USTs A FirstSearch environmental database report, RIDEM files, Fire • Department records, and the key site manager, Mr. Peter Fontaine, all reported the former presence of one or two underground storage tanks (USTs) at the subject site. One 10,000 gallon fuel oil UST was reportedly installed at the site in 1957 and removed from the site in 1998. According to RIDEM files, soil containing petroleum was observed in the UST grave during removal. In addition, two vent pipes were observed near the boiler room in the western portion of the parking area, near the former location of this UST, during the site inspection conducted as part of the Phase I ESA. According to Mr. Steve Preston, the hazardous materials specialist for the Woonsocket Fire Department at the time the assessment was completed. Fire Department records indicated that, in addition to the 10,000 gallon fuel oil UST removed in 1998, a second 10,000 gallon UST was reportedly installed at the site in 1989. The Fire Department records further indicated that the second 10,000 gallon UST was also closed. However, the presence, location, contents, or closure history of the second potential UST could not be confirmed during the Phase I ESA. Potential releases of petroleum associated with the historical operation of USTs at the site were identified as having the potential to have had a negative impact on the environmental quality of the site.
- REC No. 2: Hazardous Materials Throughout the interior of the building, numerous containers of hazardous materials, including paints, finish, sealants, formaldehyde, methanol, paint thinner, acids, and other laboratory and cleaning chemicals were observed in storage rooms, class rooms, and maintenance areas. These materials were generally stored in containers less than five gallons in volume. However, one 55-gallon drum, approximately one-quarter full of an unknown substance, was present in a basement storage room along the north side of the building. In addition, an isolated mercury spill was reported within two storage closets on the third floor of the building in 2009. According to the RIDEM Emergency Response Report and a post-remediation letter documenting the cleanup activities prepared by Marshall Environmental, the releases of mercury were satisfactorily cleaned up by Marshall Environmental, under the direction of the RIDEM.
- REC No. 3: Hazardous Building Materials A visual inspection for hazardous building materials, including asbestos containing materials (ACM), lead-based paint, polychlorinated biphenyl (PCB) containing materials, and mercury containing materials, concluded that these hazardous materials were likely present in significant quantity throughout the site building. Further inspections and appropriate characterization of building materials containing these hazardous substances were recommended to facilitate abatement planning prior building demolition activities which may be conducted as part of site redevelopment.

2.8 SI/TBA Timeline and Regulatory Status

The investigation timeline and regulatory status of the subject site is summarized below:

Phase I ESA:

• February 8, 2011: Fuss & O'Neill submitted the Phase I ESA Report to RIDEM.

Site-Specific QAPP Addendum:

- April 13, 2011: Fuss & O'Neill submitted a site-specific QAPP Addendum (Revision 0.0) to USEPA and RIDEM.
- May 13, 2011: Fuss & O'Neill submitted a revised site-specific *QAPP Addendum* (Revision 1.0) to USEPA and RIDEM.
- May 19, 2011: RIDEM and USEPA approved the *QAPP Addendum* for the SI/TBA.

Public Notice Activities and Commencement of SI/TBA:

• June 14, 2011: Fuss & O'Neill conducted public notice to all abutting property owners and tenants that the environmental assessment would commence. The field study portion of the SI/TBA subsequently commenced on June 23, 2011.

QAPP Modification and Soil-Gas Sampling:

- August 25, 2011: Fuss & O'Neill submitted a *QAPP Modification* to USEPA to eliminate groundwater sampling and add soil-gas sampling to the SI/TBA Scope of Work.
- August 30, 2011: USEPA approved of the soil-gas *QAPP Modification*.
- September 19, 2011: Fuss & O'Neill collected soil-gas samples at the site.

<u>OAPP Modification and Supplemental Sampling of Building Materials</u>:

- November 1, 2011: Fuss & O'Neill submitted a *QAPP Modification* (Revision 0.0) to USEPA to collect and analyze additional building materials for PCBs.
- March 6, 2012: Fuss & O'Neill submitted a revised *QAPP Modification* (Revision 1.0) to USEPA to support the collection and analysis of additional building materials for PCBs.
- May 11, 2012: USEPA approved of the building materials *QAPP Modification*.
- June 11, 2012: Fuss & O'Neill collected the additional samples of building materials from the site building for analysis of PCBs.

2.9 Contaminants of Concern

Based upon the known historical and current uses of the site, the following potential contaminants of concern and the associated laboratory analytical method were identified by Fuss & O'Neill. Identification of these contaminants and associated field and analytical programs were documented in the RIDEM and USEPA-approved *QAPP Addendum* and *QAPP Modifications*.

Soil:

- Volatile organic compounds (VOC) via USEPA Method 8260, including preservation by Method 5035
- Semi-volatile organic compounds (SVOC) via USEPA Method 8270
- 16 Metals antimony, arsenic, barium, beryllium, cadmium, chromium, copper, lead, manganese, mercury, nickel, selenium, silver, thallium, vanadium, and zinc via USEPA Methods 6010/7471
- Total petroleum hydrocarbons (TPH) via USEPA Method 8100
- PCBs via USEPA Method 8082

Groundwater:

- VOC via USEPA Method 8260
- SVOC via USEPA Method 8270
- 16 Metals via USEPA Methods 6010/7470

Soil Gas:

• VOC via USEPA Method TO-15

Hazardous Building Materials:

Potentially hazardous building materials located within the on-site structures were also a concern for redevelopment planning purposes. The assessment of building materials is presented in a separate *Hazardous Building Materials Inspection Report* attached as *Appendix C*. The contaminants of concern for building material assessment included:

- Asbestos via Polarized Light Microscopy (PLM) and Transmission Electron Microscopy (TEM)
- Lead-based paint via X-ray fluorescence (XRF) and USEPA Method 6010B
- Lead-based paint/waste characterization via Toxicity Characteristic Leaching Procedure (TCLP)
- PCB via USEPA Method 8082

3 Site Investigation

3.1 Public Notice Activities

In accordance with *Section 7.07(A)* of the RIDEM *Remediation Regulations*, Fuss & O'Neill conducted public notice activities in June 2011. As part of public notice activities, Fuss & O'Neill mailed letters to owners and tenants of abutting properties and other municipal stakeholders notifying them of the pending commencement of SI/TBA activities. Copies of public notice materials are attached as *Appendix A*.

According to RIDEM Environmental Resource mapping, the site was not located within an Environmental Justice Focus Area, so enhanced public communication activities were not required in accordance with *Section 7.07* of the *Remediation Regulations*.

3.2 Site Investigation Field Activities

The SI/TBA scope of work, *QAPP Addendum*, and *QAPP Modifications* were developed to facilitate the investigation of potential for impacts due to the RECs identified in the February 2011 *Phase I ESA* and summarized in *Section 2.7* of this document. Fuss & O'Neill commenced field activities at the site in June 2011. Field activities were conducted in several mobilizations and were completed by June 2012. Field activities were conducted in accordance with the RIDEM and USEPA-approved QAPP documents listed in *Section 2.8*, and summarized below.

3.2.1 Ground Penetrating Radar (GPR) Survey

On June 23, 2011, Fuss & O'Neill conducted a ground-penetrating radar (GPR) survey at the site. The objective of the GPR survey was to determine if USTs were present within the paved parking areas and landscaped areas, particularly focusing on the area surrounding the boiler room on the west side of the building. A memorandum documenting the horizontal extents, methodology, and results of the GPR survey is attached as *Appendix B*.

Based on the GPR records, no anomalies indicative of USTs were identified in the GPR target assessment area.

3.2.2 Soil Borings

Fuss & O'Neill conducted a soil boring program at the subject site on June 28, 2011. Eight soil borings, designated SB-1 through SB-8, were advanced at selected locations throughout the subject site utilizing a direct-push Geoprobe® drilling rig operated by a licensed Fuss & O'Neill driller. Soil boring locations are depicted on *Figure 2*.

Soil borings were advanced to depths ranging from 5.5 to 39 feet below grade (fbg). Refusal, likely due to the presence of bedrock or boulder-rich glacial till, was encountered in all borings at depths between approximately 5.5 to 17 fbg, except at boring SB-2. At boring SB-2 a small-diameter solid point was driven by the Geoprobe to a depth of 39 feet without encountering refusal.

During boring advancement, continuous soil logs were generated by a Fuss & O'Neill geologist. Soil samples collected from throughout the soil column were inspected, characterized, and field-screened for the presence of total VOC using a Photo Ionization Detector (PID).

Up to two soil samples were collected from each soil boring for laboratory analysis. One duplicate soil sample was collected from soil boring SB-6 for quality control purposes. Soil samples were submitted to Premier Laboratory of Dayville, Connecticut (Premier) for the suite of analyses specified in *Section 2.9*. A summary of soil sampling activities is included in *Table 1* below:

Location	Sample Depth (fbg)	Sample Number	Analyses		
SB-1	0.2-3	28-07			
30-1	5-9	28-08			
SB-2	0.4-5	28-05			
3D-2	20-24	28-06			
SB-3	1-5	28-03			
20-2	10-13	28-04	VOC SVOC		
SB-4	1-5	1-5 28-02			
SB-5	0.2-2	28-01	16 metals		
	0.8-5	28-11	TPH		
SB-6	0.0-5	28-12 (Duplicate)	PCB		
	7-8	28-13			
SB-7	0.2-5	28-09			
י-טכ	5-5.5	28-10			
SB-8	0.2-2	28-14			
0-0	5-7	28-15			

Table 1 Summary of Soil Sampling Activities

Notes: SB: soil boring

Sample ID: Only the last 4 digits of the sample identification number are listed.

3.2.3 Groundwater

The scope of work detailed in the original *QAPP Addendum* included the advancement of eight soil borings to depths several feet below the observed water table, and the installation of six groundwater monitoring wells at select soil boring locations. However, during the advancement of the proposed soil borings with the Geoprobe drill rig, consistent refusal was encountered at every boring location, with the exception of soil boring SB-2 which extended to 39 fbg. Groundwater was not encountered during advancement of any of soil borings.

Due to the subsurface conditions encountered during the implementation of the soil boring program, groundwater monitoring wells were not installed at the site. As a result of these site conditions, the originally anticipated scope of work was modified to include the implementation of a soil gas sampling program, in lieu of the originally proposed monitoring well installation and groundwater sampling activities.

3.2.4 Soil Gas

On September 19, 2011, Fuss & O'Neill personnel completed a soil gas sampling program at the site. The objective of the soil gas survey was to evaluate whether a vapor intrusion risk, associated with potential soil or groundwater contamination, was present at the site.

As part of this program, temporary stainless-steel soil gas sampling rods were advanced at seven locations throughout the subject site and designated SG-1 through SG-7, as depicted on *Figure 2*. Three of the seven soil gas sampling points were located in interior building spaces, including the boiler room and

former boiler room at the site where coal, oil, and natural gas were historically utilized to heat the site building. The remaining samples were collected from exterior locations at the site.

Sample rods were driven using a hammer drill to a depth of approximately 2.5 to 3 feet below the ground surface or below the elevation of the concrete slab for indoor locations. An electrostatic vacuum pump was used to purge ambient vapors from the sample rod for approximately five to ten minutes. An air sample was then collected from the sample rod using dedicated PTFE tubing connected to a SUMMA Canister. Each SUMMA Canister was equipped with a regulator calibrated to a flow rate of approximately 200 milliliters per minute (mL/min), for approximately 30 minutes of sampling time.

Eight soil gas samples, including one duplicate sample, were submitted to Accutest Laboratories of Woburn, Massachusetts (Accutest) for analysis of VOC by USEPA Method TO-15. A summary of soil gas sampling activities is included in *Table 2* below:

Location	Sample Depth (fbg)	Sample Number	Analyses			
SG-1	3	19-03				
SG-2	3	19-02				
SG-3	2.5	19-01	-			
		19-07				
SG-4	3	19-08 (Duplicate)	VOC by USEPA Method TO-15			
SG-5	3	19-06				
SG-6	2.5	19-04				
SG-7	3	19-05				

Table 2 Summary of Soil Gas Sampling Activities

Notes: SG: soil gas

Sample ID: Only the last 4 digits of the sample identification number are listed.

3.2.5 Hazardous Building Materials Inspection and Sampling

During July and August 2011, Fuss & O'Neill personnel performed a hazardous building materials inspection and limited sampling program for the presence of asbestos containing materials (ACM), lead-based paint, and PCB-containing materials. Based on the initial results of the PCB analyses, in June 2012, Fuss & O'Neill collected additional samples of bulk materials and substrates that were considered potential PCB source materials.

Detailed information regarding the hazardous building sampling activities, results, and potential abatement cost is included in the *Hazardous Building Materials Inspection Report* prepared by Fuss & O'Neill and attached as *Appendix C*.

3.2.6 Summary of Quality Control Samples

Four quality control samples were collected and analyzed as part of the soil and soil gas field sampling activities documented herein. Additional quality control samples associated with the hazardous building material sampling activities are discussed separately in the *Hazardous Building Materials Inspection Report* attached as *Appendix C*.

The quality control samples were collected in accordance with the *QAPP Addendum* and *QAPP Modifications* prepared for the assessment. The details of each quality control sample collected during the assessment are summarized below in *Table 3*. The trip blanks were analyzed for VOC only, while the duplicates were analyzed for the contaminants of concern for that matrix. All field equipment was dedicated, and field decontamination of equipment was not necessary. Therefore, no equipment or field blanks were collected.

Duplicate Samples										
Sample Media and ID	Sampling Location									
Soil: #28-12	SB-6									
Soil Gas: #19-08	SG-4									
Trip Blanks										
Sample ID	Associated Investigation									
#28-16, #28-17	Soil sampling									
Equipme	ent Blanks									
None										
Field Blanks										
N	one									

Table 3Summary of Quality Control Samples

Note: Only the last four or six digits of the sample number are listed.

An analysis of data usability is included in *Section 5.1*. This analysis includes an evaluation of the analytical results for the trip blanks, equipment blank, and the primary/duplicate pairs.

4 Investigation Results

4.1 GPR Survey

A memorandum documenting the results of the GPR survey is attached as *Appendix B*. Based on the GPR records, no anomalies indicative of USTs were identified within the survey area.

4.2 Soil Borings

Soil boring logs are included in *Appendix D* and soil boring locations are depicted on *Figure 2*. Soil observed in the soil borings advanced throughout the site consisted of sandy gravel. Loose sand with traces of concrete, coal, and coal ash was observed in the uppermost few inches of one soil boring just beneath the concrete/pavement of borings SB-3 and SB-4, located near the boiler room.

Soil samples from all borings were continuously screened for VOC throughout the soil column using a PID. VOC concentrations were below the instrument detection limit of 0.1 parts per million by volume (ppmv) in all of the screened samples. No visual or olfactory evidence of a release of petroleum or hazardous materials (i.e. odors, staining) was observed in the soil recovered from each boring.

Fourteen primary soil samples and one duplicate sample were collected from the eight soil borings advanced at the site. Each of the soil samples was submitted to Premier for analysis of VOC, SVOC, 16 metals, TPH, and PCBs. Analytical results of these samples are summarized in *Table 4*. The complete Premier analytical data reports are attached in *Appendix E*.

One or more SVOC were detected at concentrations exceeding laboratory reporting limits in four of the 15 soil samples collected from the soil borings at the site. The SVOC detected at concentrations exceeding laboratory reporting limits consisted of the following polycyclic aromatic hydrocarbons (PAH):

- Benzo(a)anthracene
- Benzo(a)pyrene
- Benzo(b)fluoranthene
- Chrysene
- Fluoranthene
- Indeno (1,2,3-cd)pyrene
- Phenanthrene
- Pyrene

Up to 13 individual metals were detected at concentrations exceeding the laboratory reporting limits in each of the samples.

TPH was detected at concentrations exceeding the laboratory reporting limits in five of the 15 soil samples. The detected petroleum fraction was reported as C16-C36 heavy petroleum distillate. No VOC or PCBs were detected at concentrations exceeding the laboratory reporting limits in any of the soil samples.

4.3 Soil Gas

The soil-gas sampling program was implemented in accordance with the *QAPP Modification* approved by USEPA on August 30, 2011. Each of the seven primary and one duplicate soil-gas samples were submitted to Accutest for analysis of VOC by USEPA Method TO-15. Analytical results of these samples are summarized in *Table 5*. The complete Accutest analytical data report is attached in *Appendix E*.

As summarized in *Table 5*, each soil-gas sample was reported to contain multiple VOC at concentrations exceeding laboratory reporting limits.

4.4 Hazardous Building Materials Inspection and Sampling

The detailed results of the building materials investigation is included in the attached *Hazardous Building Materials Assessment Report* included in *Appendix C*. This report indicates the following:

- Asbestos was found in the buildings present at the site in materials such as caulking, glazing, cement board, loose materials, floor tile, roofing materials, and piping insulation.
- Materials from the site buildings including brick walls, door components, ceiling materials, and window components, all screened positive for lead at concentrations exceeding 1.0 milligrams per square centimeter (mg/cm²). As an industry standard, painted surfaces with an XRF screening result greater than 1.0 mg/cm² are typically expected to exceed the lead-free standard of 150 mg/kg for residential and child-care facilities by the Rhode Island Department of Health.
- Two samples of a homogeneous brown, interior window caulk material were reported to contain total PCB concentrations of 3.5 milligrams per kilogram (mg/kg) and 4.2 mg/kg, respectively.
- Reported PCB concentrations in the substrate samples associated with the brown window caulk were below 50 mg/Kg. The brown interior window caulk was therefore considered to meet the definition of an Excluded PCB Product under the Toxic Substances Control Act (TSCA).

5 Data Verification and Usability

5.1 Data Verification

Fuss & O'Neill conducted modified Tier II data verification of the field and analytical data resulting from the assessment documented herein. Modified Tier II verification narratives, as well as modified Tier II data validation checklists, are attached to each laboratory analytical report in *Appendix E*.

Analyses Requested

During the course of the sampling events conducted at the subject property, 23 total samples of environmental media (excluding building materials) were collected and analyzed: 15 soil samples, including one duplicate, and eight soil vapor samples, including one duplicate. Two trip blanks were also submitted with the soil samples for analysis. Requested analytical parameters included:

Requested analytical parameters were selected from the following list, depending on the sample matrix:

- VOC by USEPA Method 8260
- VOC by USEPA Method TO-15
- SVOC by USEPA Method 8270
- 16 total metals by USEPA Methods 6010 and 7471
- TPH by USEPA Method 8100
- TCLP lead by USEPA Methods 1311 and 6010
- PCBs by USEPA Method 8082
- PCBs by USEPA Method 8082 with Soxhlet Extraction by USEPA Method 3540

Based on a review of the proposed scope of work detailed in the *Site Specific QAPP Addendum* and QAPP Modifications, the field sampling data sheets, chains of custody, and resulting laboratory analytical reports, each of the collected samples were analyzed for the appropriate set of analytical parameters.

Sample Holding Times

According to information contained within the laboratory analytical data reports, all samples were analyzed within method-specified holding times.

Trip Blank Samples

The sampling program included the collection of samples for VOC analysis on two separate days. Therefore, a total of two trip blanks were submitted for analysis for this investigation. All submitted trip blanks were analyzed for VOC by USEPA Method 8260. No compounds were detected at concentrations exceeding the laboratory reporting limits in any of the trip blanks.

Field Blank Samples

Dedicated or disposable sampling equipment (e.g., VOC core samplers, gloved hand, acetate Geoprobe[®] sleeves, razor blades, etc.) was used for all environmental samples collected at the site. Therefore, no equipment required field decontamination and no equipment or field blanks were collected.

Duplicate Samples

Duplicate samples were collected at the frequency detailed in the QAPP of one duplicate per 20 primary samples per matrix over the course of the project. In conformance with the QAPP, two duplicate samples, one duplicate soil sample and one duplicate soil gas sample, were collected and submitted for the

same analytical parameters as the primary sample (dependent upon contaminants of concern for the sample matrix).

Duplicate analytical results are summarized in the attached data tables and included in *Appendix E*. Results of the primary and duplicate soil samples exhibited relative percent differences (RPD) less than 30%, with the exception of the TPH result which exhibited an RPD of 35%. The elevated RPD for TPH was attributed to sample heterogeneity and matrix interferences and is not expected to affect the usability of the data. Furthermore, the reported TPH primary-duplicate results, 30 mg/Kg and a non-detect result with a reporting limit of 21 mg/Kg, were approximately 20 times less than the applicable RIDEM Residential Direct Exposure Criteria for TPH of 500 mg/Kg.

Results of the primary and duplicate soil gas samples exhibited RPDs generally below 30%, with two exceptions. Two of the detected VOC, tetrachloroethene and methylene chloride exhibited RPDs of 43% and 75% respectively. However, the reported concentrations of tetrachloroethene and methylene chloride were approximately 10 to 100 times below the reference criteria utilized for this project (identified in *Section 5.2* below). Due to the reported concentrations, none of the VOC detected in soil gas samples were considered to be constituents of concern at the site, and these observed variations in RPDs were not anticipated to have a significant negative affect on the usability of these sample results.

5.2 Detection Limits and Applicable Regulatory Criteria

Based upon the current and foreseeable use of the subject site, the analytical results were compared to the following regulatory criteria:

Soil:

- RIDEM Method 1 Residential Direct Exposure Criteria (R-DEC)
- RIDEM Method 1 Industrial/Commercial Direct Exposure Criteria (I/C-DEC)
- RIDEM Method 1 GB Leachability Criteria (GB-LC)
- Upper Concentration Limits (UCL)

Groundwater:

• RIDEM Method 1 GB Groundwater Objectives (GB-GO)

Soil Gas:

 RIDEM has not promulgated default standards for soil gas. Therefore, analytical data for soil gas samples were compared to the Residential Soil Vapor Volatilization Criteria (R-SVVC) from the 2003 Proposed Revision to the Connecticut Department of Energy and Environmental Protection (CTDEEP) *Remediation Standard Regulations* as reference criteria to initially evaluate the data.

Premier and Accutest provided reporting limits low enough to allow for direct comparison between the analytical data and the regulatory and reference criteria listed above.

5.3 Data Usability

The SI/TBA documented herein was conducted in accordance with the QAPP documents referenced in *Section 1.2.* The soil and soil-gas analytical dataset generated by the SI/TBA was considered to be of sufficient quality to be usable for evaluating the environmental condition of the site for compliance with the applicable regulatory and reference criteria listed in *Section 5.2.*

6 Data Analysis and Risk Characterization

6.1 Soil Data Analysis and Risk Characterization

Analytical results for the soil samples collected and analyzed during this assessment are summarized in *Table 4.* These soil results were compared to the RIDEM Method 1 R-DEC, the I/C-DEC, and the GB-LC.

Laboratory analytical results indicated that none of the individual VOC, SVOC, PCB, TPH, or metals compounds included in the requested analyses were reported by the laboratory in soil samples at concentrations greater than the applicable regulatory criteria, with the exception of arsenic. Arsenic was detected in six soil samples collected at concentrations in excess of the Method 1 R-DEC and I/C-DEC of 7.0 mg/kg. Further discussion and evaluation of the presence of arsenic in sit soil is included below.

6.2 Evaluation of Arsenic in Soil

Arsenic was the only individual analyte that was reported in any of the soil samples at concentrations exceeding the applicable RIDEM criteria. Arsenic exceedances were reported at depths ranging from the ground surface to eight fbg. The site history, geologic conditions, field screening, and laboratory analytical data set did not identify a potential source of an arsenic release at the site. Based on these multiple lines of evidence, the presence of arsenic in soil samples collected from the site was attributed to naturally-occurring background levels of arsenic. Further evidence to support this evaluation is discussed below.

Application of Rule 12.0

Arsenic was the only contaminant of concern identified in soil at the site at concentrations greater than the Method 1 R-DEC and I/C-DEC. Therefore, Fuss & O'Neill evaluated the arsenic results in accordance with Rule 12 of the RIDEM *Remediation Regulations – Special Requirements for Managing Arsenic in Soil*. The results of this evaluation, summarized below, were detailed in a memorandum prepared by Fuss & O'Neill and submitted to RIDEM on February 29, 2012.

A total of 15 soil samples (14 primary samples and 1 duplicate sample) were collected and analyzed for 16 Metals, PCB, TPH, SVOC, and VOC at Premier Laboratory. The laboratory results of the soil analyses indicated that none of the compounds included in this analytical suite were reported at concentrations greater than the associated Method 1 R-DEC, except for arsenic. Arsenic was reported at concentrations in excess of R-DEC and I/C-DEC of 7.0 mg/kg in the following samples:

- SB-04, 1-5 fbg (Sample #841110628-02)
- SB-05, 0.2-2 fbg (Sample #841110628-01)
- SB-06, 0.8-5 fbg (Sample #s 841110628-11, -12)
- SB-06, 7-8 fbg (Sample #841110628-13)
- SB-07, 0.2-5 fbg (Sample #841110628-09)
- SB-07, 5-5.5 fbg (Sample #841110628-10)

In accordance with Rule 12, a compliance evaluation was conducted to evaluate whether the detected concentrations of arsenic in soil were consistent with state background levels (Rule 12.03) or if the detected concentrations represent a jurisdictional release of arsenic which would be subject to the remedial requirements detailed in Rule 12.04 of the *Remediation Regulations*. A summary table outlining the results of the compliance evaluation for arsenic in soil at the site, completed in accordance with Rule 12.03 is attached as *Table 6*.

As detailed in Rule 12.03, three statistical conditions can be utilized to enable a determination that the concentrations of arsenic in soil samples collected at the site are consistent with state background levels, and hence non-jurisdictional under the *Remediation Regulations*. Each of these three conditions and the corresponding evaluation of site arsenic conditions are summarized below:

Rule	Requirement	Site Condition
12.03 (A)	No individual arsenic result shall be	None of the reported arsenic results in the data set
	greater than 15 ppm	were greater than 15 ppm.
12.03 (B)	No greater than 25% of arsenic results	42% of the results in the arsenic data set were
	shall exceed 7.0 ppm	greater than 7.0 ppm
12.03 (C)	The average of all arsenic results shall	The arsenic data set average was calculated to be
	be 7.0 ppm or less	less than 7.0 ppm

As indicated in the summary above, the arsenic data set for the site was in compliance with rule 12.03(A) and 12.03(C). However, since more than 25% of the results were greater than 7.0 ppm, the data set does not appear to be in strict compliance with this component of the rule.

The apparent lack of compliance with Rule 12.03(B) might suggest that one of the remedial options detailed in Rule 12.04 would be appropriate for the site. However, as the title of Rule 12.04(A) clearly indicates, the lowest tier of the remedial options was intended for the remediation of "Average Source Area arsenic levels between 7 and 15 ppm". As the average concentration of the arsenic data set for the Middle School site is in fact below 7 ppm, this remedial step may not be warranted.

Additionally, the investigation results suggest that the presence of arsenic in soil samples collected from the site is likely representative of background conditions, and not representative of an anthropogenic release of hazardous materials. Several lines of evidence observed during the investigation support this conceptual site model. These observations include the following:

1. Each of the soil samples collected was analyzed for a comprehensive suite of potential contaminants of concern, including 16 Metals, PCBs, TPH, SVOC, and VOC. None of the

individual contaminants included in these analyses were reported in any of the soil samples at concentrations exceeding the associated R-DEC, except for arsenic.

- 2. The vertical and horizontal distribution of the reported arsenic concentrations does not support a point source release, agricultural pesticide application, or atmospheric deposition model. This is supported by the fact that the reported concentrations of arsenic in soil did not appear to significantly vary with depth. The calculated average arsenic concentration for shallow samples (i.e. 0-5 fbg) was 7.19 ppm, while the average for deeper samples (i.e. 5-24 fbg) was 6.35 ppm. These differences are not statistically significant.
- 3. Also, field observations and analytical results do not support an urban fill release mechanism. Soil beneath the site was observed to consist of light yellowish brown fine to medium sand and gravel and for the most part did not exhibit evidence of having been disturbed. Evidence of reworked soil/fill was observed within the upper few inches, directly below paved/concrete surfaces in two soil borings installed in the parking lot area adjacent to the boiler room (SB-03 and SB-04). This material was most likely used as base material for the overlying pavement and concrete surface. Geologic conditions everywhere else on site were consistent and the horizontal and vertical arsenic distribution was generally uniform throughout the subsurface.
- 4. The site does not have a history of industrial use, has been utilized as a school for almost 100 years, and is located within a fully developed residential neighborhood on top of naturally-occurring high ground with an elevation higher than the Blackstone River channel and flood plain. These site characteristics and history do not support an anthropogenic release model for the presence of arsenic in site soil.

All of the data detailed above suggests that the presence of arsenic in soil at the site is representative of naturally-occurring background conditions. Additionally, since the site-wide average arsenic concentration is less than the threshold at which Rule 12.04 indicates the need for remedial response actions, further remedial actions may not be warranted.

In an email communication dated March 15, 2012, addressed to Mr. Patrick J. Dowling of Fuss & O'Neill, Ms. Cynthia Gianfrancesco of the RIDEM Office of Waste Management, after evaluation of the site specific conditions and data with others within the RIDEM, conceptually agreed with Fuss & O'Neill's position that the arsenic results for soil samples collected from the site represented a background condition, and that the site therefore should be considered as non-jurisdictional under the Remediation Regulations.

6.3 Soil Gas Data Analysis and Risk Characterization

Analytical results for the soil gas samples are summarized in *Table 5*. The analytical results were compared to the CTDEEP R-SVVC standards as discussed in *Section 5.2*.

Reported VOC concentrations for all detected compounds were less than the corresponding R-SVVC. In fact, each of the reported VOC concentrations were greater than two orders of magnitude less than the corresponding R-SVVC. These data do not suggest that a vapor migration concern is present at the site.

6.4 Building Materials

A detailed evaluation of the results of the building material assessment is included in the *Hazardous Building Materials Assessment Report* attached as *Appendix C*. This report indicates that materials within the on-site building contains ACM, lead-based paint, and PCBs.

The concentrations of ACM, lead and PCBs in building materials may warrant removal and off-site disposal in accordance with state and federal law, as described in *Appendix C*.

7 Conceptual Site Model and Conclusions

The objective of the SI/TBA activities described herein was to complete the *SIR/TBA* in accordance with the requirements of Section 7.00 of the RIDEM *Remediation Regulations*. These investigations consisted of the collection and laboratory analysis of samples of soil, soil-gas, and hazardous building materials. Results of the SI activities indicated that environmental media at the subject site were sufficiently characterized in accordance with the RIDEM *Remediation Regulations*.

Based on the data presented herein, a conceptual site model for the environmental concerns identified at the site was developed, and presented below:

Based on the results of a comprehensive Phase I ESA and in accordance with a RIDEM and USEPAapproved assessment scope of work and QAPP, a Site Investigation was conducted at the site that included the advancement of nine soil borings, the collection of 15 soil samples, eight soil gas samples, and numerous building materials samples.

Building Materials Assessment Conclusions

As building materials are not regulated under the jurisdiction of the RIDEM site remediation program, a separate report of findings detailing those activities has been prepared and attached as *Appendix C*, and only a summary of those activities is documented herein for reference.

As documented in the *Hazardous Building Materials Inspection Report*, building materials at the site were documented to contain hazardous materials, including asbestos, lead, and PCBs. Therefore, hazardous building materials, including those materials that will be disturbed during future building renovation, will need to be managed in a manner consistent with applicable RIDOH and USEPA regulations to mitigate potential risks posed to renovation workers, futures site users, and off-site receptors.

No further action on the part of the RIDEM Site Remediation Program is warranted in regards to building materials at the site.

Soil Gas, Groundwater, and Soil Quality Conclusions

Field screening and laboratory analytical results of soil gas did not support a conclusion that soil gas samples contained concentrations of VOC that exceeded applicable soil gas reference criteria utilized to evaluate the results.

As the site is situated within an area underlain by groundwater classified by RIDEM as GB, the primary concern associated with the potential presence of contaminants in groundwater was the potential for VOCs to volatilize and migrate upwards into the overlying building by means of soil vapor intrusion. In lieu of the collection of groundwater samples during this assessment, a soil gas investigation was conducted to directly measure the quality of soil gas beneath the site to evaluate if VOC may be present in soil or groundwater at concentrations that have the potential to negatively affect the indoor air quality of the existing or future buildings at the site. As detailed above, the results of the soil gas analyses did not provide evidence that such a condition exists at the site.

Additionally, none of the 15 soil samples collected at the site contained any of the potential contaminants of concern at concentrations greater than the RIDEM Method 1 R-DEC, with the exception of several individual detections of arsenic. However, as presented in *Section 6*, a detailed evaluation of multiple lines of evidence was conducted to evaluate whether the presence of arsenic in site soil was associated with a release of arsenic through an anthropogenic source or mechanism, or if the arsenic was related to naturally occurring background conditions at the site. As detailed in the summary of this evaluation, field conditions and laboratory results suggest that the geology, site history, soil quality, arsenic concentrations, and horizontal and vertical distribution of arsenic at the site strongly suggest that the presence of the arsenic in soil is associated with naturally occurring background conditions, and therefore should be considered non-jurisdictional under the *Remediation Regulations*.

Based on the results of the SI/TBA documented herein, no further action with respect to environmental conditions at the site is recommended and an evaluation of remedial alternatives is not warranted. We recommend that RIDEM concur that the site is considered non-jurisdictional under the *Remediation Regulations*, and that no further action is warranted.

Certifications 8

In accordance with Section 7.05 of the Remediation Regulations, the certification expressed below shall apply to the SIR compiled and submitted to RIDEM by Fuss & O'Neill.

I hereby certify the completeness and accuracy of the information contained in the above-referenced documents to the best of my knowledge

<u>Vice President</u>

Signature of Fuss & O'Neill, Inc. Title John A. Chambers, PG, LSP

June 14, 2013 Date

I hereby certify that the above-referenced documents are a complete and accurate representation of the contaminated site and the release, and contain all available facts surrounding the release to the best of my knowledge.

Metthial Wich DIRECONDEN June 19, 2013 Signature of Performing Party Title Date

MATTHEW J. WOJCIK

Printed Name

9 References

ASTM, 1997. ASTM Standards Relating to Environmental Site Characterization, American Society For Testing Materials, ASTM Publication Number PCN: 03-418297-38.

Fuss & O'Neill, Inc., 2011, Phase I Environmental Site Assessment, Former Woonsocket Middle School, Woonsocket, Rhode Island, February 2011.

Rhode Island Department of Environmental Management, 2011a, Rules and Regulations for the Investigation and Remediation of Hazardous Material Releases; RIDEM, Office of Waste Management, November 2011.

Rhode Island Department of Environmental Management, 2011b, State of Rhode Island 2010 303(d) List of Impaired Waters, July 2011.

Rhode Island Department of Environmental Management, 2010a, Rules and Regulations for Groundwater Quality; RIDEM, Office of Water Resources.

Rhode Island Department of Environmental Management, 2010b, Groundwater Classification & Wellhead Protection Area Maps; via <u>http://www.dem.ri.gov/maps/gw.htm</u>, accessed July 2012.

Rhode Island Department of Environmental Management, 2010c, Water Quality Regulations; RIDEM, Office of Water Resources.

United States Geological Survey, 1982, Uxbridge, Massachusetts-Rhode Island Quadrangle, 7.5x15 Minute Series Topographic Map; United States Department of the Interior, U.S. Geological Survey.

10Limitations of Work Product

This document was prepared for the sole use of the Rhode Island Department of Environmental Management, the only intended beneficiaries of our work. Those who may use or rely upon the report and the services (hereafter "work product") performed by Fuss & O'Neill, Inc. and/or its subsidiaries or independent professional associates, subconsultants and subcontractors (collectively the "Consultant") expressly accept the work product upon the following specific conditions.

- 1. Consultant represents that it prepared the work product in accordance with the professional and industry standards prevailing at the time such services were rendered.
- 2. The work product may contain information that is time sensitive. The work product was prepared by Consultant subject to the particular scope limitations, budgetary and time constraints and business objectives of the Client which are detailed therein or in the contract between Consultant and Client. Changes in use, tenants, work practices, storage, Federal, state or local laws, rules or regulations may affect the work product.
- 3. The observations described and upon which the work product was based were made under the conditions stated therein. Any conclusions presented in the work product were based solely upon the services described therein, and not on scientific or engineering tasks or procedures beyond the scope of described services.
- 4. In preparing its work product, Consultant may have relied on certain information provided by state and local officials and information and representations made by other parties referenced therein, and on information contained in the files of state and/or local agencies made available at the time of the project. To the extent that such files which may affect the conclusions of the work product are missing, incomplete, inaccurate or not provided, Consultant is not responsible. Although there may have been some degree of overlap in the information provided by these various sources, Consultant did not attempt to independently verify the accuracy or completeness of all information reviewed or received during the course of this project. Consultant assumes no responsibility or liability to discover or determine any defects in such information which could result in failure to identify contamination or other defect in, at or near the site. Unless specifically stated in the work product, Consultant assumes no responsibility or liability for the accuracy of drawings and reports obtained, received or reviewed.
- 5. If the purpose of this project was to assess the physical characteristics of the subject site with respect to the presence in the environment of hazardous substances, waste or petroleum and chemical products and wastes as defined in the work product, unless otherwise noted, no specific attempt was made to check the compliance of present or past owners or operators of the subject site with Federal, state, or local laws and regulations, environmental or otherwise.
- 6. If water level readings have been made, these observations were made at the times and under the conditions stated in the report. However, it must be noted that fluctuations in water levels may occur due to variations in rainfall, passage of time and other factors and such fluctuations may effect the conclusions and recommendations presented herein.

- 7. Except as noted in the work product, no quantitative laboratory testing was performed as part of the project. Where such analyses have been conducted by an outside laboratory, Consultant has relied upon the data provided and, unless otherwise described in the work product, has not conducted an independent evaluation of the reliability of these tests.
- 8. If the conclusions and recommendations contained in the work product are based, in part, upon various types of chemical data, then the conclusions and recommendations are contingent upon the validity of such data. These data (if obtained) have been reviewed and interpretations made by Consultant. If indicated in the work product, some of these data may be preliminary or screening-level data and should be confirmed with quantitative analyses if more specific information is necessary. Moreover, it should be noted that variations in the types and concentrations of contaminants and variations in their flow paths may occur due to seasonal water table fluctuations, past disposal practices, the passage of time and other factors.
- 9. Chemical analyses may have been performed for specific parameters during the course of this project, as described in the work product. However, it should be noted that additional chemical constituents not included in the analyses conducted for the project may be present in soil, groundwater, surface water, sediments or building materials at the subject site.
- 10. Ownership and property interests of all documents, including reports, electronic media, drawings and specifications, prepared or furnished by Consultant pursuant to this project are subject to the terms and conditions specified in the contract between the Consultant and Client, whether or not the project is completed.
- 11. Unless otherwise specifically noted in the work product or a requirement of the contract between the Consultant and Client, any reuse, modification or disbursement of documents to third parties will be at the sole risk of the third party and without liability or legal exposure to Consultant.
- 12. In the event that any questions arise with respect to the scope or meaning of Consultant's work product, immediately contact Consultant for clarification, explanation or to update the work product. In addition, Consultant has the right to verify, at the party's expense, the accuracy of the information contained in the work product, as deemed necessary by Consultant, based upon the passage of time or other material change in conditions since conducting the work.
- 13. Any use of or reliance on the work product shall constitute acceptance of the terms hereof.

Tables

\\rifs1\sys\P2010\0607\A20\SIR\sah-SIR-Fmr-Woonsocket-MS-20110715.doc

TABLE 4 Summary of Soil Analytical Data and Objectives Collected June 28, 2011

Former Woonsocket Middle School Woonsocket, Rhode Island

Site Investigation Report/Targeted Brownfields Assessment Prepared for RIDEM

June 2013

F	Location	SB	SB-01 SB-02		SE	SB-03 SB-04		SB-05	SB-06			SB-07		SB-08		RIDEM Regulatory Criteria		Critoria	
F	Sample Number	28-07	28-08	28-05	28-06	28-03	28-04	28-02	28-01	28-11	28-12	28-13	28-09	28-10	28-14	28-15	RIDEN	/i Regulatory	Unteria
	Sample Type	Primary	Duplicate	Primary	Primary	Primary	Primary	Primary	R-DEC	I/C-DEC	GB-LC								
	Sample Depth (fbg)	0.2-3	5-9	0.4-5	20-24	1-5	10-13	1-5	0.2-2	0.8-5	0.8-5	7-8	0.2-5	5-5.5	0.2-2	5-7	R-DEC	I/C-DEC	GD-LC
Total Metals (USEPA Method 6010/7471)	Units																		
Arsenic	mg/Kg	3.1	5.2	6.8	2.4	5.6	7	9.1	8.2	12	9.1	8.6	8.9	9.2	3.8	5.7	7.0	7.0	NE
Barium	mg/Kg	24	12	21	33	24	38	19	21	22	22	16	29	23	28	24	5,500	10,000	NE
Beryllium	mg/Kg	0.28	0.19	0.24	0.2	0.24	0.21	0.25	0.22	0.23	0.24	0.18	0.28	0.25	0.21	0.25	0.4	1.3	NE
Cadmium	mg/Kg	0.39	0.37	0.41	0.32	0.51	0.52	0.61	0.51	0.68	0.57	0.37	0.64	0.68	0.34	0.45	39	1,000	NE
Chromium	mg/Kg	6.1	6.7	6.5	5.7	9.4	14	13	11	13	11	6.1	12	15	4.1	6.8	390	10,000	NE
Copper	mg/Kg	12	6	7.6	11	8.2	11	9.3	11	11	11	5.5	9.5	11	6.6	24	3,100	10,000	NE
Lead	mg/Kg	47	2.3	4.7	2.3	3.8	3	56	6.9	7.4	6.7	4.1	8.8	6.8	14	2.9	150	500	NE
Manganese	mg/Kg	88	190	120	190	180	280	220	240	270	220	220	200	290	99	160	390	10,000	NE
Mercury	mg/Kg	0.044	ND < 0.021	0.023	ND < 0.021	ND < 0.022	ND < 0.021	ND < 0.021	23	610	NE								
Nickel	mg/Kg	4.3	7.8	6	5.3	9.4	13	13	12	14	12	8	11	15	3	8.5	1,000	10,000	NE
Thallium	mg/Kg	ND < 0.28	ND < 0.26	ND < 0.27	ND < 0.26	ND < 0.26	0.57	ND < 0.27	ND < 0.26	ND < 0.26	ND < 0.26	ND < 0.26	ND < 0.27	ND < 0.27	ND < 0.27	ND < 0.26	5.5	140	NE
Vanadium	mg/Kg	10	6.7	8.7	6.9	10	14	13	11	12	10	6.9	13	14	7.4	11	550	10,000	NE
Zinc	mg/Kg	22	15	54	16	18	22	22	21	28	25	16	20	23	19	20	6,000	10,000	NE
PCB Aroclors (USEPA Method 8082)																			
Total PCB Aroclors	µg/Kg	ND < 15	10.000	10.000	10,000														
	μγ/ κγ	ND < 13	ND < 13	ND < 13	ND < 15	ND < 15	ND < 13	ND < 13	ND < 15	ND < 15	10,000	10,000	10,000						
TPH (USEPA Method 8100)																			
C16-C36 Heavy Petroleum Distillate	mg/Kg	56	ND < 20	ND < 21	ND < 20	29	ND < 21	ND < 21	ND < 21	30	ND < 21	ND < 21	ND < 21	260	23	ND < 21	NE	NE	NE
Total Petroleum Hydrocarbons	mg/Kg	56	ND < 20	ND < 21	ND < 20	29	ND < 21	ND < 21	ND < 21	30	ND < 21	ND < 21	ND < 21	260	23	ND < 21	500	2,500	2,500
VOC (USEPA Method 8260) VOC	µg/Kg	ND < varies	varies	varies	varies														
100	μγ/ κγ														ND < Valles		Valies	Varies	Varies
SVOC (USEPA Method 8270)																	-		
Benzo(a)anthracene	µg/Kg	ND < 370	ND < 170	ND < 180	ND < 170	320	ND < 170	ND < 180	ND < 170	ND < 350	ND < 350	ND < 170	ND < 180	ND < 360	ND < 350	ND < 180	900	7,800	NE
Benzo(a)pyrene	µg/Kg	ND < 370	ND < 170	ND < 180	ND < 170	280	ND < 170	ND < 180	ND < 170	ND < 350	ND < 350	ND < 170	ND < 180	ND < 360	ND < 350	ND < 180	400	800	NE
Benzo(b)fluoranthene	µg/Kg	430	ND < 170	ND < 180	ND < 170	330	ND < 170	ND < 180	ND < 170	ND < 350	ND < 350	ND < 170	ND < 180	ND < 360	ND < 350	ND < 180	900	7,800	NE
Chrysene	µg/Kg	ND < 370	ND < 170	ND < 180	ND < 170	340	ND < 170	ND < 180	ND < 170	ND < 350	ND < 350	ND < 170	ND < 180	ND < 360	ND < 350	ND < 180	400	780,000	NE
Fluoranthene	µg/Kg	670	ND < 170	ND < 180	ND < 170	720	ND < 170	ND < 180	ND < 170	ND < 350	ND < 350	ND < 170	ND < 180	360	400	ND < 180	20,000	10,000,000	NE
Indeno (1,2,3-cd)pyrene	µg/Kg	ND < 370	ND < 170	ND < 180	ND < 170	180	ND < 170	ND < 180	ND < 170	ND < 350	ND < 350	ND < 170	ND < 180	ND < 360	ND < 350	ND < 180	900	7,800	NE
Phenanthrene	µg/Kg	510	ND < 170	ND < 180	ND < 170	860	ND < 170	ND < 180	ND < 170	ND < 350	ND < 350	ND < 170	ND < 180	440	ND < 350	ND < 180	40,000	10,000,000	NE
Pyrene	µg/Kg	730	ND < 170	ND < 180	ND < 170	780	ND < 170	ND < 180	ND < 170	ND < 350	ND < 350	ND < 170	ND < 180	480	ND < 350	ND < 180	13,000	10,000,000	NE

NOTES: RIDEM: Rhode Island Department of Environmental Management USEPA: United States Environmental Protection Agency PCBs: polychlorinated biphenyls VOC: volatile organic compounds TPH: total petroleum hydrocarbons SVOC: semi-volatile organic compounds Bold, shaded values exceed one or more regulatory criteria.

Total Petrolum Hydrocarbons is the sum of quantified hydrocarbon fractions ND < X: compound not detected above laboratory reporting limit NE: criterion is not established SB: soil boring mg/Kg: milligrams per kilogram µg/Kg: micrograms per kilogram

fbg: feet below grade R-DEC: Residential Direct Exposure Criteria I/C-DEC: Industrial/Commercial Direct Exposure Criteria GB-LC: GB groundwater leachability criteria Only the last 4 digits of the sample number are listed.

Created by: SAH Checked by: AMB

TABLE 5 Summary of Soil Gas Analytical Data and Objectives Collected September 19, 2011

Former Woonsocket Middle School Woonsocket Rhode Island

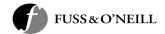
Site Investigation Report/Targeted Brownfields Assessment Prepared for RIDEM

June 2013

	Location	SG-1	SG-2	SG-3	SC	G-4	SG-5	SG-6	SG-7	CTDEEP	Soil Vapor
	Approx. Sample Depth (fbg)	3	3	2.5		3	3	2.5	3	Volatilizat	ion Criteria
	Sample Number	19-03	19-02	19-01	19-07	19-08	19-06	19-04	19-05	Residential	Industrial /
	Sample Type	Primary	Primary	Primary	Primary	Duplicate	Primary	Primary	Primary	Residential	Commercial
VOCs (USEPA Method TO-15)	Units										
1,1,1-Trichloroethane	e ppbv	ND < 0.20	ND < 0.20	ND < 0.20	0.2	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.20	70,000	130,000
1,2,4-Trimethylbenzene	e ppbv	ND < 0.50	1.5	ND < 0.50	ND < 0.50	ND < 0.50	0.84	0.66	ND < 0.50	1,400	15,000
1,3-Butadiene	e ppbv	ND < 0.50	1.7	NE	NE						
2,2,4-Trimethylpentane	e ppbv	ND < 0.50	6.2	ND < 0.50	NE	NE					
Acetone	e ppbv	12	39.8	14.1	16.8	19.5	46	18.7	27.5	57,000	290,000
Benzene	e ppbv	ND < 0.50	0.71	0.62	0.79	0.89	1.6	1.5	1.6	780	1,400
Carbon Disulfide		0.9	0.57	ND < 0.50	1.0	1.1	1.9	1.2	1.0	NE	NE
Chloroform	ppbv	ND < 0.50	ND < 0.50	0.59	ND < 0.50	78	140				
Dichlorodifluoromethane	e ppbv	ND < 0.50	ND < 0.50	ND < 0.50	0.52	ND < 0.50	ND < 0.50	0.55	0.84	14,000	140,000
Ethano	l ppbv	ND < 0.50	ND < 0.50	22.6	24.7	26.1	34.9	ND < 0.50	ND < 0.50	NE	NE
Ethylbenzene	e ppbv	ND < 0.50	0.91	0.8	0.52	9,300	93,000				
Heptane	e ppbv	ND < 0.50	0.63	0.58	0.8	NE	NE				
n-Hexane	e ppbv	ND < 0.50	ND < 0.50	0.55	ND < 0.50	ND < 0.50	0.68	ND < 0.50	ND < 0.50	NE	NE
Isopropano	l ppbv	ND < 0.50	ND < 0.50	3.2	2.2	2.8	ND < 0.50	ND < 0.50	ND < 0.50	NE	NE
Methyl ethyl Ketone (MEK)		ND < 0.50	7.3	1.5	1.7	1.6	7.0	5.5	ND < 0.50	130,000	230,000
Methylene chloride	e ppbv	1.3	ND < 0.50	0.86	1.1	ND < 0.50	ND < 0.50	8.3	1.2	650	6,800
Propylene		0.75	8.4	2.5	1.8	1.8	23.1	18.9	20.1	NE	NE
Tetrachloroethene		ND < 0.20	1.8	ND < 0.20	0.31	ND < 0.20	0.36	0.88	ND < 0.20	560	1,000
Tetrahydrofuran		ND < 0.50	ND < 0.50	0.56	ND < 0.50	0.51	0.64	0.66	ND < 0.50	NE	NE
Toluene		1.7	1.2	2.7	2.5	2.5	4.6	4.3	6.2	42,000	180,000
Trichlorofluoromethane		ND < 0.50	0.71	50,000	120,000						
Vinyl Acetate		ND < 0.50	2.2	ND < 0.50	1.0	0.99	2.0	1.3	0.67	NE	NE
m,p-xylenes		0.9	1.2	1.1	1.3	1.3	3.0	2.6	1.8	38,000	160,000
o-Xylene		ND < 0.50	0.5	ND < 0.50	ND < 0.50	ND < 0.50	1.0	0.79	0.52	38,000	160,000
Total Xylene	e ppbv	1.2	1.7	1.4	1.7	1.7	4.0	3.4	2.3	38,000	160,000

NOTES:

USEPA: United States Environmental Protection Agency


CTDEEP: Connecticut Department of Energy and Environmental Protection

fbg: feet below grade

ND < X: compound not detected above the reporting limit

Only the last 4 digits of the sample number are listed.

VOC: volatile organic compounds ppbv: parts per billion by volume NE: not established Created by: <u>SAH</u> Checked by: <u>TJC</u>

TABLE 6 Evaluation of Arsenic in Soil

Former Woonsocket Middle School Woonsocket, Rhode Island

Site Investigation Report/Targeted Brownfields Assessment Prepared for RIDEM

June 2013

Sample Location			Arsenic Result	Thres	hholds
	Identification	(fbg)	(mg/kg)	>7.0 mg/kg	>15.0 mg/kg
SB-01	28-07	0.2-3	3.1	0	0
30-01	28-08	5-9	5.2	0	0
SB-02	28-05	0.4-5	6.8	0	0
30-02	28-06	20-24	2.4	0	0
SB-03	28-03	1-5	5.6	0	0
30-03	28-04	10-13	7.0	0	0
SB-04	28-02	1-5	9.1	1	0
SB-05	28-01	0.2-2	8.2	1	0
SB-06	28-11*	0.8-5	12	1	0
30-00	28-13	7-8	8.6	1	0
SB-07	28-09	0.2-5	8.9	1	0
30-07	28-10	5-5.5	9.2	1	0
SB-08	28-14	0.2-2	3.8	0	0
30-00	28-15	5-7	5.7	0	0
Total			6	0	

Compliance Determination Evaluation

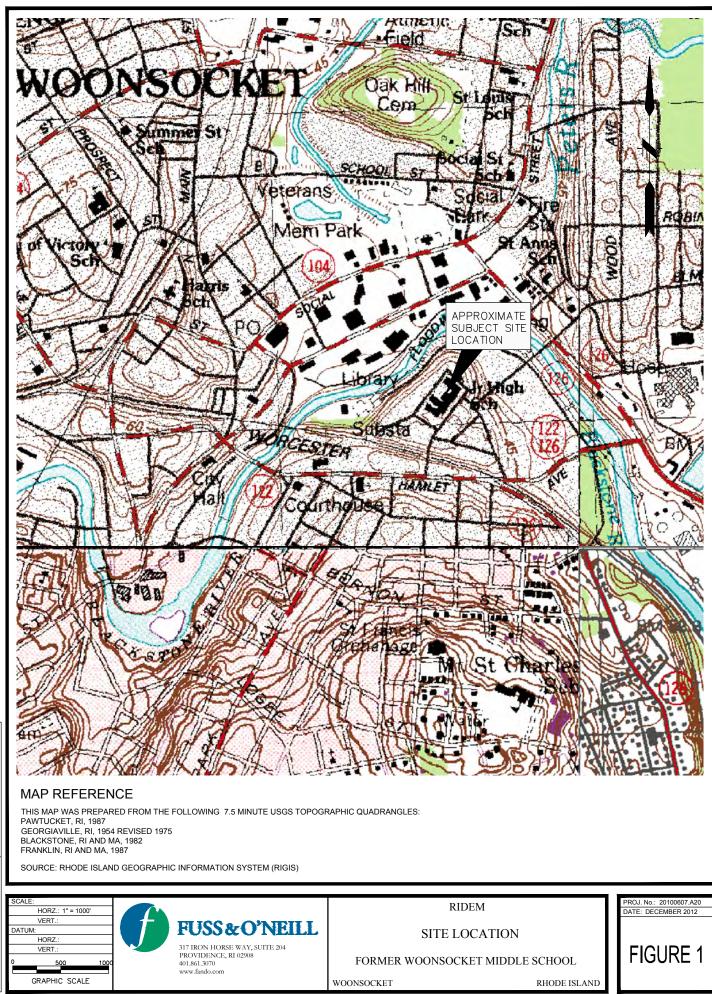
		Limit	Compliance Determination
Site acreage:	2.98	N/A	N/A
Minimum # of samples required:	12	N/A	N/A
Actual # of samples:	14	N/A	Yes
Average arsenic concentration (mg/kg):	6.8	7.0	Yes
Results > 15.0 mg/kg:	0	0	Yes
Results > 7.0 mg/kg:	6	N/A	N/A
% of results > 7.0 mg/kg:	43%	25%	No

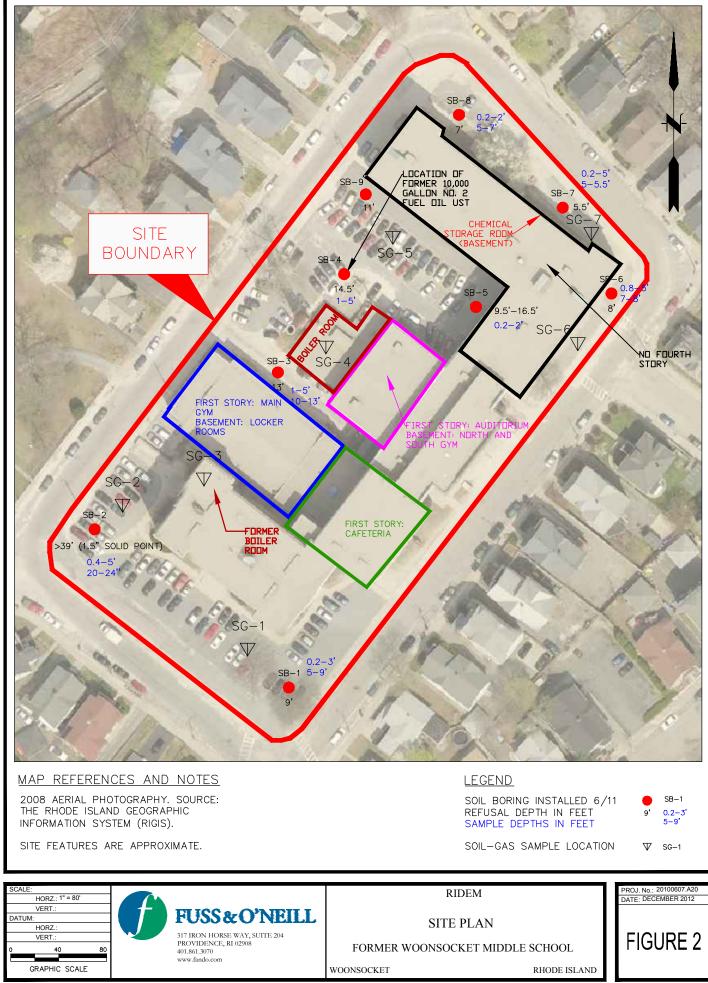
NOTES:

N/A = Not applicable

mg/kg = milligrams per kilogram

fbg: feet below grade


Only the last 4 digits of the sample numbers are listed.


* Duplicate sample #28-12, which had a reported arsenic concentration of 9.1, was excluded from this evaluation.

Created by: <u>SAH</u> Reviewed by: <u>PJD</u>

Figures

File Path: C:\TemplacPublish_3628/20100607A20-STP03-SIR dwg, Layout FIGURE-2, Plotted: Wed, Dec 12, 2012 - 2:17 PM User: shubbs MS VIEW: ILAYER STATE: ILAYER STATE: Plotter: DWG TO PDF PC3 CTB File: FO 2008 COLOR (HALF).CTB

Appendix A

Public Notice Letter

PUBLIC NOTICE

Notice of Commencement of Environmental Investigation Activities Former Woonsocket Middle School 357 Park Place Assessor's Plat 27, Lot 113 Woonsocket, Rhode Island

Dear Sir or Madam:

The purpose of this letter is to inform you that Fuss & O'Neill, Inc. (an environmental engineering firm), on behalf of the Rhode Island Department of Environmental Management (RIDEM) and the City of Woonsocket (the City), is conducting environmental site assessment activities at the Former Woonsocket Middle School located at 357 Park Place, and identified as City Assessor's Plat 27, Lot 113.

The site is considered to be a potential brownfield site, as the potential for hazardous building materials and environmental contamination in soil or groundwater may be affecting the beneficial redevelopment and reuse of the property. As a result, RIDEM is working with the United States Environmental Protection Agency, at the request of the City to investigate environmental concerns that may be associated with the site. This letter was prepared in accordance with Section 7.07(A) of the RIDEM <u>Rules and Regulations for the Investigation and Remediation of Hazardous Material Releases</u> (Remediation Regulations). This regulation requires that prior to commencement of an environmental site investigation, the owners and tenants of abutting properties must be notified.

Environmental investigation field activities will begin in June 2011 and are expected to last several months. On-site field activities will include sampling of building materials, surveys, drilling, installation of monitoring wells, and soil and groundwater sampling. Upon completion of the assessment, you will receive another letter notifying you that the investigation is complete. If you require more information or have specific comments or questions regarding this project, please contact any of the following project personnel.

Mr. Patrick Dowling	Ms. Jane Talbot	Ms. Cynthia Gianfrancesco
Project Manager	Deputy Director of Community Planning	Principal Environmental Scientist
Fuss & O'Neill, Inc.	City of Woonsocket	RIDEM
(401) 861-3070 ext. 4568	(401) 767-1418	(401) 222-2797 ext. 7126
pdowling@fando.com	jtalbot@woonsocketri.org	cynthia.gianfrancesco@dem.ri.gov

If applicable, please provide to your tenants notice of this letter.

Sincerely. Sontr

Patrick J. Dowling, CPG Project Manager

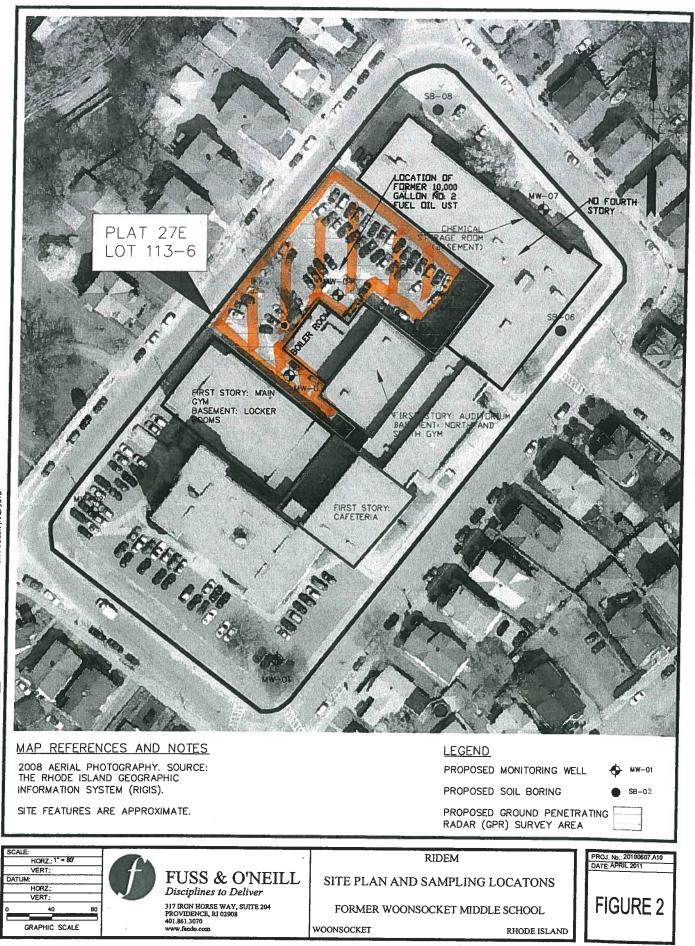
Appendix B

GPR Memorandum

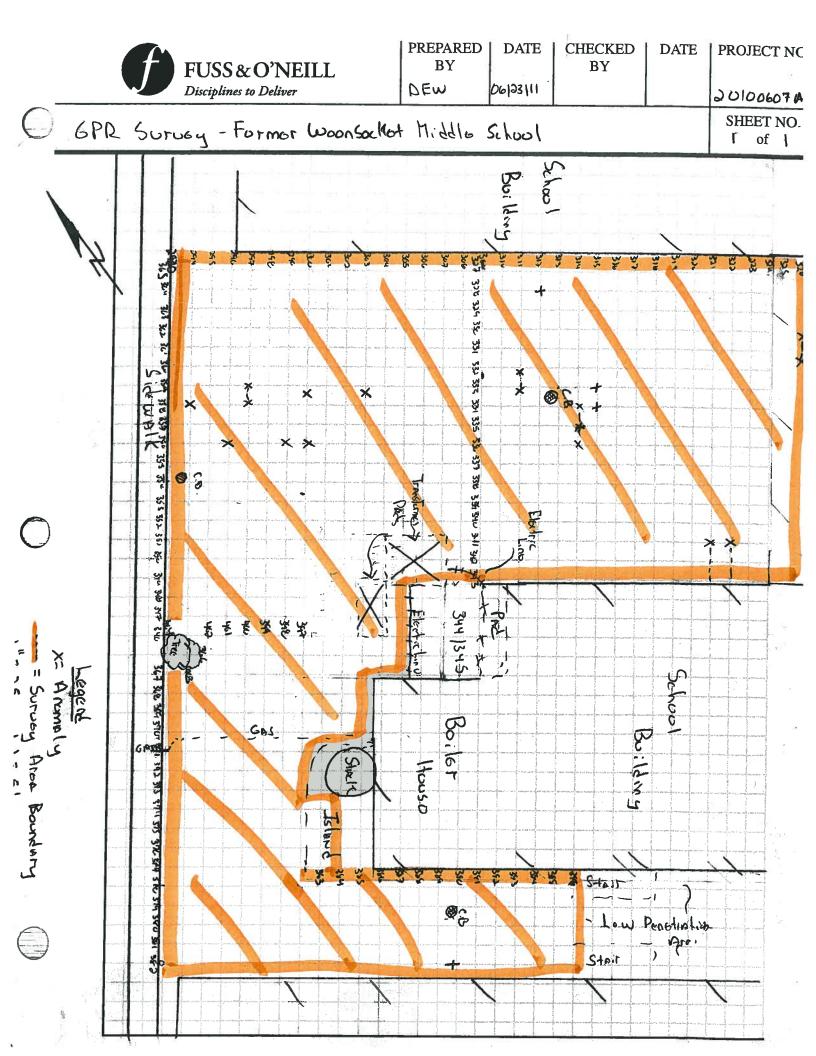
MEMORANDUM

TO: Patrick Dowling and Steven Hubbs, Fuss & O'Neill
FROM: Don Wilson, Fuss & O'Neill
DATE: June 24, 2011
RE: Former Woonsocket Middle School Woonsocket, Rhode Island

Fuss & O'Neill completed a Ground-Penetrating Radar (GPR) survey at the above-referenced site on June 23, 2011. These services were completed to determine if underground storage tanks (USTs) were still present on select portions of the property. Based on the results of a Phase I Environmental Site Assessment (ESA) conducted by our office on the property, one 10,000 gallon fuel oil tank was removed from the site in 1998. According to RIDEM files, soil containing petroleum was observed in the UST grave during removal. In addition, two vent pipes were observed near the boiler room in the western portion of the parking area near the former location of this UST. According to Mr. Steve Preston, the hazardous materials specialist for the Fire Department, Fire Department records indicated that two USTs were formerly present on site and that both tanks were closed. Based on conclusions from the Phase I ESA, concerns have been raised over the presence, location, removal, or contents of the second potential UST and whether this second UST may still be present on the property.


DISCUSSION

To determine if USTs are still present on the site, a GPR survey was conducted over the site on June 23, 2011. Fuss & O'Neill used a calibrated Geophysical Survey System, Inc. SIR-2000TM with a 400 Megahertz (MHZ) antenna to conduct the GPR survey. The survey area included all accessible areas in the open areas along the western side of the Former Middle School building adjacent the boiler house. The approximate survey area is shown on the attached field sketch in orange highlight.


Based on the GPR records, no anomalies indicative of USTs were identified.

Additional anomalies were identified during the GPR survey and were marked on the attached field sketch. These anomalies did not display the typical GPR characteristics for a UST and are likely buried utilities or other non-metal buried subsurface features (boulders, tree stumps, concrete, i.e.).

- END OF MEMORANDUM -

ental/Plan/GAPP/20100607A10-STP01-GAPP.dwg, Layout:08.5X11-P_RI71-SM-COLOR, Plotted: Mon, Apr 11, 2011-4133 PM User: ggagnen CTB FIle: FO 2008 COLOR (HALF), CTB ACROPLOT.PC3 Plotter. AYER STATE Path: J:\DWG\P2010\0607\A10\Environm NS I

Appendix C

Hazardous Building Materials Inspection Report

Limited Hazardous Building Materials Assessment Report Former Woonsocket Middle School

357 Park Place Woonsocket, RI

Rhode Island Department of Environmental Management

June 2013

317 Iron Horse Way, Suite 204 Providence, RI 02908

June 4, 2013

Ms. Cynthia Gianfrancesco Principal Environmental Scientist Rhode Island Department of Environmental Management 235 Promenade Street Providence, RI 02908

Re: Limited Hazardous Building Materials Assessment Report Former Woonsocket Middle School, Woonsocket, Rhode Island Fuss & O'Neill Project No. 20100607.A20

Dear Ms. Gianfrancesco:

The purpose of this letter is to present the enclosed *Hazardous Building Materials Assessment Report* for the former Woonsocket Middle School located at 357 Park Place in Woonsocket, Rhode Island. This hazardous building materials assessment was conducted on behalf of the Rhode Island Department of Environmental Management (RIDEM) at the request of the City of Woonsocket (the City), under the Targeted Brownfield Assessment program. The objective of this assessment was to assist the City in developing abatement strategy and cost estimate for hazardous building materials abatement activities warranted as part of future renovation of the 484,546-square foot, former school building.

The field and laboratory assessment activities detailed in the attached report were implemented in accordance with a USEPA-approved site-specific *Quality Assurance Project Plan (QAPP)* Addendum prepared in accordance with the USEPA Brownfields Quality Assurance Project Plan Guidance Document.

Please contact the undersigned if you have any questions or require additional information regarding this assessment.

Sincerely,

Patrick J. Dowling, CPG Senior Project Manager

John A. Chambers, PG, LSI Vice President

Connecticut Massachusetts Rhode Island South Carolina

f 401.861.3076

www.fando.com

317 Iron Horse Way

Suite 204 Providence, RI 02908 t 401.861.3070 800 286 2469

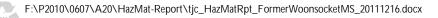

Attachments: Limited Hazardous Building Materials Assessment Report

Table of Contents

Hazardous Building Materials Assessment Report Former Woonsocket Middle School RIDEM

1	ntroduction	1
2	Asbestos Assessment.1Results of Asbestos Analysis by PLM2Results of Asbestos Analysis by TEM.3Asbestos Analysis Conclusions	. 3 11
3	ead-Based Paint Determination11Lead-Based Paint Screening Results12Lead-Based Paint Screening Conclusions1	15
4	Waste Characterization for Lead1.1Lead Waste Characterization Sampling1.2Lead Waste Characterization Results2.3Lead Waste Characterization Conclusion2	19 20
5	ead Paint Chip Analysis2.1Lead Paint Chip Sampling.2Lead Paint Chip Results.2Lead Paint Chip Results	21
6	PCB Bulk Product and Substrate Assessment 2 0.1 Background 2 0.2 Initial PCB Bulk Product Sampling 2 0.3 Supplemental PCB Sampling 2 0.3.1 Supplemental PCB Bulk Product Sampling 2 0.3.2 Supplemental PCB Substrate Sampling 2 0.4 PCB Assessment Conclusions 2	22 23 23 26 26 27
7	Data Verification and Usability Assessment21Data Verification22Detection Limits and Applicable Regulatory Criteria33Data Usability3	29 30

Table of Contents

Hazardous Building Materials Assessment Report Former Woonsocket Middle School RIDEM

	Page
Asbestos Containing Materials and PLM Results	3
Non-Asbestos Containing Materials	6
Materials Analyzed By TEM	11
Estimated Quantities of Asbestos Containing Materials	13
Lead XRF Screening Results	15
TCLP Lead Waste Characterization Results	20
Paint Chip Sample Lead Results	21
PCB Bulk Product Sample Results	24
Bulk Samples Exhibiting Poor Surrogate Recoveries	25
Supplemental PCB Bulk Product Sample Results	26
Substrate Analytical Results	28
Estimated Costs for Hazardous Materials Abatement	Appendix H
	Asbestos Containing Materials and PLM Results Non-Asbestos Containing Materials Materials Analyzed By TEM Estimated Quantities of Asbestos Containing Materials Lead XRF Screening Results TCLP Lead Waste Characterization Results Paint Chip Sample Lead Results PCB Bulk Product Sample Results Bulk Samples Exhibiting Poor Surrogate Recoveries Supplemental PCB Bulk Product Sample Results Substrate Analytical Results

Appendices

- A Asbestos Inspector Licenses and Certifications
- B Asbestos PLM Laboratory Analytical Results
- C Asbestos TEM Laboratory Analytical Results
- D XRF Lead Testing Field Data Sheets
- E TCLP Lead Laboratory Analytical Results and Data Verification Documentation
- F Lead Paint Chip Laboratory Analytical Results and Data Verification Documentation
- G PCB Laboratory Analytical Results and Data Verification Documentation
- H Hazardous Materials Abatement Cost Estimate
- I Facility Floor Plan

1 Introduction

From July 6, 2011 to August 18, 2011, Fuss & O'Neill EnviroScience, LLC (Fuss & O'Neill) representatives Mr. Dustin Diedricksen, Mr. Jonathan Hand, Mr. Stephen Moulton, and Mr. John Coletti performed hazardous building material assessment activities at the former Woonsocket Middle School located at 357 Park Place in Woonsocket, Rhode Island (the site). Additional follow-up sampling was conducted by Mr. Diedricksen and Mr. Steven Hubbs of Fuss & O'Neill on June 11, 2012. The assessment included a limited asbestos assessment, lead-based paint determination, lead paint chip sample analysis, toxic characteristic leaching procedure (TCLP) waste characterization, and polychlorinated biphenyl (PCB) building material assessment. Copies of asbestos inspector licenses for personnel involved in this assessment are included in *Appendix A*. Facility plans, depicting the rooms and areas on each of the four floors of the school building which correspond to the sampling locations discussed in this report is included as *Appendix I*.

This hazardous building materials assessment was performed to identify and quantify possible hazardous building materials that may affect proposed future renovation of the school building. A definitive renovation or demolition plan was not available to Fuss & O'Neill at the time of this assessment. The work documented herein was performed on behalf of the Rhode Island Department of Environmental Management (RIDEM) for the City of Woonsocket, (the City) in accordance with written scopes of work detailed in a site-specific *Quality Assurance Project Plan Addendum (QAPP Addendum-Revision 1.0*) and site-specific *QAPP Modification* prepared by Fuss & O'Neill and approved by the United States Environmental Protection Agency (USEPA) on May 18, 2011 and May 11, 2012, respectively.

2 Asbestos Assessment

A property owner must ensure that performance of a thorough inspection for asbestos-containing materials (ACM) is conducted prior to disturbance of materials potentially containing asbestos during renovation or demolition. This responsibility is a requirement of the USEPA National Emission Standards for Hazardous Air Pollutants (NESHAP) Regulation 40 CFR Part 61, Sub-part M, and the Rhode Island Department of Health (RIDOH) regulation R23-24.5-A5b.

This requirement includes friable, non-friable Category I, and non-friable Category II ACM. These terms are defined below:

- Friable ACM is defined as material that contains greater than 1 % asbestos that, when dry, can be crumbled, pulverized, or reduced to powder by hand pressure.
- A Category I Non-friable ACM refers to specific materials, including packings, gaskets, resilient floor coverings, and asphalt roofing products, which contain greater than 1% asbestos that, when dry, cannot be crumbled, pulverized, or reduced to powder by hand pressure.
- A Category II non-friable ACM refers to any non-friable materials, excluding Category I materials, which contain greater than 1%asbestos that, when dry, cannot be crumbled, pulverized or reduced to powder by hand pressure.

During the assessment documented herein, suspect ACM were separated into three USEPA-defined categories. These categories are:

- Thermal System Insulation (TSI) Includes all materials used to prevent heat loss or gain, or water condensation on mechanical systems. Examples of TSI are pipe insulation, boiler insulation, duct insulation, and mudded insulation on pipe fittings.
- Surfacing (SURF) ACM Includes all ACM that is sprayed, troweled, or otherwise applied to an existing surface. Surfacing ACM is commonly used for fireproofing, decorative, and acoustical applications.
- Miscellaneous (MISC) ACM Includes all ACM not categorized as thermal or surfacing ACM, such as linoleum, vinyl asbestos flooring, and ceiling tiles.

The USEPA recommends that representative samples of homogenous building materials be collected in a manner sufficient to determine asbestos content. The USEPA NESHAP regulation does not specifically identify a minimum number of samples to be collected, but, recommends the use of sampling protocols included in 40 CFR Part 763, Sub-Part E - Asbestos Containing Materials in Schools. RIDOH does specify a minimum number of samples in regulation 23-24.5-A5b which is consistent with the below-summarized protocol.

During the assessment documented herein, samples of suspect ACM were collected in accordance with USEPA recommendations and Asbestos Hazard Emergency Response Act (AHERA) and RIDOH protocols. These protocols include the following:

- 1. SURF materials, such as plaster and spray-on fireproofing, were collected in a randomly distributed manner representing each homogenous area based on the overall quantity, using the following sampling method:
 - a. Three samples collected from each homogenous area that is less than or equal to 1,000 square feet.
 - b. Five samples were collected from each homogenous area that is greater than 1,000 square feet but less than or equal to 5,000 square feet.
 - c. Seven samples collected from each homogenous area that is greater than 5,000 square feet.
- 2. TSI materials, such as pipe insulation and tank insulation, were collected in a randomly distributed manner representing each homogenous area. Three samples collected from each material. Also, a minimum of one sample of any patching materials applied to TSI was collected, as long as the patched area was less than six linear or square feet.
- 3. MISC materials, such as floor tile, gaskets, and construction mastics, were typically characterized by a minimum of two samples collected of each homogenous material type. Sampling was conducted

in a manner sufficient to determine asbestos content of the homogenous material as determined by the inspector. If materials identified were of minimal quantity, only a single sample was collected.

The inspectors collected samples, documented sampling activities, and prepared proper chains of custody for transfer of the samples to an accredited laboratory for analysis by Polarized Light Microscopy (PLM). Asbestos samples were submitted to ESS Laboratory (ESS) of Cranston, Rhode Island who, in turn, subcontracted the analysis to EMSL Laboratory (EMSL) of Westmont, New Jersey.

A total of 403 samples, representing 202 different homogeneous, suspect ACM were collected and submitted for laboratory analysis. These samples were initially analyzed by EMSL Laboratory for asbestos content by PLM, and the laboratory was directed to implement a "stop-positive" approach, during which they would suspend analysis of homogeneous sample materials upon confirmation that one sample of that homogeneous material was confirmed to contain asbestos at a concentration greater than 1%. This approach resulted in the analysis of 354 of the 403 samples originally requested for PLM analysis. Additionally, based on the PLM results, supplemental analyses were requested for verification purposes, as discussed further below.

The Fuss & O'Neill sampling locations, identification, and material type of each sample collected and analyzed by the laboratory are summarized in the ACM results *Tables 1* and *2* in *Section 2.1* below. It should be noted that roofing materials were excluded from the assessment documented herein, and to our knowledge have not been evaluated for the presence of ACM.

2.1 Results of Asbestos Analysis by PLM

The USEPA, Occupational Safety and Health Administration (OSHA), and RIDOH define any material that contains greater than one percent (>1%) asbestos, determined utilizing PLM, as being an ACM. Materials that are identified as "none detected" are specified as not containing asbestos.

Any building materials at the site not listed in the following tables, including roofing materials, should be considered suspect ACM until sample results prove otherwise. Refer to *Appendix B* for Asbestos PLM sample results and applicable data validation materials.

Utilizing the USEPA protocol and criteria, the materials included in *Table 1* were determined to be ACM:

Sample	Material Type	Sample	Asbestos
Location	Material Type	No.	Content
Room 101	White Mottled with Brown 12x12 Floor Tile	818DD-05A	3% Chrysotile
Room 105	White with Brown Streaks 9x9 Floor Tile	818DD-08A	3% Chrysotile
Exterior Typical Window	Tan Caulking at Brick Molding (Wood) Concealed Beneath Aluminum Window Frames	818DD-14A	10% Chrysotile
Room 105	Black Sink Undercoat	818DD-16A	15% Chrysotile
Room 203	Mastic Associated with 2" Brown Vinyl Baseboard	818DD-18A	4.6% Chrysotile*

Table 1Asbestos Containing Materials and PLM Results

Sample Location	Material Type	Sample No.	Asbestos Content
Room 211	Mint Green with Cream and Green Splotches 9x9 Floor Tile	818DD-19A	3% Chrysotile
Room 203	Grey with White Washout 9x9 Floor Tile	818DD-20A	2% Chrysotile
Room 204	Greyish Green with White and Grey Streaks 9x9 Floor Tile	818DD-21A	2% Chrysotile
Room 202A	White with Tan and Grey Specks 9x9 Floor Tile	818DD-25A	5% Chrysotile
Room 207A/B	Blue 9x9 Floor Tile underneath Plywood Underlayment	818DD-28A	2% Chrysotile
Room 211	Beige with White and Brown Splotches 9x9 Floor Tile	818DD-29A	3% Chrysotile
Room 213	Light Brown with Cream and Brown Splotches 9x9 Floor Tile (Checkered)	818DD-30A	2% Chrysotile
Room 213	Dark Brown with Cream and Light Brown Splotches 9x9 Floor Tile (Checkered)	818DD-31A	2% Chrysotile
Room 220 (Office)	Green Mottled 12x12 Floor Tile	818DD-32A	5% Chrysotile
Room 216	Light Blue with White Streaks 9x9 Floor Tile	818DD-33A	2% Chrysotile
Room 218	Brown and Tan Washout 9x9 Floor Tile	818DD-36A	5% Chrysotile
Room 550	Tan/Brown Vinyl Floor Tile Beneath Plywood Underlayment	818DD-38A	2% Chrysotile
Room 553	Brown, Tan, and White Mottled 12x12 Floor Tile	818DD-39A	2% Chrysotile
Hallway Outside Room 554 - 550	Black with White and Green Streaks 9x9 Floor Tile	818DD-42A	4% Chrysotile
Room 502A	Pea Green with Dark Green and White Splotches 12x12 Floor Tile	818DD-46A	6% Chrysotile
Hall Outside Former HS Office	Grey Vinyl Floor Tile underneath Plywood Underlayment	76DD-50A	3.2% Anthophyllite*
Hall Outside Former HS Office	Blue Vinyl Floor Tile underneath Plywood Underlayment	76DD-51A	28.2% Chrysotile*
Former HS Main Office	Brownish Grey with White and Brown Specks 9x9 Floor Tile	76DD-57A	1.9% Chrysotile*
Library Annex	Grey Vinyl Floor Tile Beneath Plywood Underlayment	76DD-66A	8% Chrysotile
Corner Bathroom HS Office Hall	Grey with Pink and Green Splotches 9x9 Floor Tile	76DD-72A	5% Chrysotile
Rooms 350/353	Tan with White and Brown Splotches 12x12 Floor Tile (Checkered)	76DD-73A	5% Chrysotile
Rooms 350/353	Brown with Dark Brown and White Splotches 12x12 Floor Tile (Checkered)	76DD-74A	4% Chrysotile
Room 354	Green with White Splotches 12x12 Floor Tile (Checkered)	76DD-75A	5% Chrysotile
Room 354	Tan with White and Brown Splotches 12x12 Floor Tile (Checkered)	76DD-76A	8% Chrysotile
Room 356	Light Brown with White and Brown Splotches 12x12 Floor Tile (Checkered)	76DD-77A	8% Chrysotile
Room 356	Brown with White and Dark Brown Splotches 12x12 Floor Tile (Checkered)	76DD-78A	5% Chrysotile
Room 351 and 352	Grey with White Splotches 12x12 Floor Tile (Checkered)	76DD-79A	5% Chrysotile
Room 351 and 352	Dark Grey with White Streaks 12x12 Floor Tile (Checkered)	76DD-80A	5% Chrysotile
Room 317 – Partitioned Offices	Orange, Brown, and Tan Mottled 12x12 Floor Tile	77DD-87A	5% Chrysotile

Sample Location	Material Type	Sample No.	Asbestos Content
Projector Booth	Transite Panels	77DD-92A	30% Chrysotile
Room 405	Orange and Tan Mottled 12x12 Floor Tile (Bottom Layer)	711DD-107A	2% Chrysotile
Custodian Room Next to Room 461	Brown with White and Brown Specks 9x9 Floor Tile	711DD-112A	4% Chrysotile
Room 458	Green with White 9x9 Floor Tile	711DD113A	6% Chrysotile
Corridors at Classroom Wing	Tan Window Glazing Compound Associated with Doors	711DD-115A	3% Chrysotile
Room 461	Orange, Brown, and Tan Speckled 9x9 Floor Tile	711DD-116A	5% Chrysotile
Hallway Outside Room 464	Concealed Grey Vinyl Floor Tile underneath Plywood	711DD-117A	4.3% Anthophyllite*
Room 455	Light Brown with White Streaks 9x9 Floor Tile (Checkered)	711DD-118A	8% Chrysotile
Room 455	Brown with White Streaks 9x9 Floor Tile (Checkered)	711DD-119A	10% Chrysotile
Room 456	Greyish Green with White Streaks 12x12 Floor Tile (Top Layer)	711DD-124A	6% Chrysotile
Room 458	Tan with White and Brown Streaks 9x9 Floor Tile	711DD-125A	2% Chrysotile
Room 460	Grey with Pink and White Streak 9x9 Floor Tile	711DD-126A	4% Chrysotile
Room 460	Light Green with Pink and Black Streaks 9x9 Floor Tile	711DD-127A	3% Chrysotile
Custodian Room Next to Room 461	Tan with White and Brown Specks 9x9 Floor Tile	711DD-128A	5% Chrysotile
Room 556	Concealed Bottom Vinyl Floor Tile (Assume 9x9) – Mixed Pattern	711DD-131A	19.9% Chrysotile*
Room 557A	Pea Green Mottled 12x12 Floor Tile	711DD-135A	2% Chrysotile
Room 554	Greenish Brown with Dark Green and White Splotches 12x12 Floor Tile	711DD-140A	4.5% Chrysotile
Room 305	Green with White Specks 12x12 Floor Tile	711DD-143A	3% Chrysotile
Room 316	Green with White Streaks 12x12 Floor Tile	711DD-144A	3% Chrysotile
Room 303	Cement Board Chalkboard	711DD-146A	30% Chrysotile
Room 322	Tan Glue Strips on Wood	711DD-148	2% Chrysotile
Room 419	Self-Stick Brown Floor Tile	711DD-168A	5% Chrysotile
Boiler Room	Cement Overcoat at Top of Boilers	811DD-176A	2% Chrysotile
Boiler Room	Tan Interior Door Blocking	811DD-177A	6% Chrysotile
Boiler Room	Friable Insulation at Boiler Top	811DD-181A	15% Chrysotile
Small Boiler Room	Debris on Floor	811DD-183A	3% Chrysotile
Boiler Tunnel	Preformed Block Type Pipe TSI	811DD-185A	20% Chrysotile 2% Amosite
Room 255	AirCell Pipe TSI	811DD-186A	15% Chrysotile 10% Amosite
Boiler Tunnel	Mudded Pipe Fittings	811DD-187A	8% Chrysotile 15% Amosite
Old Gym Girl's Shower	Transite Shower Stalls	812DD-192A	20% Chrysotile 5% Amosite
Room 251C	Brown Glue Daubs Associated with Luan Panels	812DD-193A	40% Chrysotile
Old Gym Girl's Shower	Yellow Mastic Associated with Ceramic Floor Tile	812DD-196A	2% Chrysotile
Room 218	Brown Mastic Associated with 4" Reddish Brown Vinyl Baseboard	812DD-203A	3% Chrysotile
Room 259A	6" (Thick) Black Vinyl Baseboard	812DD-208	3% Chrysotile

Sample Location	Material Type	Sample No.	Asbestos Content
Room 259A	Black Mastic Associated with 6" (Thick) Black Vinyl Baseboard	812DD-209A	6% Chrysotile
Room 456	Black Mastic Associated with 12x12 Floor Tile (Top Layer)	812DD-210D	4% Chrysotile
Room 259A	Black Mastic Associated with 9x9 Floor Tile (Bottom Layer) (Old HS Building)	812DD-211A	2% Chrysotile

*These samples were recommended for Transmission Electron Microscopy (TEM) analysis for verification, and TEM results confirmed presence of asbestos above 1% (discussed further below).

Utilizing the USEPA protocol and criteria, the following materials were determined not to contain asbestos.

Sample Locations	Material Type	Sample No.
Stair 7 and 9	Brown (Thick) Vinyl 12x12 Flooring with Diamond Pattern	818DD-01 A-B*
Stair 7 and 9	Tan Adhesive Associated with Brown (Thick) Vinyl 12x12 Flooring with Diamond Pattern	818DD-02 A-B*
Room 101	Subfloor/Sleeper Floor Tar Filler (Mastic)	818DD-07 A-B
Room 105	4" Light Brown Vinyl Baseboard	818DD-09A*
Room 105	Tan Mastic Associated with 4" Light Brown Vinyl Baseboard	818DD-10 A-B*
Library and Room 260	Brown Pliable Window Caulk Associated with Aluminum Frames	818DD-13 A-B*
Room 203	2" Brown Vinyl Baseboard	818DD-17A*
Room 205/205A	Brown/Tan, and Green Swirl 9x9 Floor Tile	818DD-22A*
Room 205/205A	Tan and Brown Swirl 9x9 Floor Tile	818DD-23A
Rooms 205/205A, 455, and 558	Black Paper Mastic Associated with 9x9 Floor Tile	818DD-24 A-C*
Room 207A – Raised Floor	Off-White with Cream and Brown Streaks 12x12 Floor Tile	818DD-26A
Room 207A/B	Beige with Cream and Brown Streaks 12x12 Floor Tile	818DD-27A
Rooms 214A/B and 557	Grey Mottled 12x12 Floor Tile	818DD-34 A-B*
Room 209 A/B	Brown and Tan Mottled 12x12 Floor Tile	818DD-35A*
Room 552	Bluish Green 12x12 Floor Tile	818DD-37A*
Room 550	Light Purple with Purple and White Streaks 12x12 Floor Tile	818DD-40A
Hallway Outside Room 550 - 554	Brown and Tan Mottled 12x12 Floor Tile	818DD-41A
Room 501	Reddish Pink with White Splotches 12x12 Floor Tile	818DD-44A
Room 502 (Stair and Closet)	Brown, Beige, and Tan Mottled 12x12 Floor Tile	818DD-47A*
Hallway Outside Former HS Office	Red Mottled 12x12 Floor Tile (Top Layer)	76DD-48A*

Table 2Non-Asbestos Containing Materials

Sample Locations	Material Type	Sample No.
Hallway Outside Former HS	Grey/Yellow Mastic Associated with Red	76DD-49 A-B*
Office	Mottled 12x12 Floor Tile	10DD-49 A-D
Auditorium and Cafeteria	Pinkish Orange Mottled 12x12 Floor Tile	76DD-52 A&C
Library	1x1 Pegboard Type Ceiling Tile (Spline)	76DD-54A
Book Storage Room Off Library	Multi-Dot 2x4 Ceiling Tile	76DD-55A
Book Storage Room Off Library	Beige with White and Brown 9x9 Floor Tile	76DD-56A*
Library and Former HS Main Office	Yellow Carpet Glue	76DD-58 A-B
Former HS Main Office	White with Brown Splotches 9x9 Floor Tile	76DD-59A*
Library	Green 9x9 Floor Tile Beneath Carpet	76DD-61A*
Room 353	Fissured 2x2 Wallpaper	76DD-67A
Room 455 and Room 356A – Computer Lab Office	2x4 Fissure and Dot Ceiling Tile	76DD-68 A-B
Corner Bathroom HS Office Hall	1x1 White Ceiling Tile Above 2x4 Styrofoam Panels	76DD-69A
Rooms 350 - 353	4" Shiny Black Vinyl Baseboard	76DD-70A*
Rooms 350 - 353	Brown Mastic Associated with 4" Shiny Black Vinyl Baseboard	76DD-71 A-B*
Room 356 A/B	Tan Mastic Associated with Tan and White Mottled 12x12 Floor Tile Patch	76DD-82 A-B
Corner Bathroom HS Main Office Hallway	4" (Thick) Black Vinyl Baseboard	76DD-83 A-B
Corner Bathroom HS Main Office Hallway	Mastic Associated with 4" (Thick) Black Vinyl Baseboard	76DD-84 A-B
Room 317	Drywall Partition Wall	77DD-85 A-B
Room 317	Joint Compound	77DD-86 A-B
New Gym	Tectum Ceiling Panels	77DD-88 A-B
Cafeteria	Yellow Mastic Associated with 12x12 Floor Tile	77DD-89 A-B
Cafeteria and Auditorium	Red Mottled 12x12 Floor Tile	77DD-90 A-B
Auditorium	1x1 Pegboard (Large Hole) Ceiling Tile	77DD-91 A-C
Stage (Auditorium)	Black Flooring Paper	77DD-93 A-C
Left Practice Area Off Stage	Textured Ceiling Skim Coat	77DD-94 A-C
New Gym	Brown Flooring Paper	77DD-95 A-B
New Gym	Thick Brown Covebase	77DD-96 A-B*
New Gym	Tan/Yellow Mastic Associated with Thick Brown Covebase	77DD-97 A-C*
Cafeteria	2x2 Bumpy White Ceiling Tile	77DD-98 A-B
Cafeteria	4" Blue Vinyl Baseboard	77DD-99A
Cafeteria	White Mastic Associated with 4" Blue Vinyl Baseboard	77DD-100 A-C
Left Stage	2x4 Dotted Ceiling Tile	77DD-101 A-C
New Gym Boys Locker Room and Room 455	Paper Coating Associated with Fiberglass Ceiling Tile	77DD-102 A-C
Cafeteria	Drywall	77DD-103 A-C
Cafeteria	Joint Compound	77DD-104 A-C
Classroom Wing		
Typical Bathroom	2x4 White Drywall Ceiling Tile	711DD-105 A-C

Sample Locations	Material Type	Sample No.
Room 405	Maroon with Black and White Splotches 12x12 Floor Tile (Top Layer)	711DD-106 A-B
Room 451	Grey with Dark Grey and White Splotches 12x12 Floor Tile	711DD-451 A-B
Rooms 459 and 461	1x1 Smooth white Ceiling Tile	711DD-109 A-B
Room 462	Brown Corkboard Mastic	711DD-110 A-B*
Room 459	Paper Backing Associated with Fiberglass Insulation	711DD-111 A-B
Room 455 and Custodians Room Next to Room 461	Brown Glue Daubs Associated with Luan Paneling	711DD-114 A-B*
Hallway Outside Room 464	Orange/Brown with Brown and Tan Splotches 12x12 Floor Tile (Top Layer)	711DD-120 A-B
Custodial Room Next to Room 461	Brown Glue Associated with Wall Paneling	711DD-121 A-B
Room 462 (Upper)	Off White 1x1 Ceiling Tile	711DD-122 A-B
Classroom Wing (451)	Grey Leveling Compound at Thresholds	711DD-123 A-B
Room 464	Grey with Dark Grey and White Splotches 12x12 Floor Tile	711DD-129 A-B
Room 554A	Pink Sink Undercoat	711DD-130
Stair to Attic (561D)	Black Mastic on Brick	711DD-132
Rooms 554, 557, and 561	Black Composite Countertop	711DD-133 A-C
Rooms 557A and 560	Brown Corkboard Mastic	711DD-134 A-C
Hallway Outside 557A	Brown, Dark Brown, and Tan Mottled 12x12 Floor Tile (Top Layer)	711DD-136 A-B
Room 556	Orange/Red with Brown Splotches 12x12 Floor Tile	711DD-137 A-B
Room 562	Green with Dark Green and White 12x12 Stick-On Tile	711DD-138 A-B
Room 561	Grey with White Splotches 12x12 Floor Tile (Top Layer)	711DD-139 A-B
Room 300A	Brown Swirl Linoleum Flooring	711DD-141 A-B
Room 300A	Black Paper Coating Associated with Brown Swirl Linoleum Flooring	711DD-142 A-B
Bathrooms By Rooms 309 and 301A	White Ceramic Tile Grout Adhesive	711DD-145 A-B
Room 322	Off-White with Brown Specks 12x12 Floor Tile (2 nd Layer)	711DD-147 A-B
Room 306	Grey Vinyl Baseboard	711DD-149 A-B*
Room 306	Brown mastic Associated with Grey Vinyl Baseboard	711DD-150 A-B*
Typical Bathrooms	Green Composite Stall Panels	810DD-151 A-B
Room 260	1x1 Stucco-Type Ceiling Tile	810DD-152 A-B
Room 260	Tan Mastic Associated with 1x1 Stucco-Type Ceiling Tile	810DD-153 A-B
Basement Boy's Bathroom and Girl's Bathroom Next to Room 256	Grey Adhesive Associated with Ceramic Wall Tile	810DD-154 A-B

Sample Locations	Material Type	Sample No.
Room 258	Cementitious Leveling Compound on Poured Concrete	810DD-155 A-B
Rooms 258 and 260	Brown Glue Daubs Associated with 1x1 Ceiling Tile (Beneath Stairs Only)	810DD-156 A-B
Room 258 and Girl's Bathroom Next to Room 256	1x1 Pinhole Ceiling Tile	810DD-157 A-B
Typical Bathrooms	Brown Paper Inside Stall Panels	810DD-158 A-B
Typical Bathrooms	2x4 Drywall Ceiling Tiles	810DD-159 A-B
Boy's Bathroom Next to Room 260 and Girl's Bathroom Next to Room 256	Lightweight Concrete Beneath Wall Tile	810DD-160 A-B
Basement Corridor Old HS Building	Rough Plaster Drop Ceiling	810DD-161 A-C
Cafeteria Hallway (To Room 255)	Tan Window Glazing Compound Associated with Interior Wood Sashes	810DD-162 A-B
Basement Corridor Old HS Building	Textured Skim Plaster	810DD-163 A-C
Room 258	6" Black Vinyl Baseboard	810DD-164 A-B*
Room 258	Dark Brown Mastic Associated with 6" Black Vinyl Baseboard	810DD-165 A-B*
Room 256 Mechanical Closet	Cementitious Penetration Sealant	810DD-166 A-B
Room 408	Brown Paper Beneath Wood Floor	711DD-167 A-B
Room 452 Closet	Tan with Red Swirl pattern Linoleum Flooring	711DD-169 A-B
Room 410	Light Blue/Grey Mottled 12x12 Floor tile	711DD-170 A-B
Room 411	Light Beige Floor Tile (2 nd Layer)	711DD-171 A-B
Room 413	Off-White with Brown Specks 12x12 Floor Tile	711DD-172 A-B
Boiler Room	Black Pipe Gasket	811DD-173 A-B
Boiler Room	Grey Interior Door Caulk to Ground Level Exterior	811DD-174A
Boiler Room	Residual Black Duct Seam Sealant Associated with Saw Dust Exhaust	811DD-175A
Boiler Room	Sealant at Front Boiler Panel	811DD-178 A-B
Boiler Room Office	Skim Coat on Concrete Ceiling	811DD-179 A-B
Boiler Room	Interior Boiler Debris	811DD-180 A-B
Room 261A Closet and Small Boiler Room	White/Tan Cloth Vibration Isolator	811DD-182 A-B
Small Boiler Room	Tan Pipe Thread Sealant	811DD-184 A-B
Old Gym	Textured Ceiling Skim Coat	812DD-188 A-C
Old Gym Boy's Locker Room	Tan Adhesive a/w Ceramic Wall Tile	812DD-189 A-B
Room 114 and Old Gym Girl's Locker Room	Black Building Paper Beneath Wood Floor	812DD-190 A-B
Science Basement Hall	Poured Concrete Floor	812DD-191 A-B
Woodshop Hallway	Door Glazing Compound	812DD-194 A-B
Old Gym	Thick Black Vinyl Baseboard (Right Angle)	812DD-195*
Old Gym	Brown Mastic Associated with Thick Black Vinyl Baseboard	812DD-195 A-B*

Sample Locations	Material Type	Sample No.
Old HS Office Area and Room 258	Cloth Wall Covering	812DD-197 A-B
HS Main Office	4" Dark Brown Vinyl Baseboard	812DD-198A*
HS Main Office	Dark Brown Mastic Associated with 4" Dark Brown Vinyl Baseboard	812DD-199 A-B*
Rooms 108, 550, and 557	Tan/Yellow Mastic Associated with Floor Tile (Top Layer)	812DD-200 A-C
Room 502A and Hallway Outside Room 550 - 554	Yellow/Clear Mastic Associated with 12x12 Floor Tile (Top Layer)	812DD-201 A-B
Room 218	4" Reddish Brown Vinyl Baseboard	812DD-202A
Rooms 456 and 550	Top Layer White Mastic Associated with Vinyl Baseboard	812DD-204 A-B
Room 224	4" Black Vinyl Baseboard	812DD-205
Room 458	6" Black (Thin) Vinyl Baseboard	812DD-206
Room 458	Dark Brown Mastic Associated with 6" Black (Thin) Vinyl Baseboard	812DD-207 A-B
Rooms 105, 203, and Boiler Room	Black Mastic Associated with 9x9 Floor Tile	812DD-212 A-D*
Auditorium Wall, Auditorium Inlay Panel, Auditorium Balcony Ceiling, Room 251C Wall, Science Hall Low Ceiling, Kitchen Ceiling, Grand Entry Wall	Plaster Skim Coat	812DD-213 A-G
Auditorium Wall, Auditorium Inlay Panel, Auditorium Balcony Ceiling, Room 251C Wall, Science Hall Low Ceiling, Kitchen Ceiling, Grand Entry Wall	Plaster Rough Coat	812DD-214 A-G
Old HS Entry Wall, Old Gym Girl's Locker Room Ceiling, Room 109 Woodshop Ceiling, Room 258 Lower Wall, Room 356 Wall, Room 451 Wall, and Room 501 Wall	Plaster Skim Coat Associated with Horsehair Plaster	812DD-215 A-G
Old HS Entry Wall, Old Gym Girl's Locker Room Ceiling, Room 109 Woodshop Ceiling, Room 258 Lower Wall, Room 356 Wall, Room 451 Wall, and Room 501 Wall *Material type confirmed as non-aspestos by	Plaster Rough Coat Associated with Horsehair Plaster	812DD-216 A-G

*Material type confirmed as non-asbestos by additional TEM analysis

100%

2.2 Results of Asbestos Analysis by TEM

The USEPA has suggested that materials that are non-friable organically bound materials such as mastic adhesives, etc., are recommended for further confirmatory analysis utilizing Transmission Electron Microscopy (TEM). Thirty-nine of the samples analyzed by PLM were also analyzed by TEM for verification purposes. The results of TEM analysis, which are summarized below in *Table 3*, indicated that seven of the 39 samples originally reported as none detected by the PLM analysis, did in fact contain asbestos at concentrations greater than 1%, and were therefore categorized as ACM.

Sample Location	Material Type	Sample No.	Asbestos Content
Stair 7 (Landing and Stair Tread)	Brown (Thick) Vinyl 12x12 Flooring with Diamond Pattern	818DD-01A	ND
Stair 7 (Landing and Stair Tread)	Tan Adhesive a/w Brown (Thick) Vinyl 12x12 Flooring with Diamond Pattern	818DD-02A	ND
Room 105	4" Light Brown Vinyl Baseboard	818DD-09A	ND
Room 105	Tan Mastic Associated with 4" light Brown Vinyl Baseboard	818DD-10A	ND
Library	Brown Pliable Window Caulk at Aluminum Frame	818DD-13A	ND
Room 203	2" Brown Vinyl Baseboard	818DD-17A	ND
Room 203	Mastic Associated with 2" Brown Vinyl Baseboard	818DD-18A	4.6% Chrysotile
Room 205/205A	Brown, Tan, and Green Swirl 9x9 Floor Tile	818DD-22A	ND
Office Area (205/205A)	Black Paper Mastic Associated with 9x9 Floor Tile	818DD-24A	<0.25% Chrysotile
Room 214A/B	Grey Mottled 12x12 Floor Tile	818DD-34A	ŇD
Room 209A/B	Brown and Tan Mottled 12x12 Floor Tile	818DD-35A	ND
Room 552	Bluish Green 12x12 Floor Tile	818DD-37A	ND
Room 502 (Stair and Closet)	Brown, Beige, and Tan Mottled Floor Tile	818DD-47A	ND
Hallway Outside Former HS Office	Red Mottled 12x12 Floor Tile (Top Layer)	76DD-48A	ND
Hallway Outside Former HS Office	Grey/Yellow Mastic Associated with Red Mottled 12x12 Floor Tile (Top Layer)	76DD-49A	0.45% Chrysotile
Hallway Outside Former HS Office	Grey Vinyl Floor Tile Beneath Plywood Underlayment	76DD-50A	3.2% Anthophyllite
Hallway Outside Former HS Office	Blue Vinyl Floor Tile Beneath Plywood Underlayment	76DD-51A	28.2% Chrysotile

Table 3 Materials Analyzed By TEM

			Asbestos
Sample Location	Material Type	Sample No.	Content
	Beige with White and Brown 9x9		0.68%
Library Book Storage Room	Floor Tile	76DD-56A	Chrysotile
Former HS Main Office	Brownish Grey with White and	76DD-57A	1.9%
	Brown Specks 9x9 Floor Tile	70DD-37A	Chrysotile
Former HS Main Office	White with Brown Splotches 9x9	76DD-59A	ND
	Floor Tile		
Library	Green 9x9 Floor Tile Beneath Carpet	76DD-61A	ND
Rooms 350 - 353	4" Shiny Black Vinyl Baseboard	76DD-70A	ND
	Brown Mastic Associated with 4"		
Rooms 350 - 353	Shiny Black Vinyl Baseboard	76DD-71A	ND
New Gym	Thick Brown Baseboard	77DD-96A	ND
New Gym	Tan/Yellow Mastic Associated	77DD-97A	ND
-	with Thick Brown Baseboard		
Room 462	Brown Corkboard Mastic	711DD-110A	ND
Room 455	Brown Glue Associated with Luan	711DD-114A	ND
	Paneling Concealed Grey Vinyl Floor Tile		
Hallway Outside Room 464	underneath Plywood	711DD-117A	4.3%
	Underlayment		Anthophyllite
Room 556	Concealed Bottom Vinyl Floor Tile	711DD-131A	19.9%
	(Assume 9x9) – Mixed Pattern	TIDD-IJIA	Chrysotile
	Greenish Brown with Dark Grey		4.5%
Room 554	and White Splotches 12x12 Floor Tile	711DD-140A	Chrysotile
Room 306	Grey Vinyl Baseboard	711DD-149A	ND
	Brown Mastic Associated with		
Room 306	Grey Vinyl Baseboard	711DD-150A	ND
Room 258	6" Black Vinyl Baseboard	810DD-164A	ND
Room 258	Dark Brown Mastic Associated	810DD-165A	ND
	with 6" Black Vinyl Baseboard	010DD-103A	
Old Gym	Thick Black Vinyl Baseboard	812DD-195	ND
y	(Right Angle) Brown Mastic Associated with		
Old Gym	Thick Black Vinyl Baseboard	812DD-195A	ND
Old Cym	(Right Angle)	01200-1938	ND
		01000 1004	>0.25%
HS Main Office	4" Dark Brown Vinyl Baseboard	812DD-198A	Chrysotile
	Dark Brown Mastic Associated		>0.25%
HS Main Office	with 4" Dark Brown Vinyl	812DD-199A	Chrysotile
	Baseboard		
Room 105	Black Mastic Associated with 9x9 Floor Tile	812DD-212A	ND
ND - Nono Datastad			

ND = None Detected

The results of confirmatory analysis by TEM did identify asbestos at greater than 1% for some of the analyzed materials. The materials have been included in *Table 1* or *Table 2* above, as appropriate, based on the confirmatory analysis. Those materials containing asbestos have also been included in the

following *Table 4*, and cost estimate. Refer to *Appendix C* for TEM results, including applicable data validation materials.

2.3 Asbestos Analysis Conclusions

Materials confirmed to contain asbestos by the PLM and TEM methods, along with an estimate of the quantity of those materials, are included in the *Table 4*, below. *Table 4* identifies the location, material type, and quantity of ACM identified during this assessment. Any suspect material not characterized during this assessment should be presumed to contain asbestos.

Sample Location	Material Type	Estimated Quantity
Throughout School	9x9 / 12x12 Floor Tile (All Layers) & Associated Mastics (Includes Removal of Plywood Underlayment & Flooring Layers)	150,000 SF
Classrooms, Offices, Gymnasiums, Cafeteria, Auditorium, Boiler Tunnels, Boiler Breeching, Classroom Risers, Mechanical Areas, and Basement Wings	AirCell, Pre-Formed Block Type Insulation & Associated Mudded Fittings	10,000 SF
Typical (Exterior) Windows	Caulk at Brick Molding Concealed underneath Aluminum Window Frames	All Windows (Approx. 646 EA)
Main Boiler Room	Boiler Demolition: Includes Removal of All Interior Boiler Debris, Concealed Interior Friable Components, Interior Door Blocking, Firebrick, Millboard, Rib-Sealant Material, Boiler Foundation, and Associated Gaskets, etc.	4 EA (10′x22′x12′h / Boiler)
Main Boiler Room	Friable Insulation & Cement Overcoat at Top of Boilers	1,100 SF
Small Boiler Room	Asbestos Debris on Concrete Floor	500 SF
Throughout School (e.g. Projector Room)	Cement Fiber Board (Transite Panels)	1,550 SF
Classrooms	Cement Fiber Board Associated with Classroom Chalkboards	10 EA
Classrooms (e.g. Home Economics)	Sink Undercoating Material at Classrooms	12 EA
Classrooms and Offices	2" Brown Vinyl Baseboard & Associated Mastic at Classrooms	1,500 LF
Classrooms and Offices	4" Reddish-Brown Vinyl Baseboard & Associated Mastic	2,000 LF
Classrooms and Offices	6" (Thick) Black Vinyl Baseboard & Associated Mastic at Classrooms	700 LF
Girls Locker Room (Old Gym)	Yellow Mastic Associated with Ceramic Floor Tile	750 SF
Offices	Brown Glue Daubs Associated with Luan Wall Paneling at Offices	3,000 SF

Table 4Estimated Quantities of Asbestos Containing Materials

Sample Location	Material Type	Estimated Quantity
Classrooms	Tan Glue Strips On Wood at Classrooms	2,000 SF
(Interior) Hallway Doors at Classroom Wings	Window-Glazing Compound Associated with	10 EA

LF = Linear Feet, SF = Square Feet

Materials determined to contain asbestos that are anticipated to be impacted by any proposed renovation and/or demolition work must be abated by a licensed asbestos abatement contractor prior to disturbance. This includes both friable and non-friable ACM materials. This is a requirement of RIDOH, RIDEM, and USEPA NESHAP standards for asbestos abatement.

Fuss & O'Neill also recommends that a comprehensive scope of work and technical specification be developed as part of renovation plans for the site. In addition, an asbestos abatement plan must be prepared and submitted to RIDOH for review and approval. The plan must be prepared by a certified asbestos project designer, and be approved prior to disturbance during demolition or renovations.

We have developed an opinion of cost for the removal of the identified ACM, which is included as *Appendix H*. The estimated cost is inclusive of removing all identified ACM, and a more limited scope can be tailored to any specific renovation work as necessary.

Any suspect material encountered during renovation/demolition that is not identified in this report as being non-ACM should be assumed to be ACM unless sample results prove otherwise.

3 Lead-Based Paint Determination

A lead-based paint determination was performed for representative building components by Fuss & O'Neill representative Mr. Jonathan Hand, on July 6 and 7, 2011. An X-ray fluorescence (XRF) analyzer was used as a field screening tool to perform the lead-based paint determination. The testing was conducted in accordance with the protocol outlined in the site-specific *QAPP Addendum*.

The XRF utilized for the lead-based paint determination was an RMD X-Ray Fluorescence Analyzer, Serial No. 1138. The instrument was checked for proper calibration prior to each use as detailed by the manufacturer and the Performance Characteristic Sheet (PCS) developed for the instrument.

For the purpose of this lead-based paint determination, representative building components were tested in situ. The tested components were selected by identifying homogenous painted surfaces by location to result in a representative evaluation of painted surfaces throughput the structure. Due to site conditions, the age of the building, and the limited nature of the lead-based paint determination conducted at the site, all individual repainting efforts were not discoverable, and therefore all historical painted surfaces may not have been included in the evaluation.

Lead-based paint issues involving properties that are not residential are regulated to a limited degree to protect workers involved in paint-disturbing work activities and waste disposal. Worker protection is regulated by OSHA as well as RIDOH regulations. These regulations involve air monitoring of workers to determine exposure levels when disturbing lead-containing paint. A lead-based paint determination

cannot determine a safe level of lead, but is intended to provide guidance as to the locations of leadbased paint considered characteristic by industry standards for lead in paint. Contractors may then better determine exposure of workers to airborne lead by understanding the different concentrations of lead paint on representative components and surfaces. Air monitoring can then be performed during activities that disturb paint on representative surfaces.

A concentration of lead exceeding the lead-free standard of 150 milligrams per kilogram (mg/kg) is considered lead-paint in accordance with RIDOH regulations for residential dwelling units and child care facilities. Use of XRF alone for testing cannot fully determine compliance with lead-free standards. As an industry standard, painted surfaces with an XRF screening result greater than 1.0 milligrams of lead per square centimeter (mg/cm²) are typically expected to exceed the lead-free standard of 150 mg/kg. Screening results less than 1.0 mg/ cm² typically require collection and laboratory analysis of paint chip samples for confirmation of the lead concentration by mass. For purpose of this lead-based paint determination, the level of 1.0 mg/cm² has been utilized as a threshold for areas where possible worker exposures may occur.

3.1 Lead-Based Paint Screening Results

The complete field-screening results of lead-based paint determination documented herein are included in *Appendix D*, and summarized below. The lead-based paint determination indicated consistent painting trends associated with representative building components that may be impacted by possible renovation work. Numerous painted components were determined to contain levels of lead greater than 1.0 mg/cm², including the following:

Location	ltem	Xrf Reading (Mg/Cm ²)
Main Entrance	BCD Wall	1.5
Main Entrance	AC Molding	6.2
Room 360	Lower Walls	1.6 – 2.3
Room 360	Radiator	3.2
Room 360	Safe	6.2
Room 360B	ABC Upper Wall	1.0
Room 360B	ABC Lower Wall	2.2
Room 360B	Radiator	3.2
Room 360C	Upper Wall	1.0
Room 360C	Lower Wall	1.3
Room 360C	Radiator	3.2
Library Hall	BD Wall	0.0 - 1.0
Library Hall	BD Lower Wall	1.0
Storage Closet Across From Room 355B	Wall	1.0
Stair 15	Wall	2.2

Table 5 Lead XRF Screening Results

Location	Item	Xrf Reading (Mg/Cm ²)
Stair 15	Newel Post	1.3
Stair 15	Baluster	1.0
Stair 15	Stringer	1.0
Stair 15	Riser	1.0
Room 362	Upper Wall	1.3
Room 362	Lower Wall	1.0
Room 362	Radiator	2.5
Room 357 Library	BCD Upper Wall	2.5
Room 357 Library	BCD Lower Wall	1.7
Room 357 Library	Radiator	3.4
Rooms 355, 355A, and 355B	Upper Wall	1.2
Rooms 355, 355A, and 355B	Lower Wall	3.3
Rooms 355, 355A, and 355B	Radiator	3.2
Library Work Room	BCD Upper wall	1.6
Library Workroom	BCD Lower Wall	2.3
Library Workroom	Radiator	3.3
Room 358	Wall	1.0 – 2.3
Room 358	Radiator	3.0
Room 356	Wall	1.3
Room 354	Wall	2.2
Room 354	Radiator	3.1
Room 456	Wall	0.8 – 1.7
Room 456	Radiator	3.1
Room 458	ACD Wall	1.1
Room 458	Radiator	3.3
Room 460	B Wall	1.5
Room 460	Radiator	3.2
Room 462	Wall	1.2 - 5.0
Room 462	Molding	1.0
Room 464	Wall	1.0 – 2.2
Room 464	Radiator	3.0
Room 463	Wall	1.5 – 3.0
Room 463	Radiator	3.0
Room 454	BCD Wall	1.3 – 2.0
Room 454	Radiator	3.1
Room 556	Wall	1.1 – 2.5
Room 556	Radiator	3.1
Room 558 & 560	Wall	1.6
Room 558 & 560	Radiator	3.3
Hall Outside Room 558	Wall	0.8 – 1.2
Room 562	Wall	1.2 – 2.5
Room 562	Radiator	3.1
Room 561	Wall	1.1 – 2.6
Room 561	Radiator	3.0
Room 561A	Wall	1.0
Room 561A	Baluster	1.0
Room 559	Wall	0.7 – 1.2

Location	Item	Xrf Reading (Mg/Cm ²)
Room 559	Radiator	3.1
Rooms 554, 555, and 557	Wall	0.7 – 1.7
Rooms 554, 555, and 557	Radiator	3.1
Room 554A	Wall	1.0
Room 256	Radiator	1.1
Girl's Bathroom Near Room 256	Ceramic Tile	2.3
Girl's Bathroom Near Room 256	Wall	1.0
Room 258	Wall	1.2
Room 260	BCD Wall	1.0
Boy's Bathroom Near Room 260	Wall	1.6
Boy's Bathroom Near Room 260	Radiator	1.6
Room 262	Wall	2.5
Hall Outside 262	Wall	1.0
Rooms 261 & 261A	CD Wall	0.3 – 2.3
Rooms 261 & 261A	Radiator	1.3
Room 257A & B	Wall	1.4
Room 259 and 259A	Wall	0.0 – 1.1
Room 255	Wall	0.0 - 1.5
Room 253	Wall	0.3 – 1.6
Room 254	Wall	0.6 – 1.2
Room 254	Radiator	2.2
Rooms 350, 351, 352, and 353	Radiator	1.4
Stairwell Outside Room 350	Newel Post	1.3
Stairwell Outside Room 350	Baluster	1.3
Stairwell Outside Room 350	Stringer	1.3
Stairwell 4, 6, 7, and 9	Door Frame	8.3
Stairwell 4, 6, 7, and 9	Radiator	3.1
Room 324	Ceiling	1.8
Room 324	Safe	7.3
Upper Auditorium	Walls	0.8 – 1.2
Room 309, 311, 313, 314, 316, 318,		
and 320	Wall	0.2 – 1.0
Room 309, 311, 313, 314, 316, 318,		4.5
and 320	Radiator	1.5
Hall Outside Room 309B	Wall	0.1 – 1.1
Room 312	Radiator	1.3
Room 301, 302, 303, 305, 307, 308, and 310	Wall	0.7 – 6.4
Room 301, 302, 303, 305, 307, 308, and 310	Radiator	0.0 – 1.2
Room 306	Wall	0.2 – 7.0
Room 306	Radiator	1.3
Room 300A	Lower Wall	5.8
Room 300A	Radiator	1.3
Room 300	Upper Wall	6.0
Room 300	Radiator	1.2
Auditorium Stage	Radiator	1.1
Auditorium Stage	Spiral Stair	1.0
Auditorium staye		1.0

Location	Item	Xrf Reading (Mg/Cm ²)
Cafeteria	Wall	4.0
Cafeteria	C Block wall	3.3
HS Gym	Support Beam	1.3
HS Gym	Bleacher Stringer	1.4
HS Gym	Bleacher Riser	1.5
Stairwell to Bleachers	Lower Wall	1.1
Stairwell to Bleachers	Stringer	1.3
Locker Rooms	Green Block Wall	1.1
Room 450, 451, 452, and 453	Radiator	1.7
Room 419	Lower Wall	1.9
Room 419	Radiator	1.8
Room 424	Wall	1.0
Room 424	C Handrail	3.0
Room 424	Radiator	1.9
Rooms 413, 415, and 417	Lower Wall	2.8
Rooms 413, 415, and 417	Radiator	1.9
Rooms 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 416, 418, 420, and 422	Upper Wall	0.7 – 1.0
Rooms 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 416, 418, 420, and 422	Lower Wall	2.6 – 7.0
Rooms 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 416, 418, 420, and 422	Radiator	0.1 – 1.7
Hall Outside Room 418	Upper Wall	0.5 – 1.0
Hall Outside Room 418	Lower Wall	6.8
Room 414	Upper Wall	0.6 – 1.1
Room 414	Lower Wall	>9.9
Room 414	Radiator	1.3

POS = assumed positive

3.2 Lead-Based Paint Screening Conclusions

The present vacant status of the building does not currently subject this facility to the requirements of the RIDOH Rules and Regulations for Lead Poisoning Prevention R23-24.6-PB. In addition, the building is not considered a "child occupied facility" and therefore not subject to current RI Renovation Repair and Painting (RRP) rules. The results of the testing performed using XRF for this presently non-regulated facility were intended to provide documentation for potential worker exposures during any proposed renovation activities and for waste characterization purposes. Building components containing lead may cause worker exposures to lead above OSHA standards during demolition and renovation activities.

OSHA published a Lead in Construction Standard (OSHA Lead Standard) 29 CFR 1926.62 in May 1993. The OSHA Lead Standard has no set limit for the content of lead in paint below which the

standards do not apply. The OSHA Lead Standards are task-based and are based on airborne exposure and blood lead levels. Contractors must comply with exposure assessment criteria, interim worker protection, and other requirements of the regulation as necessary to protect workers during any renovation work which will impact lead paint.

Lead paint was identified on the numerous building components listed in *Table 5*, including, but not limited to, plaster walls and ceilings, brick walls, metal support columns, interior staircase components, interior door components, and trim/support pieces. The lead screening was carried out as part of a preliminary investigation for renovation planning purposes. However, Fuss & O'Neill understands that there are no definitive demolition or renovation activities scheduled at this time; the lead screening was carried out as part of a preliminary investigation for a project feasibility study. Any future work involving surface preparation or demolition of the identified lead-painted surfaces should be performed in accordance with OSHA worker protection requirements.

4 Waste Characterization for Lead

A waste is a solid or liquid material that one no longer uses. A waste is defined by USEPA to be hazardous if it contains certain properties that could pose dangers to human health and the environment after it is discarded. Wastes that are ignitable, corrosive, reactive, or contain certain toxic metals and chemicals are regulated under the Hazardous Waste Regulations. The Toxicity Characteristic Leaching Procedure (TCLP) is a sample preparation method utilized in RCRA hazardous waste determinations, that extracts the compounds of interest in a manner that simulates landfill conditions (40 CFR 261).

To determine if a building material waste stream to be generated during renovation or demolition activities may be considered a hazardous waste due to the presence of lead based paint, representative samples of the waste stream would need to be analyzed for TCLP lead. The analytical results are then compared to a concentration of 5.0 milligrams per liter (mg/L), which is the hazardous waste threshold under RCRA. If the result is below the established level, the material may not require management as a hazardous waste.

4.1 Lead Waste Characterization Sampling

On August 18, 2011, Fuss & O'Neill representatives, Mr. Dustin A. Diedricksen and Mr. Stephen Moulton, collected representative aliquots of various materials from the building. Painted material substrates such as concrete, wood, and sheetrock were segregated in accordance with previous lead paint screening data and representative composite samples were collected. In total, five samples, including four primary samples and one duplicate sample, were collected and submitted for analysis of lead by USEPA SW-846 methods, utilizing the TCLP extraction process, at Premier Laboratory of Dayville, Connecticut (Premier).

These samples were collected to characterize a potential waste stream that may result from selective demolition and/or renovation work at the site. While these composite samples may not specifically represent the actual waste stream generated during any future renovation activities, they were collected

to gauge the potential for the lead concentrations in painted surfaces in typical building materials to cause the anticipated waste stream to require management as a hazardous waste.

4.2 Lead Waste Characterization Results

The laboratory report for the waste characterization TCLP lead analysis and applicable data validation materials are provided as *Appendix E* in this report. The results of the primary and duplicate composite TCLP lead analyses are summarized below.

Sample Location	Material Type	Sample No.	Result (Mg/L)
1915 Building	Building Materials	818DD-TCLP-01	0.050
1915 Building	Building Materials	818DD-TCLP-02	0.080
Addition/Class Room Wing	Building Materials	818DD-TCLP-03	0.79
Newer Gym/Auditorium	Building Materials	818DD-TCLP-04	0.44
Newer Gym/Auditorium (Duplicate)	Building Materials	818DD-TCLP-05	0.18

Table 6TCLP Lead Waste Characterization Results

4.3 Lead Waste Characterization Conclusion

RCRA defines a hazardous concentration for lead as greater than 5.0 mg/L. The analytical results for the composite samples of building materials indicated a concentration of lead less than the RCRA threshold for a hazardous waste. These results suggest that a building material waste stream consistent with the types and ratio of materials represented by the composite samples would not likely require disposal as a hazardous waste.

At such a time when renovations or demolition activities are conducted at the site, additional characterization of the generated waste stream may be necessary.

5 Lead Paint Chip Analysis

5.1 Lead Paint Chip Sampling

On August 12, 2011, Fuss & O'Neill representative, Mr. Dustin Diedricksen, collected a total of 11 paint chip samples, including 10 primary samples and 1 duplicate sample, from representative surfaces throughout the former Woonsocket Middle School. Paint chip samples were collected using the following procedures to confirm lead content identified with XRF:

- a) Paint chips from targeted surfaces were carefully loosened and removed using a hand scraper. Plastic was placed under areas to be tested to prevent release of chips to the ground. The surfaces sampled were chosen based on the XRF screening results discussed in Section 3.
 Painted surfaces that elicited an XRF response close to the threshold value of 1.0 mg/cm² were targeted for laboratory analysis, as well as a collection of confirmatory samples which elicited an XRF screening result greater than 1.0 mg/cm².
- b) A section of paint two inches by two inches was removed. All layers down to, but not including, the substrate were included in the sample.
- c) Each sample was individually containerized and identified with a unique sample number to designate the location of the sample.
- d) The samples were submitted to Premier using proper chain of custody for Atomic Absorption Spectrometry analyses for lead by Method 6010B.

5.2 Lead Paint Chip Results

Analytical results, chains of custody, and applicable data validation materials for the paint chip sampling activities can be found in *Appendix F*. The laboratory analytical results are summarized in *Table 7*, which identifies the samples by location, sample number, and lead content.

Sample Location	Sample Number	Result (Mg/Kg)
Boiler - Black	812DD-01	3,000
Boiler Room Walls – Silver	812DD-02	640
Boiler Room Walls – Red	812DD-03	260
Auditorium Walls	812DD-04	6.0
Auditorium Balcony Ceiling	812DD-05	6,600
New Gym – Boy's Locker Room Walls	812DD-06	1.4
New Gym - Support Beams	812DD-07	9,200
Cafeteria Walls	812DD-08	30
Old Gym Walls	812DD-09	2,300
Old Gym – Girl's Locker Room	812DD-10	18

Table 7Paint Chip Sample Lead Results

Sample Location	Sample Number	Result (Mg/Kg)
Auditorium Walls (Duplicate)	812DD-11	10

These analytical laboratory results were compared to the RIDOH standards for lead-free and lead safe concentrations. RIDOH classifies paint to be lead-free when the lead concentration is less than 150 mg/kg. Paint containing lead at concentrations greater than 150 but less than 600 mg/kg is considered by RIDOH as lead-safe. Paint containing lead at concentrations in excess of 600 mg/kg that is intact is also considered by RIDOH as lead safe. The results in *Table 7* in bold text exceed 600 mg/kg.

The cost estimate included in *Appendix H* includes estimated allowances for OSHA lead compliance during renovation and demolition work as well as potential disposal of lead waste from demolition and disposal of removed components and surfaces.

6 PCB Bulk Product and Substrate Assessment

6.1 Background

PCBs are regulated under the Federal *Toxic Substances Control Act* (*TSCA*; 40 CFR 761). Prior to 1979, PCBs were freely used in industry as additives in a wide variety of chemical products, including building materials where long-term plasticity and insulation were necessary. These uses included mastics, adhesives, sealants, caulking, paint, and insulation. PCB production in the United States was categorically banned in 1979 with the exception of PCBs incidentally generated in the production of other chemicals (such as plastics or pesticides with similar chemical structures).

TSCA describes various uses of PCBs and categorically bans any use which is not authorized under 40 CFR 761.30. PCBs have never been authorized under *TSCA* for use in building materials. Therefore, PCBs in building materials constitute unauthorized uses and, unless excluded from further regulation, these materials must be removed in accordance with *TSCA*. The following definitions are pertinent to the discussion of *TSCA* implications of PCBs in building materials:

- PCB Bulk Products are materials containing PCBs at concentrations equal to or greater than 50 ppm. These materials are designated as "PCB Bulk Product Wastes" at the time when they are removed from service.
- PCB Remediation Waste is any material containing detectable concentrations of PCBs associated with the removal of a bulk product waste (examples may include porous or nonporous surfaces, such as window frames adjacent to PCB-contaminated caulking, which retain a PCB residue following caulking removal). For high occupancy uses, porous PCB remediation waste materials must be removed during PCB cleanup activities to a final concentration less than or equal to 1.0 ppm unless specifically approved by USEPA alongside engineering controls.
- Excluded PCB products are products which contain concentrations of PCBs less than 50 ppm which were generated and distributed in commerce prior to 1984 or were generated in an excluded process (such as the incidental PCB generation during pesticide manufacture described above). If claiming this exclusion for materials containing concentrations of PCBs greater than

1 ppm, the burden of proof lies with the generator to prove that the materials were used prior to 1984 or the PCBs were incidentally generated and are, therefore, excluded from regulation.

Sampling of building materials for PCBs is not presently mandated by the USEPA. However, PCB disposal carries significant liability risk, and contractors and disposal facilities have identified PCBs in building materials during disposal of C&D waste, leading to substantial project delays and cost overruns from the unplanned expense of PCB remediation and disposal. Because building materials are not considered an authorized use of PCBs, the discovery of PCBs in building materials (unless these materials are "excluded") triggers an owner's obligation to remove the PCBs from the site. Unlike ACM and lead in building materials, which need not be removed unless renovation will affect the materials, unauthorized PCBs must be removed regardless of the scope of the renovation project.

Additionally, PCBs have been documented to migrate from bulk product materials into adjacent porous substrates (plaster, concrete, wood) and contaminate surrounding materials, leading to an expanded scope of demolition solely for PCB removal. These materials, as PCB remediation wastes, must be remediated to PCB concentrations often orders of magnitude less than the concentration of the source material, typically at a substantial cost. The required clean-up standards depend on the type of substrate (i.e. porous versus non-porous) and the occupancy status (i.e. high or low as defined in 40 CFR 761) of the building. For porous media with high or unrestricted occupancy, PCBs must be remediated to a maximum concentration of 1.0 ppm, or engineering controls to prevent human exposure must be implemented.

6.2 Initial PCB Bulk Product Sampling

On August 18, 2011, Fuss & O'Neill's representatives, Mr. Dustin A. Diedricksen and Mr. Stephen Moulton, collected 34 bulk samples of building materials to be analyzed for PCBs. As multiple samples of each homogeneous material type were typically collected for quality control purposes, as detailed in the *QAPP Addendum*, samples specifically identified as duplicates were not collected.

Sampling involved removal of bulk product materials (source materials) using hand tools for laboratory analysis to determine PCB content. Tools utilized to collect samples were disposable items and discarded after each individual sample was collected to avoid cross contamination of samples. Each sample was placed in an individual container, labeled, and delivered to Premier using proper chain of custody. Samples were extracted by Premier using USEPA Method 3540 (Soxhlet) and analyzed for PCBs by USEPA Method 8082.

6.2.1 Initial PCB Bulk Product Sampling Results

Laboratory results of samples analyzed for PCBs and applicable data validation materials are included in *Appendix G*. The following table summarizes the 34 samples by location, material type, sample number, and reported PCB concentration.

Sample Location	Material Type	Sample No.	Pcb Content (Mg/Kg)
Old Gym	Poly Floor	914110818-PCB-01A	ND ND
Old Gym	Poly Floor	914110818-PCB-01B	ND
Old Gym	Poly Floor	914110818-PCB-01C	ND
Old Gym	Sleeper Floor	914110818-PCB-02A	ND
Old Gym	Sleeper Floor	914110818-PCB-02B	ND
Old Gym	Sleeper Floor	914110818-PCB-02C	ND
Old Gym	Mastic on Concrete	914110818-PCB-03A	ND
Old Gym	Mastic on Concrete	914110818-PCB-03B	ND
Old Gym	Mastic on Concrete	914110818-PCB-03C	ND
Old Gym Girl's Locker Room	Black Mastic Paper	914110818-PCB-04A	ND
Old Gym Boy's Locker Room	Black Mastic Paper	914110818-PCB-04B	ND
Old Gym Boy's Locker Room	Black Mastic Paper	914110818-PCB-04C	ND
Room 114	Black Mastic beneath Wood Floor	914110818-PCB-05A	ND
Room 114	Black Mastic beneath Wood Floor	914110818-PCB-05B	ND
Room 114	Black Mastic beneath Wood Floor	914110818-PCB-05C	ND
Room 109	Black Mastic on Concrete		
Room 109	Black Mastic on Concrete	914110818-PCB-06B	ND
New Gym	Poly	914110818-PCB-07A	ND
New Gym	Poly	914110818-PCB-07B	ND
New Gym	Poly	914110818-PCB-07C	ND
Exterior – Side A	Brown Window Caulk at Aluminum	914110818-PCB-08A	ND
Exterior – Side B	Brown Window Caulk at Aluminum	914110818-PCB-08B	ND
Exterior – Side C	Brown Window Caulk at Aluminum	914110818-PCB-08C	ND
Room 212	Interior Brown Window Caulk	914110818-PCB-09A	ND
Library	Interior Brown Window Caulk	914110818-PCB-09B	4.2*
Room 501	Interior Brown Window Caulk	914110818-PCB-09C	3.5*
Side A Entry	Exterior Door Caulk	914110818-PCB-10A	ND
Stairs 2	Exterior Door Caulk	914110818-PCB-10B	ND
B Side	Exterior Door Caulk	914110818-PCB-10C	ND
A Side	Tan Caulk at Brick Molding	914110818-PCB-11A	ND
B Side	Tan Caulk at Brick Molding	914110818-PCB-11B	ND

Table 8PCB Bulk Product Sample Results

Sample Location	Material Type	Sample No.	Pcb Content (Mg/Kg)
D Side	Tan Caulk at Brick Molding	914110818-PCB-11C	ND
B Side	Interior Window Caulk	914110818-PCB-12	ND
Main Entry	Door Caulk	914110818-PCB-13	ND

ND = None Detected

* Elevated Reporting Limit

Results highlighted in bold text are less than 50 mg/kg but greater than 1 mg/kg PCBs

The Premier analytical results, summarized in *Table 8* above, documented concentrations of PCBs below 50 mg/kg in the bulk material samples. Two samples of the brown interior window caulk contained reported PCB concentrations of 3.5 mg/kg and 4.2 mg/kg. These results required further evaluation via analysis of the underlying substrate to determine if the material meets the definition of an excluded PCB Product.

Additionally, recoveries of laboratory surrogate compounds associated with analyses of a few materials were reported as 0% in the attached analytical report. The materials and samples affected by this laboratory non-conformance are summarized in *Table 9* below. Fuss & O'Neill and USEPA agreed in subsequent correspondence that data associated with the below-listed materials should be deemed suspect, and verified through supplemental confirmatory analyses, in an effort to more confidently evaluate the concentration of PCBs in these samples (i.e. the "affected samples").

Sample Location and	Affected Sample
Material Type	Numbers
	914110818-PCB-02A
Old Gym - Sleeper Floor	914110818-PCB-02B
	914110818-PCB-02C
Room 114 - Black Mastic	914110818-PCB-05B
Under Floor	914110818-PCB-05C
	914110818-PCB-10A
Exterior Door Caulk	914110818-PCB-10B
	914110818-PCB-10C
	914110818-PCB-11A
Tan Caulk at Brick Molding	914110818-PCB-11B
	914110818-PCB-11C
Main Entry - Door Caulk	914110818-PCB-13

Table 9 Bulk Samples Exhibiting Poor Surrogate Recoveries

In email correspondence provided to USEPA on November 9, 2011, Premier attributed the low surrogate recoveries to difficulty inherent in the Soxhlet extraction and subsequent clean-up of the affected sample matrices. According to Premier, all samples were subjected to Soxhlet extraction (USEPA Method 3540C) using hexane as the solvent. The extracts were then treated with a sulfuric acid clean up per USEPA Method 3665A. In the case of the affected samples, the sample volumes

completely dissolved into the hexane solvent and did not respond to multiple rounds of acid treatment, requiring dilutions of individual affected samples in the range of 10 to 50 times. The high level of dilution required for the affected samples led to the surrogate compounds being "diluted out." According to Premier, the raw analytical data indicated that surrogate compounds were detected in the affected samples, but at concentrations below the instrument calibration range (approximately 2%-4% recovery). Therefore, these surrogate recoveries were reported as 0%.

To address the surrogate recovery difficulties described above, and to evaluate the PCB content of the substrate underlying the brown interior window caulk, Fuss & O'Neill conducted additional PCB sampling, as described below in *Sections 6.4* and *6.5*.

6.3 Supplemental PCB Sampling

On June 11, 2012, Fuss & O'Neill representatives Mr. Dustin A. Diedricksen and Mr. Steven Hubbs, collected 11 additional samples of bulk product materials to address the laboratory quality control complications documented above (*Table 9*), as well as five additional substrate material samples to evaluate whether the initially-sampled materials exhibiting positive PCB detections (brown window caulk - *Table 8*) are Excluded PCB Products.

6.3.1 Supplemental PCB Bulk Product Sampling

On June 11, 2012, Fuss & O'Neill representatives Mr. Dustin A. Diedricksen and Mr. Steven Hubbs, recollected two samples of each of the materials listed in *Table 9*, plus an additional duplicate sample, for a total of 11 bulk material samples. Tools utilized to collect the bulk material samples were disposable items discarded after each individual sample was collected. Each sample was placed in an individual container, labeled, and delivered to ESS using proper chain of custody. Samples were extracted by ESS using USEPA Method 3540 (Soxhlet) and analyzed for PCBs by USEPA Method 8082. Laboratory results of samples analyzed for PCBs and applicable data validation materials are included in *Appendix G*. The following table identifies the supplemental samples by location, material type, sample number, and PCB content.

Sample Location	Material Type Sample No.		PCB Content (Mg/Kg)
Old Gym	Sleeper Floor	914120611-03A	ND
Old Gym	Sleeper Floor	914120611-03B	ND
Room 114	Black Mastic beneath Wood Floor	914120611-04A	5.21
Room 114	Black Mastic beneath Wood Floor	914120611-04B	3.30
Side A Entry	Exterior Door Caulk	914120611-05A	ND
Stairs 2	Exterior Door Caulk (primary sample)	914120611-05B	ND

Table 10 Supplemental PCB Bulk Product Sample Results

Sample Location	Material Type	Sample No.	PCB Content (Mg/Kg)
Stairs 2	Exterior Door Caulk (duplicate sample)	914120611-06	ND
A Side	Tan Caulk at Brick Molding	914120611-07A	2.06
A Side	Tan Caulk at Brick Molding	914120611-07B	3.82
Main Entry	Door Caulk (D-2 door)	914120611-08A	ND
Main Entry	Door Caulk (D-3 door)	914120611-08B	ND

ND = None Detected

The analytical results, summarized in *Table 10* above, documented two bulk materials, black mastic and tan caulk at brick molding, which contained concentrations of PCBs greater than 1.0 ppm but less than 50 ppm. These two materials should be further evaluated to determine whether they were installed prior to 1984 (thereby meeting the definition of an "Excluded PCB product"). Additionally, further sampling of adjacent material is warranted to confirm that these materials have not been contaminated by PCBs leaching from adjacent media which were themselves contaminated by a PCB Bulk Product.

6.3.2 Supplemental PCB Substrate Sampling

To evaluate whether the initially-sampled materials exhibiting positive PCB detections (*Table 8*) are Excluded PCB Products, an evaluation of adjacent substrate materials was warranted. Initially, PCB detections were reported in two of three samples of a brown caulking material observed around windows. The caulking was additionally identified as the most likely material to have the potential to experience back-leaching from an adjacent substrate, as it was in contact with porous media.

On June 11, 2012, Fuss & O'Neill representatives, Mr. Dustin A. Diedricksen and Mr. Steven Hubbs, collected samples of porous substrate in the three window systems where the suspect brown caulk was sampled previously, to verify that the adjacent substrates are not a source of higher concentrations of PCBs. The suspect caulk was observed to contact only one type of porous substrate – wood. Fuss & O'Neill collected three wood substrate samples, plus one additional duplicate wood-substrate sample. Tools utilized to collect samples were either disposable items discarded after each individual sample was collected, and/or a reusable chisel. To avoid cross contamination of samples, the chisel was decontaminated with hexane in accordance Fuss & O'Neill's Standard Operating Procedures in between samples. At the end of the sampling event, the chisel was decontaminated and a wipe sample was subsequently collected from the chisel for QA/QC purposes. The four substrate samples and one wipe sample were placed in individual containers, labeled, and delivered to ESS using proper chain of custody. Samples were extracted by ESS using USEPA Method 3540 (Soxhlet) and analyzed for PCBs by USEPA Method 8082. Refer to *Appendix G* for analysis results of samples collected on June 11, 2012 and applicable data validation materials.

Sample Location	Material Type	Sample No.	PCB Content (Mg/Kg)
Room 212	Wood Substrate	914120611-01A	ND
Library	Wood Substrate (primary sample)	914120611-01B	0.375
Library	Wood Substrate (duplicate sample)	914120611-02	0.460
Room 501	Wood Substrate	914120611-01C	1.80
Chisel Wipe	Equipment Blank	914120611-09	ND

Table 11 Substrate Analytical Results

ND = None Detected

The analytical results, summarized in *Table 11* above, documented concentrations of PCBs below 50 mg/kg in the wood substrate samples. Three samples of the wood substrate contained reported PCB concentrations between 0.375 mg/kg and 1.80 mg/kg. None of the sampled substrate materials contained concentrations of PCBs equal to or greater than 50 mg/kg. These results confirm that the substrate materials do not meet the definition of a TSCA-regulated source material. Therefore, the adjacent PCB-containing materials can be considered excluded PCB products.

6.4 PCB Assessment Conclusions

Fuss & O'Neill performed an evaluation of specific suspect building materials for the presence of PCBs. The results of this evaluation indicated that regulated concentrations of PCBs were not present in the sampled materials.

Two samples of brown, interior window caulk were reported to contain total PCB arochlor concentrations of 3.5 mg/kg and 4.2 mg/kg. Substrate analyses were performed to determine if the material meets the definition of an Excluded PCB Product. Reported PCB concentrations in the substrate samples were below 50 mg/Kg. The brown interior window caulk therefore meets the definition of an Excluded PCB Product under TCSA. Therefore, these materials would not warrant management as TSCA regulated PCB waste. However, they must be disposed of as a PCB containing material with a PCB concentration less than 50 mg/kg, at a landfill facility licensed to accept such waste.

Two bulk materials analyzed during the supplemental sampling program (black floor mastic and tan window caulk) contained PCB concentrations above 1.0 ppm but below 50.0 ppm. These two materials should be further evaluated to determine whether they were installed prior to 1984 (thereby meeting the definition of an "Excluded PCB product"). Additionally, further sampling of adjacent material is warranted to confirm that these materials have not been contaminated by PCBs leaching from adjacent media which were themselves contaminated by a PCB Bulk Product.

7 Data Verification and Usability Assessment

7.1 Data Verification

Fuss & O'Neill conducted modified Tier II data verification of the field and analytical data resulting from the assessment documented herein. Modified Tier II verification narratives, as well as modified Tier II data validation checklists, are attached to each laboratory analytical report in *Appendices B, C, E, F, and G*.

Analyses Requested

During the course of the sampling events conducted at the subject property, samples of potentiallyhazardous building materials were laboratory analyzed for the following parameters:

- Asbestos by PLM
- Asbestos by TEM
- Lead by USEPA Method 6010
- TCLP lead by USEPA Methods 1311 and 6010
- PCBs by USEPA Method 8082
- PCBs by USEPA Method 8082 with Soxhlet Extraction by USEPA Method 3540

Based on a review of the proposed scope of work detailed in the *Site Specific QAPP Addendum* and QAPP Modifications, the field sampling data sheets, chains of custody, and resulting laboratory analytical reports, each of the collected samples were analyzed for the appropriate set of analytical parameters.

Sample Holding Times

According to information contained within the laboratory analytical data reports, all samples were analyzed within method-specified holding times.

Trip Blank Samples

Since no samples were collected for analysis of volatile organic compounds, no trip blanks were warranted.

Field Blank Samples

For the most part, dedicated disposable sampling equipment was used to collect samples at the site, removing the need for the collection and analysis of field/equipment blanks. On one field mobilization (supplemental PCB substrate sampling), a non-dedicated wood chisel was utilized to collect samples for analysis of PCBs. Since this reusable tool required field decontamination in between sampling locations, an equipment blank, consisting of a wipe sample for analysis of PCBs, was collected following decontamination. No PCB compounds were detected in the wipe sample at a concentration greater than the laboratory reporting limit.

Duplicate Samples

When warranted, duplicate samples were included in the sampling plan. For some matrices and analyses, multiple samples of each homogeneous material were collected in lieu of specific duplicate samples, as follows:

- <u>Asbestos Analysis</u>: For most materials, approximately three samples of each homogeneous building material were collected and analyzed for asbestos for quality control purposes. Therefore, specific additional duplicate samples were not analyzed for asbestos.
- <u>Lead Waste Characterization</u>: One duplicate composite sample was collected for TCLP lead analysis.
- Lead Paint Chip Analysis: One duplicate sample was collected for total lead analysis.
- <u>Initial PCB Bulk Product Analysis</u>: For most materials, approximately three samples of each homogeneous building material were collected and analyzed for PCBs for quality control purposes. Therefore, specific additional duplicate samples were not analyzed.
- <u>Supplemental PCB Bulk Product Analysis</u>: For most materials two samples of each homogeneous building material were collected and analyzed for PCBs for quality control purposes. However, due to the previously observed laboratory extraction and quality control difficulties, one additional duplicate sample was collected and analyzed for PCBs for quality control purposes during this assessment.
- <u>Supplemental PCB Substrate Analysis</u>: One duplicate sample was collected for PCB analysis.

Details regarding the primary and duplicate sample analyses and results, as well as calculated Relative Percent Differences (RPDs) of the primary/duplicate pairs are included in the data verification narratives included with each laboratory report in *Appendices B, C, E, F, and G*. For the most part, RPDs were within acceptable ranges, except where specifically noted and discussed sample heterogeneity, laboratory extraction, or quality control compliance difficulties affected the reproducibility of the data.

7.2 Detection Limits and Applicable Regulatory Criteria

The laboratory reporting and detection limits were sufficiently low enough to evaluate the resulting data for its intended purpose of comparison to applicable regulatory standards for asbestos, lead, and PCBs.

7.3 Data Usability

Based on the completed evaluation of field data as well as primary, duplicate, and other quality control laboratory analyses, the data collected as part of this assessment was usable to draw the conclusions outlined herein. While some laboratory quality control difficulties were encountered during the initial PCB bulk product analysis, selected samples were re-collected and analyzed along with additional

samples, which resulted in the acquisition of sufficient quality data to support the decisions necessary to meet the objective of the assessment as detailed herein.

Appendix A

Asbestos Inspector Licenses and Certifications

Rhode Island Department of Health Asbestos Program Consultants-Inspector

Ô

Exp. Date: 02/28/2013 License #: AAC-0798 Member of C.O.N.E.S.

Appendix B

Asbestos PLM Laboratory Analytical Results

Modified Tier II Data Validation Narrative

Project: 20100607.A20 Site Investigation/Targeted Brownfields Assessment Former Woonsocket Middle School

EMSL Laboratory Project Numbers:	041124572B, 041126490C
Date Samples Received at Laboratory:	September 13, 2012
Date of Review:	November 2, 2012

On September 13, 2012, EMSL Analytical, Inc. (EMSL) received 403 bulk building materials samples from Fuss & O'Neill, care of ESS Laboratory. The samples were submitted to EMSL for analysis of asbestos content using a variety of analytical methods.

Initially 354 samples were analyzed via polarized light microscopy (PLM) using procedures documented in United States Environmental Protection Agency (USEPA) Method 600/R-93/116. Additionally, based on the documented results of a previous building materials assessment conducted at the site, 40 samples were selected for confirmatory analysis via Transmission Electron Microscopy (TEM).

Analytical results were expressed in percent asbestos content, with a quantification limit of <1% for PLM and TEM analyses. The correct samples were analyzed via the appropriate requested methods. When appropriate and as requested by Fuss & O'Neill, analyses of samples comprising a sample group of the same material were stopped upon confirmation that an initial sample in the group contained asbestos. The sample descriptions shown in the analytical reports matched those documented in the corresponding field data sheets/chains of custody.

No significant laboratory non-conformances or deviations from the *Site-Specific QAPP Addendum* were noted for the asbestos samples and analyses. According to the case narratives and the *Modified Tier II Data Validation Checklist* associated with these analytical reports, analyses of batch blanks, laboratory duplicates, and laboratory control samples were performed and within acceptable quality control ranges. In summary, the asbestos data were considered usable for the purposes of quantifying asbestos content in the sampled building materials and developing a cost estimate for abatement activities.

INITIAL DATE: OCTOBER 2011 REVISION DATE: FEBRUARY 2012 REVISION: 1.0

1.

PLM- 041124572B GENERIC QUALITY ASSURANCE PROJECT PLAN FOR PROJECTS IN CONNECTICUT, MASSACHUSETTS AND RHODE ISLAND MODIFIED TIER I COMPLETENESS CHECKLIST

	YES	NO
 SAMPLING AND FIELD MEASUREMENTS: 		
Field measurement calibration records		D N/A
Groundwater field measurements (if applicable)		
Soil sampling field measurements (if applicable)		
Sediment sampling field measurements (if applicable)		
Surface water sampling field measurements (if applicable)		
Low-flow sampling field measurements (if applicable)		
Documentation of field activities	X	
Sample numbering and labeling	X	
Chain-of-Custody records	X	
Trip blanks		DNA
Duplicate samples		
Equipment blanks		
Split samples (if any)		
2. LABORATORY MEASUREMENTS:		
Trip blanks		DNIA
Instrument blanks	X	
Laboratory control samples	X	
Duplicates samples	5×	
Equipment blanks		D NIA
Matrix spike/matrix spike duplicates		1
Analysis type	10×	
Chain-of-Custody records	X	
Surrogate recoveries		DNA
Sample Project Narratives	X	
Split samples (if any)		DNIA
	0	
TOTAL:		
PERCENT	COMPLETE:	100 %

INITIAL DATE: OCTOBER 2011 REVISION DATE: FEBRUARY 2012 REVISION: 1.0

GENERIC QUALITY ASSURANCE PROJECT PLAN FOR PROJECTS IN CONNECTICUT, MASSACHUSETTS AND RHODE ISLAND FUSS & O'NEILL MODIFIED TIER II DATA VALIDATION CHECKLIST

PERFORMED AND, WHERE APPLICABLE, WITHIN ACCEPTABLE LIMITS?

	YES	NO	<u>COMMENTS</u>
1. SAMPLING AND FIELD MEASUREMENTS:			
Field measurement calibration records			
pH - \pm 0.3 pH units			DIR
S.C \pm 5% of calibration solution, within?			1
calibration range			
Temperature - \pm 0.5 °C			
D.O \pm 5% of calibration solution			
Groundwater field measurements (if applicable)			
Water depth measured to within 0.01 ft.?			
Soil sampling field measurements (if applicable)			
OVM - ±2 ppm			
OVA - ±2 ppm			
Sediment sampling field measurements (if applicable)			
Descriptive information recorded?			
Surface water sampling field measurements (if applicable)			
Water depth measured to within 0.01 ft.?			
Low-flow sampling field measurements (if applicable)			
S.C ± 10%			
$pH - \pm 0.2 pH$ units			
Temperature - \pm 10%			
Turbidity - ±5 NTU			
Documentation of field activities			
Site-specific information documented in field notebook?	XX		
Field data sheets completed?	(A)		
Sample numbering and labeling			numbering system
Sample numbering conforms to sample I.D. system	_	a word	specific to building 1.
identified in QAPP?		X	space mater
Chain-of-Custody records	N	-	Cali
Chain-of-Custody forms completed?	X		neld dark
			sheets served as

F:\pad\ADEA&R\Basedocs\Report_Templates\QAPPs\Generic-QAPPs\CT-MA-RI\Rev-1\Appendicies\Appendix-I-Completeness-Checklist.doc

:

COC

INITIAL DATE: OCTOBER 2011 REVISION DATE: FEBRUARY 2012 REVISION: 1.0

GENERIC QUALITY ASSURANCE PROJECT PLAN FOR PROJECTS IN CONNECTICUT, MASSACHUSETTS AND RHODE ISLAND FUSS & O'NEILL MODIFIED TIER II DATA VALIDATION CHECKLIST (Continued)

PERFORMED AND, WHERE APPLICABLE, WITHIN ACCEPTABLE LIMITS?

	YES	NO	<u>COMMENTS</u>
Trip blanks			
Trip blanks submitted, one per day?			N/A
Any compounds detected in trip blanks?			
Duplicate samples		-	
Field duplicates performed, 1/20 samples?			
Duplicates performed on 10% of samples screened			
for explosives?			
Is percent difference within 30% for all field parameters?			
Equipment blanks	_	_	
Equipment blanks submitted, one per sampling day?			
Any compounds detected in equipment blank?			
Split samples (if any)		_	
Split samples collected?			
Is percent difference within 30% for split samples?			
 LABORATORY MEASUREMENTS: Trip blanks Trip blanks submitted, one per day? Any compounds detected in trip blanks? 			NIA J
Instrument blanks**	\bigotimes		
Laboratory control samples**	×		and the second se
Duplicates samples**	X		
Equipment blanks**			NIA
Matrix spike/matrix spike duplicates**			1
Analysis type	X		
Chain-of-Custody records	×		
Surrogate recoveries**			NIA
Sample Project Narratives	X		
Split samples (if any)**			NIA
Most recent EPA WP-PE sample results**			V

 $F: ad ADEA&R Basedocs Report_Templates QAPPs Generic-QAPPs CT-MA-RI Rev-1 Appendices Appendix-I-Completeness-Checklist.doc CAPPs CT-MA-RI Rev-1 Appendix-I-COMPA-RI Rev-1 Appendix$

EMSL ANALYTICAL, INC. 200 ROUTE 130 NORTH CINNAMINSON, NJ 08077 PHONE: (800) 220-3675 FAX: (856) 786-0235

September 9, 2011

Pat Dowling Fuss & O'Neill EnviroScience, LLC 146 Hartford Road Manchester, CT 06040

PDowling@fando.com

Re: Narrative EMSL Order ID 041124572

Dear Pat:

On September 13, 2011 EMSL Analytical, Inc.(Woburn, MA) received 403 bulk samples for 20100607.A20/RIDEM - FORMER WOONSOCKET MIDDLE SCHOOL project. These samples were brought in by client carrier from Fuss & O'Neill EnviroScience for bulk asbestos content. At that point the Woburn lab manager contacted the EMSL Corporate Asbestos Lab in Cinnaminson, NJ to see if they could accept the samples based on their quantity and time-frame for results. The EMSL NJ lab accepted these samples and received them on September 14, 2011. All samples were logged in following normal lab procedures and were received in acceptable condition. All 403 samples were present and in acceptable condition.

PLM EPA 600/R-93/11 -116

The bulk samples were analyzed via polarized light microscopy (PLM) using the procedures from the EPA 600/R-93/116 method. All data was reported on a %asbestos basis with a limit of quantification for this method of <1%. Positive stops as well as samples layers were established by the client.

Daily lab blanks, scope alignments, inter and intra QC analysis were performed in accordance with EMSL's QC SOP. All QC data was deemed as acceptable.

State Signed

Stephen Siegel, CIH Asbestos Lab Manager EMSL Cinnaminson, NJ

Attn: Pat Dowling Fuss & O'Neill EnviroScience, LLC		Customer ID: Customer PO:	ENVI54		
	146 Hartford Road Manchester, CT 06040		Received: EMSL Order:	09/14/11 9:25 AM 041124572	
Fax: Project:	(888) 838-1160 20100607.A20/RIDEM - FC MIDDLE SCHOOL	Phone: DRMER W	()	EMSL Proj: Analysis Date:	9/18/2011

			Asbestos			
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Туре
818DD-01A 041124572-0001	STAIR 7 (LANDING & STAIR TREAD) - BROWN (THICK) VINYL 12X12 FLOORING W/ DIAMOND PATTERN	Brown Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
818DD-01B 041124572-0002	STAIR 9 (LANDING & STAIR TREAD) - BROWN (THICK) VINYL 12X12 FLOORING W/ DIAMOND PATTERN	Brown Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
818DD-02A 041124572-0003	STAIR 7 (LANDING & STAIR TREAD) - TAN ADHESIVE ASSOCIATED W/ BROWN (THICK) VINYL 12X12	Tan Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected

Initial report from 09/19/2011 09:55:54

Analyst(s)

Christine Hatter (11) Erica Valent (66)

Garret Vliet (45) Johnny Yu (46)

Laura Torres (38 Melanie Koenig

- Sien

Stephen Siegel, CIH, Laboratory Manager or other approved signatory

EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report meet the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request.

I	Pat Dowling Fuss & O'Neill Enviro	Science,	LLC	Customer ID: Customer PO:	ENVI54	
	146 Hartford Road Manchester, CT 0604	0		Received: EMSL Order:	09/14/11 9:25 AM 041124572	
Fax: Project:	(888) 838-1160 20100607.A20/RIDEM - FC MIDDLE SCHOOL	· · ·	0) 646-2469 NSOCKET	EMSL Proj: Analysis Date:	9/18/2011	

				Non-Asbest	<u>Asbestos</u>	
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
818DD-02B 041124572-0004	STAIR 9 (LANDING & STAIR TREAD) - TAN ADHESIVE ASSOCIATED W/ BROWN (THICK) VINYL 12X12	Tan Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
818DD-05A 041124572-0005	ROOM 101 - WHITE MOTTLED W/ BROWN 12X12 FLOOR TILE	Tan Non-Fibrous Homogeneous			97% Non-fibrous (other)	3% Chrysotile
818DD-05B 041124572-0006	ROOM 101 - WHITE MOTTLED W/ BROWN 12X12 FLOOR TILE					Stop Positive (Not Analyzed)
818DD-07A 041124572-0007	ROOM 101 - SUBFLOOR/SLEE PER FLOOR TAR FILLER (MASTIC)	Black Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
818DD-07B 041124572-0008	ROOM 101 - SUBFLOOR/SLEE PER FLOOR TAR FILLER (MASTIC)	Black Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
tial report from 09/1	9/2011 09:55:54					
Analyst(s)					Style Sie	d
Christine Hatter (11) Erica Valent (66)		et Vliet (45) ny Yu (46)		Laura Torres (3٤ Melanie Koenig	Stephen Siegel, CIH, Laborato or other approved signa	

EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report meet the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request.

I	Pat Dowling Fuss & O'Neill Enviro	Science, LLC	Customer ID: Customer PO:	ENVI54
	146 Hartford Road Manchester, CT 0604	0	Received: EMSL Order:	09/14/11 9:25 AM 041124572
Fax: Project:	(888) 838-1160 20100607.A20/RIDEM - FC MIDDLE SCHOOL	Phone: (860) 646-2469 DRMER WOONSOCKET	EMSL Proj: Analysis Date:	9/18/2011

		Non-Asbestos				Asbestos
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
818DD-08A 041124572-0009	ROOM 105 - WHITE W/ BROWN STREAKS 9X9 FLOOR TILE	White Non-Fibrous Homogeneous			97% Non-fibrous (other)	3% Chrysotile
818DD-08B 041124572-0010	ROOM 105 - WHITE W/ BROWN STREAKS 9X9 FLOOR TILE					Stop Positive (Not Analyzed)
818DD-09A 041124572-0011	ROOM 105 - 4" LIGHT BROWN VINYL BASEBOARD	Brown Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
818DD-10A 041124572-0012	ROOM 105 - TAN MASTIC A/W 4" LIGHT BROWN VBB	Tan Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
818DD-10B 041124572-0013	ROOM 105 - TAN MASTIC A/W 4" LIGHT BROWN VBB	Tan Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected

Initial report from 09/19/2011 09:55:54

Analyst(s)

Christine Hatter (11) Erica Valent (66)

Garret Vliet (45) Johnny Yu (46) Laura Torres (38 Melanie Koenig

Sien

Stephen Siegel, CIH, Laboratory Manager or other approved signatory

EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report meet the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request.

	Pat Dowling Fuss & O'Neill Enviro	Scienc	Customer ID: Customer PO:	ENVI54	
	146 Hartford Road Manchester, CT 0604	0	Received: EMSL Order:	09/14/11 9:25 AM 041124572	
Fax: Project:	(888) 838-1160 20100607.A20/RIDEM - FC MIDDLE SCHOOL		(860) 646-2469 OONSOCKET	EMSL Proj: Analysis Date:	9/18/2011

			<u>bestos</u>	Asbestos		
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
818DD-13A 041124572-0014	LIBRARY (INTERIOR) - BROWN WINDOW CAULK @ ALUMINUM (PLIABLE)	Brown Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
818DD-13B 041124572-0015	ROOM 260 (EXTERIOR) - ALUMINUM FRAMES (TYPICAL)	Brown Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
818DD-14A 041124572-0016	TYPICAL WINDOWS - TAN CAULKING AT (WOOD) BRICK MOLDING CONCEALED BENEATH ALUMINUM WINDOW FRAMES	Non-Fibrous Heterogeneous			90% Non-fibrous (other)	10% Chrysotile

 Initial report from 09/19/2011 09:55:54

 Analyst(s)

 Christine Hatter (11)
 Garret Vliet (45)

 Johnny Yu (46)
 Laura Torres (3٤

 Stephen Siegel, CIH, Laboratory Manager or other approved signatory

 EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report met the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request.

	Pat Dowling Fuss & O'Neill Envi	roScience, LLC	Customer ID Customer PC	
	146 Hartford Road		Received:	09/14/11 9:25 AM
	Manchester, CT 060	40	EMSL Order	: 041124572
Fax:	(888) 838-1160	Phone: (860) 646-	EMSL Proj:	
Project	roject: 20100607.A20/RIDEM - FORMER WOONSOCKET MIDDLE SCHOOL			e: 9/18/2011

		tos	Asbestos			
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
818DD-14B 041124572-0017	TYPICAL WINDOWS - TAN CAULKING AT (WOOD) BRICK MOLDING CONCEALED BENEATH ALUMINUM WINDOW FRAMES					Stop Positive (Not Analyzed)
818DD-14C 041124572-0018	TYPICAL EXTERIOR DOORS - TAN CAULKING AT DOOR FRAMES (EXTERIOR)					Stop Positive (Not Analyzed)
818DD-16A 041124572-0019	ROOM 105 - BLACK SINK UNDERCOATING	Black Non-Fibrous Homogeneous			85% Non-fibrous (other)	15% Chrysotile
818DD-17A 041124572-0020	ROOM 203 - 2" BROWN VINYL BASEBOARD	Brown Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
818DD-18A 041124572-0021	ROOM 203 - MASTIC A/W 2" BROWN VINYL BASEBOARD	Brown Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
itial report from 09/1	9/2011 09:55:54					
Analyst(s)					Style Sie	d
Christine Hatter (11)	Garre	et Vliet (45)		Laura Torres (3٤	Stephen Siegel, CIH, Laborato	ory Manager
Erica Valent (66)	Johni	ny Yu (46)		Melanie Koenig	or other approved signa	atory

	Pat Dowling Fuss & O'Neill Enviro	Scien	Customer ID: Customer PO:	ENVI54	
	146 Hartford Road Manchester, CT 0604	0	Received: EMSL Order:	09/14/11 9:25 AM 041124572	
Fax: Project:	(888) 838-1160 20100607.A20/RIDEM - FC MIDDLE SCHOOL	Phone: DRMER W	()	EMSL Proj: Analysis Date:	9/18/2011

				Non-Asbest	tos	Asbestos
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
818DD-18B 041124572-0022	ROOM 212 - MASTIC A/W 2" BROWN VINYL BASEBOARD	Brown Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
818DD-19A 041124572-0023	ROOM 211 - MINT GREEN W/ CREAM & GREEN SPLOTCHES 9X9 FLOOR TILE	Green Non-Fibrous Homogeneous			97% Non-fibrous (other)	3% Chrysotile
818DD-20A 041124572-0024	ROOM 203 - GREY & WHITE WASH OUT 9X9 FLOOR TILE	Tan Non-Fibrous Homogeneous			98% Non-fibrous (other)	2% Chrysotile
818DD-21A 041124572-0025	ROOM 204 - GREYISH GREEN W/ WHITE & GREY STREAKS 9X9 FLOOR TILE	Tan Non-Fibrous Homogeneous			98% Non-fibrous (other)	2% Chrysotile
818DD-22A 041124572-0026	ROOM 205/205A - BROWN, TAN & GREEN SWIRL 9X9 FT	Brown Non-Fibrous Homogeneous	20%	Cellulose	80% Non-fibrous (other)	None Detected
tial report from 09/1	9/2011 09:55:54					
Analyst(s)					Style Sien	1
Christine Hatter (11) Garre	t Vliet (45)		Laura Torres (3٤	Stephen Siegel, CIH, Laborato	ry Manager
Erica Valent (66)	Johnr	ny Yu (46)		Melanie Koenig	or other approved signa	itory

I	Pat Dowling Fuss & O'Neill Enviro	oScien	ce, LLC	Customer ID: Customer PO:	ENVI54
	46 Hartford Road			Received:	09/14/11 9:25 AM
I	Manchester, CT 0604	0		EMSL Order:	041124572
Fax:	(888) 838-1160	Phone:	(860) 646-2469	EMSL Proj:	
Project:	20100607.A20/RIDEM - FO MIDDLE SCHOOL	ORMER W	OONSOCKET	Analysis Date:	9/18/2011

			Non-Asbestos			<u>Asbestos</u>	
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Туре	
818DD-23A 041124572-0027	ROOM 205/205A - TAN & BROWN SWIRL 9X9 FT	Tan Non-Fibrous Homogeneous	20%	Cellulose	80% Non-fibrous (other)	None Detected	
818DD-24A 041124572-0028	OFFICE AREA (205/205A) - BLACK PAPER MASTIC ASSOCIATED WITH 9X9 FLOOR TILE	Black Fibrous Homogeneous	40%	Cellulose	60% Non-fibrous (other)	None Detected	
818DD-24B 041124572-0029	ROOM 455 - BLACK PAPER MASTIC ASSOCIATED WITH 9X9 FLOOR TILE	Black Fibrous Homogeneous	40%	Cellulose	60% Non-fibrous (other)	None Detected	
818DD-24C 041124572-0030	ROOM 558 - BLACK PAPER MASTIC ASSOCIATED WITH 9X9 FLOOR TILE	Black Fibrous Homogeneous	40%	Cellulose	60% Non-fibrous (other)	None Detected	

Analyst(s)

Christine Hatter (11) Erica Valent (66)

Garret Vliet (45) Johnny Yu (46) Laura Torres (38 Melanie Koenig

Sien

Stephen Siegel, CIH, Laboratory Manager or other approved signatory

EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report meet the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request.

F	Pat Dowling Fuss & O'Neill Enviro	Scien	Customer ID: Customer PO:	ENVI54	
	46 Hartford Road Manchester, CT 0604	0	Received: EMSL Order:	09/14/11 9:25 AM 041124572	
Fax: (888) 838-1160 Phone: (860) 646-2469 Project: 20100607.A20/RIDEM - FORMER WOONSOCKET MIDDLE SCHOOL MI				EMSL Proj: Analysis Date:	9/18/2011

		Non-Asbestos				Asbestos
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
818DD-25A 041124572-0031	ROOM 202A - WHITE W/ TAN & GREY SPECKS 9X9 FLOOR TILE	Tan Non-Fibrous Homogeneous			95% Non-fibrous (other)	5% Chrysotile
818DD-26A 041124572-0032	ROOM 207A- RAISED FLOOR - OFF WHITE W/ CREAM & BROWN STREAKS 12X12 FLOOR TILE	Tan Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
818DD-27A 041124572-0033	ROOMS 207A/B - BEIGE W/ CREAM & BROWN STREAKS 12X12 FT	Tan Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
818DD-28A 041124572-0034	ROOMS 207A/B - BLUE 9X9 FLOOR TILE UNDERNEATH PLYWOOD UNDERLAYMENT	Blue Non-Fibrous Homogeneous			98% Non-fibrous (other)	2% Chrysotile

 Initial report from 09/19/2011 09:55:54

 Analyst(s)

 Christine Hatter (11)
 Garret Vliet (45)

 Johnny Yu (46)
 Laura Torres (3E

 Stephen Siegel, CIH, Laboratory Manager or other approved signatory

 EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report met the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request.

I	Pat Dowling Fuss & O'Neill Enviro	Science, L	LLC	Customer ID: Customer PO:	ENVI54
	46 Hartford Road			Received:	09/14/11 9:25 AM
l l	Manchester, CT 0604	0		EMSL Order:	041124572
Fax:	(888) 838-1160	Phone: (860) 646-2469	EMSL Proj:	
Project:	oject: 20100607.A20/RIDEM - FORMER WOONSOCKET MIDDLE SCHOOL			Analysis Date:	9/18/2011

			<u>Asbestos</u>		
Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
ROOM 211 - BEIGE W/ WHITE & BROWN SPLOTCHES 9X9 FT	Tan Non-Fibrous Homogeneous			97% Non-fibrous (other)	3% Chrysotile
ROOM 213 - LIGHT BROWN W/ CREAM & BROWN SPLOTCHES 9X9 FLOOR TILE	Tan Non-Fibrous Homogeneous			98% Non-fibrous (other)	2% Chrysotile
ROOM 213 - DARK BROWN W/ CREAM & LIGHT BROWN SPLOTCHES 9X9 FLOOR TILE	Brown Non-Fibrous Homogeneous			98% Non-fibrous (other)	2% Chrysotile
ROOM 220 (OFFICE) - GREEN MOTTLED 12X12 FT	Tan Non-Fibrous Homogeneous			95% Non-fibrous (other)	5% Chrysotile
ROOM 216 - LIGHT BLUE W/ WHITE STREAKS 9X9 FLOOR TILE	Blue Non-Fibrous Homogeneous			98% Non-fibrous (other)	2% Chrysotile
9/2011 09:55:54					
				Style Siege	1
Garre	t Vliet (45)		Laura Torres (3٤	Stephen Siegel, CIH, Laborator	y Manager
Johni	ny Yu (46)		Melanie Koenig	or other approved signa	tory
	ROOM 211 - BEIGE W/ WHITE & BROWN SPLOTCHES 9X9 FT ROOM 213 - LIGHT BROWN W/ CREAM & BROWN SPLOTCHES 9X9 FLOOR TILE ROOM 213 - DARK BROWN W/ CREAM & LIGHT BROWN SPLOTCHES 9X9 FLOOR TILE ROOM 220 (OFFICE) - GREEN MOTTLED 12X12 FT ROOM 216 - LIGHT BLUE W/ WHITE STREAKS 9X9 FLOOR TILE	ROOM 211 - BEIGE W/ WHITE & BROWN SPLOTCHES 9X9 FTTan Non-Fibrous HomogeneousROOM 213 - LIGHT BROWN W/ CREAM & BROWN SPLOTCHES 9X9 FLOOR TILETan Non-Fibrous HomogeneousROOM 213 - LIGHT BROWN W/ CREAM & BROWN SPLOTCHES 9X9 FLOOR TILETan Non-Fibrous HomogeneousROOM 213 - DARK BROWN SPLOTCHES 9X9 FLOOR TILEBrown Non-Fibrous HomogeneousROOM 213 - DARK BROWN SPLOTCHES 9X9 FLOOR TILEBrown Non-Fibrous HomogeneousROOM 216 - LIGHT BLUE W/ WHITE STREAKS 9X9 FLOOR TILEBlue Non-Fibrous Homogeneous	ROOM 211 - Tan BEIGE W/ WHITE Non-Fibrous & BROWN SPLOTCHES 9X9 FT Tan ROOM 213 - Tan LIGHT BROWN Non-Fibrous W/ CREAM & Non-Fibrous BROWN SPLOTCHES 9X9 FLOOR TILE Tan Non-Fibrous Homogeneous ROOM 213 - Dark BROWN SPLOTCHES 9X9 Brown NARK BROWN Non-Fibrous W/ CREAM & Brown NARK BROWN Non-Fibrous Homogeneous Homogeneous ROOM 213 - DARK BROWN V/ CREAM & Brown Non-Fibrous Homogeneous MOTTLED 12X12 Tan Non-Fibrous Homogeneous MOTTLED 12X12 Blue Non-Fibrous Homogeneous W2011 09:55:54 June W2011 09:55:54 June	Description Appearance % Fibrous ROOM 211 - BEIGE W/ WHITE & BROWN SPLOTCHES 939 FT Tan Non-Fibrous Homogeneous Non-Fibrous Homogeneous Image: Comparison of the temperature of tempe	ROOM 211 - BEIGE W/ WHITE & BROWN SPLOTCHES 9X9 Tan Non-Fibrous Homogeneous 97% Non-fibrous (other) ROOM 213 - LIGHT BROWN W CREAM & BROWN SPLOTCHES 9X9 FLOOR TILE Tan Non-Fibrous Homogeneous 98% Non-fibrous (other) ROOM 213 - DARK BROWN W CREAM & BROWN SPLOTCHES 9X9 FLOOR TILE Brown Non-Fibrous Homogeneous 98% Non-fibrous (other) ROOM 213 - DARK BROWN SPLOTCHES 9X9 FLOOR TILE Brown Non-Fibrous Homogeneous 98% Non-fibrous (other) ROOM 220 (OFFICE) - Non-Fibrous Homogeneous Tan Non-Fibrous Homogeneous 95% Non-fibrous (other) ROOM 216 - LIGHT BLUE W/ WHITE STREAKS 9X9 FLOOR TILE Blue Non-Fibrous Homogeneous 98% Non-fibrous (other) WOTLED 12X12 FT Blue Non-Fibrous Homogeneous 98% Non-fibrous (other) WUTE STREAKS 9X9 FLOOR TILE Blue Non-Fibrous Homogeneous 98% Non-fibrous (other) V2011 09:55:54 Laura Torres (38 Stephen Siegel, CIH, Laboratou

I	Pat Dowling Fuss & O'Neill Envir	oScience, LLC	Customer ID: Customer PO:	ENVI54
	146 Hartford Road Manchester, CT 0604	40	Received: EMSL Order:	09/14/11 9:25 AM 041124572
Fax:	(888) 838-1160	Phone: (860) 646-2469	EMSL Proj:	
Project:	Project: 20100607.A20/RIDEM - FORMER WOONSOCKET MIDDLE SCHOOL		Analysis Date:	9/18/2011

			Non-Asbestos			
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
818DD-34A 041124572-0040	ROOM 214A/B - GREY MOTTLED 12X12 FLOOR TILE	Tan Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
			Suggest T	EM		
818DD-34B 041124572-0041	ROOM 557 - GREY MOTTLED 12X12 FLOOR TILE	Gray Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
			Suiggest T	EM		
818DD-35A 041124572-0042	ROOM 209A/B - BROWN & TAN MOTTLED 21X12 FT	Tan Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
818DD-36A 041124572-0043	ROOM 218 - BROWN & TAN WASH OUT 9X9 FT	Tan Non-Fibrous Homogeneous			95% Non-fibrous (other)	5% Chrysotile
818DD-37A 041124572-0044	ROOM 552 - BLUISH GREEN 12X12 FT	Green Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected

Initial report from 09/19/2011 09:55:54

Analyst(s)

Christine Hatter (11) Erica Valent (66)

Garret Vliet (45) Johnny Yu (46)

Laura Torres (38 Melanie Koenig

- Sien

Stephen Siegel, CIH, Laboratory Manager or other approved signatory

EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report meet the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request.

	Pat Dowling Fuss & O'Neill Enviro 146 Hartford Road	oScience, LLC	Customer ID: Customer PO: Received:	ENVI54 09/14/11 9:25 AM
	Manchester, CT 0604	40	EMSL Order:	041124572
Fax:	(888) 838-1160	Phone: (860) 646-2469	EMSL Proj:	
Project	20100607.A20/RIDEM - FC MIDDLE SCHOOL	DRMER WOONSOCKET	Analysis Date:	9/18/2011

			Non-Asbest	tos	<u>Asbestos</u>
Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
ROOM 550 - TAN/BROWN VINYL FLOOR TILE UNDERNEATH PLYWOOD UNDERLAYMENT	Tan Non-Fibrous Homogeneous			98% Non-fibrous (other)	2% Chrysotile
ROOM 301 - TAN/BROWN VINYL FLOOR TILE UNDERNEATH PLYWOOD UNDERLAYMENT					Stop Positive (Not Analyzed)
ROOM 553 - BROWN, TAN & WHITE MOTTLED 12X12 FLOOR TILE	Tan Non-Fibrous Homogeneous			98% Non-fibrous (other)	2% Chrysotile
ROOM 550 - LIGHT PURPLE W/ PURPLE & WHITE STREAKS 12X12 FLOOR TILE	Purple Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
/19/2011 09:55:54					
				0.05	
				Strole See	d
1) Garre	t Vliet (45)		Laura Torres (3٤	Stephen Siegel, CIH, Laborato	
	ny Yu (46)		Melanie Koenig	or other approved signa	atory
	ROOM 550 - TAN/BROWN VINYL FLOOR TILE UNDERNEATH PLYWOOD UNDERLAYMENT ROOM 301 - TAN/BROWN VINYL FLOOR TILE UNDERNEATH PLYWOOD UNDERLAYMENT ROOM 553 - BROWN, TAN & WHITE MOTTLED 12X12 FLOOR TILE ROOM 550 - LIGHT PURPLE W/PURPLE & WHITE STREAKS 12X12 FLOOR TILE	ROOM 550 - TAN/BROWN VINYL FLOOR TILE UNDERNEATH PLYWOOD UNDERLAYMENT Tan Non-Fibrous Homogeneous ROOM 301 - TAN/BROWN VINYL FLOOR TILE UNDERNEATH PLYWOOD UNDERLAYMENT Tan Non-Fibrous Homogeneous ROOM 553 - BROWN, TAN & WHITE MOTTLED 12X12 FLOOR TILE Tan Non-Fibrous Homogeneous ROOM 550 - LIGHT PURPLE W/ PURPLE & WHITE STREAKS 12X12 FLOOR TILE Purple Non-Fibrous Homogeneous	ROOM 550 - TAN/BROWN VINYL FLOOR TILE UNDERNEATH PLYWOOD UNDERLAYMENT Tan Non-Fibrous Homogeneous ROOM 301 - TAN/BROWN VINYL FLOOR TILE UNDERNEATH PLYWOOD UNDERLAYMENT Tan Non-Fibrous Homogeneous ROOM 553 - BROWN, TAN & WHITE MOTTLED 12X12 FLOOR TILE Tan Non-Fibrous Homogeneous ROOM 550 - LIGHT PURPLE W PURPLE & WHITE STREAKS 12X12 FLOOR TILE Purple Non-Fibrous Homogeneous	DescriptionAppearance%FibrousROOM 550 · TAN/BROWN VINYL FLOOR TILE UNDERNEATH PLYWOOD UNDERLAYMENTTan Non-Fibrous HomogeneousNon-Fibrous HomogeneousROOM 301 · TAN/BROWN VINYL FLOOR TILE UNDERNEATH PLYWOOD UNDERLAYMENTTan Non-Fibrous HomogeneousImage: Comparison of the state of the	DescriptionAppearance%Fibrous%Non-FibrousROOM 550 - TAN/BROWN VINYL FLOOR TILE UNDERNEATH PLYWOOD TILETan Non-Fibrous No

	Pat Dowling Fuss & O'Neill Enviro	Scien	Customer ID: Customer PO:	ENVI54
	146 Hartford Road Manchester, CT 0604	0	Received: EMSL Order:	09/14/11 9:25 AM 041124572
Fax: Project:	(888) 838-1160 20100607.A20/RIDEM - FC MIDDLE SCHOOL	Phone: DRMER W	EMSL Proj: Analysis Date:	9/18/2011

			Non-Asbestos			
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
818DD-41A 041124572-0049	HALLWAY O/S #554-550 - BROWN & TAN MOTTLED 12X12 FLOOR TILE	Tan Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
818DD-42A 041124572-0050	HALLWAY O/S #554-550 - BLACK W/ WHITE & GREEN STREAKS 9X9 FLOOR TILE	Black Non-Fibrous Homogeneous			96% Non-fibrous (other)	4% Chrysotile
818DD-44A 041124572-0051	ROOM 501 - REDDISH PINK W/ WHITE SPLOTCHES 12X12 FLOOR TILE	Pink Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
818DD-46A 041124572-0052	ROOM 502A - PEA GREEN W/ DARK GREEN & WHOTE SPLOTCHES 12X12 FT	Green Non-Fibrous Homogeneous			94% Non-fibrous (other)	6% Chrysotile

 Initial report from 09/19/2011 09:55:54

 Analyst(s)

 Christine Hatter (11)
 Garret Vliet (45)

 Johnny Yu (46)
 Laura Torres (3٤

 Melanie Koenig
 Stephen Siegel, CIH, Laboratory Manager or other approved signatory

 EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report meet the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data

I	Pat Dowling Fuss & O'Neill Enviro	oScience, LLC	Customer ID: Customer PO:	ENVI54
	146 Hartford Road Manchester, CT 0604	10	Received: EMSL Order:	09/14/11 9:25 AM 041124572
Fax: Project:	(888) 838-1160 20100607.A20/RIDEM - FC MIDDLE SCHOOL	Phone: (860) 646-2469 DRMER WOONSOCKET	EMSL Proj: Analysis Date:	9/18/2011

				Non-Asbes	<u>Asbestos</u>	
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Туре
818DD-47A 041124572-0053	ROOM 502 (STAIR & CLOSET) - BROWN, BEIGE & TAN MOTTLED 12X12 FLOOR TILE	Brown Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected
			suggest ter	n		
76DD-48A 041124572-0054	HALL O/S FORMER HS OFFICE - RED MOTTLED 12X12 FLOOR TILE (TOP LAYER)	Purple Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected
76DD-49A 041124572-0055	HALL O/S FORMER HS OFFICE - GREY/YELLOW MASTIC A/W RED MOTTLED 12X12 FT	Gray/Yellow Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected
76DD-49B 041124572-0056	HALL O/S FORMER HS OFFICE - GREY/YELLOW MASTIC A/W RED MOTTLED 12X12 FT	Brown/Tan Fibrous Heterogeneous	4%	Cellulose	96% Non-fibrous (other)	None Detected
itial report from 09/1	9/2011 09:55:54					
Analyst(s)					Style Siege	1
Christine Hatter (11)	Garre	et Vliet (45)		Laura Torres (3٤	Stephen Siegel, CIH, Laborator	y Manager
Erica Valent (66)	John	ny Yu (46)		Melanie Koenig	or other approved signa	tory

F	Pat Dowling Fuss & O'Neill Envirc 46 Hartford Road	Science, LLC	Customer ID: Customer PO: Received:	ENVI54 09/14/11 9:25 AM
	Anchester, CT 0604	0	EMSL Order:	041124572
Fax: Project:	(888) 838-1160 20100607.A20/RIDEM - FC MIDDLE SCHOOL	Phone: (860) 646-2469	EMSL Proj: Analysis Date:	9/18/2011

			Non-Asbes	Asbestos	
Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
HALL O/S FORMER HS OFFICE - GREY VINYL FLOOR TILE UNDERNEATH PLYWOOD UNDERLAYMENT	Gray Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected
HALL O/S FORMER HS OFFICE - BLUE VINYL FLOOR TILE UNDERNEATH PLYWOOD UNDERLAYMENT	Blue Non-Fibrous Heterogeneous	suggest fem		100% Non-fibrous (other)	None Detected
AUDITORIUM - PINKISH ORANGE MOTTLED 12X12 FLOOR TILE	Peach Non-Fibrous Heterogeneous	Suggest ten	<u>.</u>	100% Non-fibrous (other)	None Detected
LIBRARY - 1X1 PEGBOARD- TYPE CEILING TILE (SPLINE)	Brown/White Fibrous Heterogeneous	85%	Cellulose	15% Non-fibrous (other)	None Detected
9/2011 09:55:54					
				Style Siege	1
Garre	et Vliet (45)		Laura Torres (38	Stephen Siegel, CIH, Laborator	y Manager
Johni	ny Yu (46)		Melanie Koenig	or other approved signa	tory
	HALL O/S FORMER HS OFFICE - GREY VINYL FLOOR TILE UNDERNEATH PLYWOOD UNDERLAYMENT HALL O/S FORMER HS OFFICE - BLUE VINYL FLOOR TILE UNDERNEATH PLYWOOD UNDERLAYMENT AUDITORIUM - PINKISH ORANGE MOTTLED 12X12 FLOOR TILE LIBRARY - 1X1 PEGBOARD- TYPE CEILING TILE (SPLINE) 9/2011 09:55:54	HALL O/S Gray FORMER HS OFFICE - GREY VINYL FLOOR Heterogeneous TILE UNDERNEATH PLYWOOD UNDERLAYMENT HALL O/S Blue FORMER HS OFFICE - BLUE VINYL FLOOR Blue VINDERNEATH Non-Fibrous HALL O/S Blue FORMER HS OFFICE - BLUE VINYL FLOOR Heterogeneous TILE UNDERNEATH PLYWOOD UNDERLAYMENT AUDITORIUM - Peach Non-Fibrous Heterogeneous MOTTLED 12X12 Florous FLOOR TILE Brown/White PEGBOARD- Fibrous TYPE CEILING Heterogeneous 9/2011 09:55:54 Heterogeneous	HALL O/S Gray FORMER HS OFFICE - GREY VINYL FLOOR Non-Fibrous TILE UNDERNEATH PLYWOOD UNDERLAYMENT HALL O/S Blue FORMER HS OFFICE - BLUE VINYL FLOOR Non-Fibrous FORMER HS OFFICE - BLUE VINYL FLOOR Non-Fibrous Heterogeneous Heterogeneous VINYL FLOOR Non-Fibrous HOTHERNEATH Non-Fibrous PLYWOOD Non-Fibrous Heterogeneous suggest ten AUDITORIUM - Peach NONTILED 12X12 Peach MOTTLED 12X12 Brown/White 85% TYPE CEILING Fibrous TILE (SPLINE) Heterogeneous 9/2011 09:55:54 Heterogeneous	Description Appearance % Fibrous HALL O/S FORMER HS OFFICE - GREY VINYL FLOOR TILE UNDERNEATH PLYWOOD UNDERLAYMENT Gray Non-Fibrous Heterogeneous Source - State State Source - State State Source - State State HALL O/S FORMER HS OFFICE - BLUE VINYL FLOOR TILE UNDERNEATH PLYWOOD UNDERLAYMENT Blue Non-Fibrous Heterogeneous Source - State State Source - State State AUDITORIUM - PINKISH ORANGE MOTTLED 12X12 FLOOR TILE Peach Non-Fibrous Heterogeneous Source - State State Source - State State LIBRARY - 1X1 PEGBOARD- TYPE CEILING TILE (SPLINE) Brown/White Fibrous Heterogeneous Source - State State Source - State State 9/2011 09:55:54 Eaura Torres (3E	Description Appearance % Fibrous % Non-Fibrous HALL O'S FORMER HS OFFICE - GREY VINYL FLOOR TILE UNDERNEATH PLYWOOD UNDERLAYMENT Gray Non-Fibrous Heterogeneous 100% Non-fibrous (other) 100% Non-fibrous (other) HALL O'S FORMER HS OFFICE - BLUE VINYL FLOOR TILE UNDERNEATH PLYWOOD UNDERLAYMENT Blue Non-Fibrous Heterogeneous 100% Non-fibrous (other) AUDITORIUM - PINKISH ORANGE MOTTLED 12X12 FLOOR TILE Peach Non-Fibrous Heterogeneous 100% Non-fibrous (other) LIBRARY - 1X1 PEGBOARD- TYPE CEILING TLE (SPLINE) Brown/White Heterogeneous 85% Cellulose Fibrous Heterogeneous 15% Non-fibrous (other) 9/2011 09:55:54 Jaura Torres (3t Stephen Siegel, CIH, Laborator

F 1	Pat Dowling Fuss & O'Neill Envirc 46 Hartford Road Aanchester, CT 0604	ce, LLC	Customer ID: Customer PO: Received: EMSL Order:	ENVI54 09/14/11 9:25 AM 041124572
Fax: Project:	(888) 838-1160 20100607.A20/RIDEM - FO MIDDLE SCHOOL	()	EMSL Proj: Analysis Date:	9/18/2011

			Asbestos			
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
76DD-55A 041124572-0061	BOOK STORAGE RM (OFF LIBRARY) - MULIT-DOT 2X4 CEILING TILE	Gray/White Fibrous Heterogeneous	40% 30%		30% Non-fibrous (other)	None Detected
76DD-56A 041124572-0062	LIBRARY BOOK STORAGE ROOM - BEIGE W/ WHITE & BROWN 9X9 FT	Tan Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected
76DD-57A 041124572-0063	FORMER HS MAIN OFFICE - BROWNISH GREY W/ WHITE & BROWN SPECKS 9X9 FLOOR TILE (DOMINANT TYPE)	Gray Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected
76DD-58A 041124572-0064	FORMER HS MAIN OFFICE - YELLOW CARPET GLUE	Yellow Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected
76DD-58B 041124572-0065	LIBRARY - YELLOW CARPET GLUE	Tan Non-Fibrous Heterogeneous	2%	Cellulose	98% Non-fibrous (other)	None Detected
itial report from 09/19	9/2011 09:55:54					
Analyst(s)					Style Siege	1
Christine Hatter (11)	Garre	et Vliet (45)		Laura Torres (3٤	Stephen Siegel, CIH, Laborator	ry Manager
Erica Valent (66)	John	ny Yu (46)		Melanie Koenig	or other approved signa	tory

I	Pat Dowling Fuss & O'Neill Enviro	oScience, LLC	Customer ID: Customer PO:	ENVI54
	146 Hartford Road Manchester, CT 0604	10	Received: EMSL Order:	09/14/11 9:25 AM 041124572
Fax: Project:	(888) 838-1160 20100607.A20/RIDEM - FC MIDDLE SCHOOL	Phone: (860) 646-2469 DRMER WOONSOCKET	EMSL Proj: Analysis Date:	9/18/2011

			<u>Asbestos</u>				
Sample	Description	Appearance	% Fibrous		% Non-Fibrous	% Type	
76DD-59A 041124572-0066	FORMER HS MAIN OFFICE - WHITE W/ BROWN SPLOTCHES 9X9 FLOOR TILE	Beige Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected	
76DD-61A 041124572-0067	LIBRARY - GREEN 9X9 FLOOR TILE	Green Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected	
76DD-66A 041124572-0068	LIBRARY ANNEXE - GREY VINYL FLOOR TILE	Gray Non-Fibrous Heterogeneous			92% Non-fibrous (other)	8% Chrysotile	
76DD-67A 041124572-0069	ROOM 353 - FISSURED 2X4 WALL PANEL	Brown/White Fibrous Heterogeneous	85%	Cellulose	15% Non-fibrous (other)	None Detected	
76DD-68A 041124572-0070	ROOM 356A- COMP LAB OFFICE - FISSURE & DOT 2X4 CEILING TILE	Gray/White Fibrous Heterogeneous		Cellulose Min. Wool	30% Non-fibrous (other)	None Detected	
76DD-68B 041124572-0071	ROOM 455 - FISSURE & DOT 2X4 CEILING TILE	Gray/White Fibrous Heterogeneous		Cellulose Min. Wool	30% Non-fibrous (other)	None Detected	
	FISSURE & DOT	Fibrous			30% Non-fibrous (other)	None Detect	
Analyst(s)					Styphen Siege	1	

Christine Hatter (11) Erica Valent (66)

Garret Vliet (45) Johnny Yu (46)

Laura Torres (38 Melanie Koenig

Stephen Siegel, CIH, Laboratory Manager or other approved signatory

EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report meet the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request.

 ,	Pat Dowling Fuss & O'Neill Enviro 146 Hartford Road Manchester, CT 0604		e, LLC	Customer ID: Customer PO: Received: EMSL Order:	ENVI54 09/14/11 9:25 AM 041124572
Fax:	(888) 838-1160	`	860) 646-2469	EMSL Proj:	
Project:	20100607.A20/RIDEM - FO MIDDLE SCHOOL	ORMER WOO	ONSOCKET	Analysis Date:	9/18/2011

		Asbestos				
Description	Appearance	%	Fibrous	% Non-Fibrous	% Type	
CORNER BATHROOM HS OFFICE HALL - WHITE 1X1 CEILING TILE	Brown/White Fibrous Heterogeneous	90%	Cellulose	10% Non-fibrous (other)	None Detected	
ROOMS 350- 353 - 4" SHINY BLACK VINYL BASEBOARD	Gray/Black Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected	
ROOMS 350- 353 - BROWN MASTIC A/W 4" SHINY BLACK VBB	Brown Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected	
ROOMS 350- 353 - BROWN MASTIC A/W 4" SHINY BLACK VBB	Brown Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected	
CORNER BATHROOM HS OFFICE HALL - GREY W/ PINK & GREEN SPLOTCHES 9X9 FLOOR TILE	Gray/Black Fibrous Heterogeneous	25%	Cellulose	70% Non-fibrous (other)	5% Chrysotile	
9/2011 09:55:54						
				Styphen Siege	1	
Garre	t Vliet (45)		Laura Torres (3t	Stephen Siegel, CIH, Laborator	ry Manager	
Johnr	ny Yu (46)		Melanie Koenig	or other approved signa	tory	
	CORNER BATHROOM HS OFFICE HALL - WHITE 1X1 CEILING TILE ROOMS 350- 353 - 4" SHINY BLACK VINYL BASEBOARD ROOMS 350- 353 - BROWN MASTIC A/W 4" SHINY BLACK VBB ROOMS 350- 353 - BROWN MASTIC A/W 4" SHINY BLACK VBB CORNER BATHROOM HS OFFICE HALL - GREY W/ PINK & GREEN SPLOTCHES 9X9 FLOOR TILE 9/2011 09:55:54	CORNER BATHROOM HS OFFICE HALL - WHITE 1X1 CEILING TILE Brown/White Fibrous Heterogeneous ROOMS 350- 353 - 4" SHINY BLACK VINYL BASEBOARD Gray/Black Non-Fibrous Heterogeneous ROOMS 350- 353 - BROWN MASTIC A/W 4" SHINY BLACK VBB Brown Non-Fibrous Heterogeneous gray/Black GREEN SPLOTCHES 9X9 FLOOR TILE Gray/Black Fibrous Heterogeneous 9/2011 09:55:54 Gray/Black	CORNER BATHROOM HS OFFICE HALL - WHITE 1X1 CEILING TILE Brown/White Fibrous Heterogeneous 90% ROOMS 350- 353 - 4" SHINY BLACK VINYL BASEBOARD Gray/Black Non-Fibrous Heterogeneous 90% ROOMS 350- 353 - 8ROWN MASTIC A/W 4" SHINY BLACK VBB Brown 	DescriptionAppearance%FibrousCORNER BATHROOM HS OFFICE HALL- WHITE 1X1 CEILING TILEBrown/White Fibrous Heterogeneous90%CelluloseROOMS 350- 353 - 4" SHINY BLACK VINYL BASEBOARDGray/Black Non-Fibrous Heterogeneous	CORNER BATHROOM HS OFFICE HALL WHITE 1X1 CEILING TILE Brown/White Fibrous Heterogeneous 90% Cellulose 10% Non-fibrous (other) ROOMS 350- S33 - 4" SHINY BLACK VINYL BASEBOARD Gray/Black Non-Fibrous Heterogeneous 100% Non-fibrous (other) ROOMS 350- S33 - BROWN MASTIC AW 4" SHINY BLACK VBB Brown Non-Fibrous Heterogeneous 100% Non-fibrous (other) ROOMS 350- S33 - BROWN MASTIC AW 4" SHINY BLACK VBB Brown Non-Fibrous Heterogeneous 100% Non-fibrous (other) ROOMS 350- S33 - BROWN MASTIC AW 4" SHINY BLACK VBB Brown Non-Fibrous Heterogeneous 100% Non-fibrous (other) CORNER BATHROOM HS OFFICE HALL- GREY W/ PINK & GREEN SPLOTCHES 9X9 FLOOR TILE Gray/Black Fibrous Heterogeneous 25% Cellulose Z5% Cellulose 70% Non-fibrous (other) 9/2011 09:55:54 Juny Laura Torres (38 Stephen Siegel, CIH, Laboratou	

F	Pat Dowling Fuss & O'Neill Envirc I46 Hartford Road Manchester, CT 0604		e, LLC	Customer ID: Customer PO: Received: EMSL Order:	ENVI54 09/14/11 9:25 AM 041124572
Fax: Project:	(888) 838-1160	Phone:	()	EMSL Proj: Analysis Date:	9/18/2011

				Non-Asbest	<u>Asbestos</u>		
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type	
76DD-73A 041124572-0077	ROOMS 350- 353 - TAN W/ WHITE & BROWN SPLOTCHES 12X12 FT (CHECKERED)	Tan Non-Fibrous Heterogeneous			95% Non-fibrous (other)	5% Chrys	otile
76DD-74A 041124572-0078	ROOMS 350- 353 - BROWN W/ DARK BROWN & WHITE SPLOTCHES 12X12 FT (CHECKERED)	Brown Non-Fibrous Heterogeneous			96% Non-fibrous (other)	4% Chrys	otile
76DD-75A 041124572-0079	ROOMS 350- 353 - GREEN W/ WHITE SPLOTCHES 12X12 (CHECKERED)	Green Non-Fibrous Heterogeneous			95% Non-fibrous (other)	5% Chrys	otile
76DD-75B 041124572-0080	ROOMS 350- 353 - GREEN W/ WHITE SPLOTCHES 12X12 (CHECKERED)					Stop Positiv Analyzo	
tial report from 09/1	9/2011 09:55:54						
Analyst(s)					Stople Sieg	d	
) Garre	et Vliet (45)		Laura Torres (38	Stephen Siegel, CIH, Laborato	ory Manager	
Christine Hatter (11,		ny Yu (46)		Melanie Koenig	or other approved signa		

I	Pat Dowling Fuss & O'Neill Enviro	Scien	ce, LLC	Customer ID: Customer PO:	ENVI54
•	146 Hartford Road			Received:	09/14/11 9:25 AM
I	Manchester, CT 0604	0		EMSL Order:	041124572
Fax:	(888) 838-1160	Phone:	(860) 646-2469	EMSL Proj:	
Project:	20100607.A20/RIDEM - FC MIDDLE SCHOOL	ORMER W	OONSOCKET	Analysis Date:	9/18/2011

				<u>Non-As</u>	<u>bestos</u>	Asbestos
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Туре
76DD-76A 041124572-0081	ROOMS 350- 353 - TAN W/ WHITE & BROWN SPLOTCHES 12X12 (CHECKERED)	Gray Non-Fibrous Heterogeneous			92% Non-fibrous (other)	8% Chrysotile
76DD-76B 041124572-0082	ROOMS 350- 353 - TAN W/ WHITE & BROWN SPLOTCHES 12X12 (CHECKERED)					Stop Positive (Not Analyzed)
76DD-77A 041124572-0083	ROOM 356 - LIGHT BROWN W/ WHITE & BROWN SPLOTCHES 12X12 (CHECKERED)	Brown Non-Fibrous Heterogeneous			92% Non-fibrous (other)	8% Chrysotile

Initial report from 09/19/2011 09:55:54 - Sien Analyst(s) Christine Hatter (11) Garret Vliet (45) Laura Torres (38 Stephen Siegel, CIH, Laboratory Manager or other approved signatory Erica Valent (66) Johnny Yu (46) Melanie Koenig EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report meet the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request.

	Pat Dowling Fuss & O'Neill Env	iroScienc	e, LLC	Customer ID: Customer PO:	ENVI54	
	146 Hartford Road	040		Received:	09/14/11 9:25 AM	
	Manchester, CT 06	040		EMSL Order:	041124572	
Fax:	(888) 838-1160	Phone:	(860) 646-2469	EMSL Proj:		
Project	20100607.A20/RIDEM - MIDDLE SCHOOL	FORMER W	OONSOCKET	Analysis Date:	9/18/2011	

			Asbestos				
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type	
76DD-77B 041124572-0084	ROOM 356 - LIGHT BROWN W/ WHITE & BROWN SPLOTCHES 12X12 (CHECKERED)					Stop Positive (Not Analyzed)	
76DD-78A 041124572-0085	ROOM 356 - BROWN W/ WHITE & DARK BROWN SPL 12X12 (CHECK)	Brown Non-Fibrous Heterogeneous			95% Non-fibrous (other)	5% Chrysotile	
76DD-78B 041124572-0086	ROOM 356 - BROWN W/ WHITE & DARK BROWN SPL 12X12 (CHECK)					Stop Positive (Not Analyzed)	
76DD-79A 041124572-0087	ROOMS 351 & 352 - GREY W/ WHITE SPLOTCHES 12X12 (CHECK)	Gray Non-Fibrous Heterogeneous			95% Non-fibrous (other)	5% Chrysotile	

Initial report from 09/19/2011 09:55:54

Analyst(s)

Christine Hatter (11) Erica Valent (66)

Garret Vliet (45) Johnny Yu (46) Laura Torres (38 Melanie Koenig

- Sien

Stephen Siegel, CIH, Laboratory Manager or other approved signatory

EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report meet the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request.

	Pat Dowling Fuss & O'Neill Env	iroScienc	e, LLC	Customer ID: Customer PO:	ENVI54	
	146 Hartford Road	040		Received:	09/14/11 9:25 AM	
	Manchester, CT 06	040		EMSL Order:	041124572	
Fax:	(888) 838-1160	Phone:	(860) 646-2469	EMSL Proj:		
Project	20100607.A20/RIDEM - MIDDLE SCHOOL	FORMER W	OONSOCKET	Analysis Date:	9/18/2011	

		Non-Asbestos				Asbestos	
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type	
76DD-79B 041124572-0088	ROOMS 351 & 352 - GREY W/ WHITE SPLOTCHES 12X12 (CHECK)					Stop Positive (Not Analyzed)	
76DD-80A 041124572-0089	ROOMS 351 & 352 - DARK GREY W/ WHITE STREAKS 12X12 9CHECK)	Gray Non-Fibrous Heterogeneous			95% Non-fibrous (other)	5% Chrysotile	
76DD-80B 041124572-0090	ROOMS 351 & 352 - DARK GREY W/ WHITE STREAKS 12X12 9CHECK)					Stop Positive (Not Analyzed)	
76DD-82A 041124572-0091	ROOMS 351 & 352 - TAN MASTIC A/W TAN & WHITE MOTTLED 12X12 PATCH	Tan Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected	

Initial report from 09/19/2011 09:55:54

Analyst(s)

Christine Hatter (11) Erica Valent (66)

er (11) 66) Garret Vliet (45) Johnny Yu (46) Laura Torres (3٤ Melanie Koenig

- Sien

Stephen Siegel, CIH, Laboratory Manager or other approved signatory

EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report meet the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request.

I	Pat Dowling Fuss & O'Neill Enviro	Science, LLC	Customer ID: Customer PO:	ENVI54
	146 Hartford Road Manchester, CT 0604	0	Received: EMSL Order:	09/14/11 9:25 AM 041124572
Fax: Project:	(888) 838-1160 20100607.A20/RIDEM - FC MIDDLE SCHOOL	Phone: (860) 646-2469 PRMER WOONSOCKET	EMSL Proj: Analysis Date:	9/18/2011

				Non-Asbest	<u>Asbestos</u>	
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Туре
76DD-82B 041124572-0092	ROOMS 351 & 352 - TAN MASTIC A/W TAN & WHITE MOTTLED 12X12 PATCH	Tan Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected
76DD-83A 041124572-0093	CORNER BATHROOM HS MAIN OFFICE HALL - 4" THICK BLACK VINYL BASEBOARD	Black Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected
76DD-83B 041124572-0094	CORNER BATHROOM HS MAIN OFFICE HALL - 4" THICK BLACK VINYL BASEBOARD	Black Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected
76DD-84A 041124572-0095	CORNER BATHROOM HS MAIN OFFICE HALL - MASTIC A/W 4" BLACK VINYL BASEBOARD (THICK)	Yellow Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected
tial report from 09/1	9/2011 09:55:54					
Analyst(s)					Style Siege	1
	Garre	et Vliet (45)		Laura Torres (38	Stephen Siegel, CIH, Laborator	
Christine Hatter (11)		ny Yu (46)		Melanie Koenig	or other approved signa	tory

	Pat Dowling Fuss & O'Neill Enviro 146 Hartford Road	Science	e, LLC	Customer ID: Customer PO: Received:	ENVI54 09/14/11 9:25 AM
	Manchester, CT 0604	0		EMSL Order:	041124572
	,		000) 010 0100	EMOL OIGOI.	041124072
Fax:	(888) 838-1160	```	860) 646-2469	EMSL Proj:	
Project:	20100607.A20/RIDEM - FC MIDDLE SCHOOL	RMER WO	ONSOCKET	Analysis Date:	9/18/2011

			<u>Asbestos</u>			
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
76DD-84B 041124572-0096	CORNER BATHROOM HS MAIN OFFICE HALL - MASTIC A/W 4" BLACK VINYL BASEBOARD (THICK)	Tan Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected
76DD-85A 041124572-0097	ROOM 317 - DRYWALL PARTITION WALLS	Brown/White Fibrous Heterogeneous	45%	Cellulose	55% Non-fibrous (other)	None Detected
76DD-85B 041124572-0098	ROOM 317 - DRYWALL PARTITION WALLS	Brown/White Fibrous Heterogeneous	70%	Cellulose	30% Non-fibrous (other)	None Detected
76DD-86A 041124572-0099	ROOM 317 - JOINT COMPOUND	White Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected
76DD-86B 041124572-0100	ROOM 317 - JOINT COMPOUND	White Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected

Initial report from 09/19/2011 09:55:54

Analyst(s)

Christine Hatter (11) Erica Valent (66)

Garret Vliet (45) Johnny Yu (46) Laura Torres (3٤ Melanie Koenig

Sien

Stephen Siegel, CIH, Laboratory Manager or other approved signatory

EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report meet the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request.

Fus	: Dowling ss & O'Neill Enviro 6 Hartford Road	Science, LLC	Customer ID: Customer PO: Received:	ENVI54
		-		09/14/11 9:25 AM
Mai	nchester, CT 0604	0	EMSL Order:	041124572
Project: 20	388) 838-1160 0100607.A20/RIDEM - FO IIDDLE SCHOOL	Phone: (860) 646-2469 RMER WOONSOCKET	EMSL Proj: Analysis Date:	9/18/2011

			tos	Asbestos		
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
76DD-87A 041124572-0101	ROOM 317- PARTITIONED OFFICES - ORANGE, BROWN & TAN MOTTLED 12X12 FT	Brown Non-Fibrous Heterogeneous			95% Non-fibrous (other)	5% Chrysotile
76DD-87B 041124572-0102	ROOM 317- PARTITIONED OFFICES - ORANGE, BROWN & TAN MOTTLED 12X12 FT					Stop Positive (Not Analyzed)
76DD-88A 041124572-0103	NEW GYM - TECTUM CEILING PANELS	Brown/Gray/White Fibrous Heterogeneous	70%	Cellulose	30% Non-fibrous (other)	None Detected
76DD-88B 041124572-0104	NEW GYM - TECTUM CEILING PANELS	Brown/White Fibrous Heterogeneous	85%	Cellulose	15% Non-fibrous (other)	None Detected
77DD-89A 041124572-0105	CAFETERIA - YELLOW MASTIC A/W 12X12 FT	Yellow Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected
itial report from 09/1	9/2011 09:55:54					
Analyst(s)					Style Sie	d
Christine Hatter (11) Erica Valent (66)		et Vliet (45) ny Yu (46)		Laura Torres (3٤ Melanie Koenig	Stephen Siegel, CIH, Laborato or other approved signa	

EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report meet the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request.

Attn: Pat Dowling Fuss & O'Neill Enviro 146 Hartford Road Manchester, CT 0604		Customer ID: Customer PO: Received: EMSL Order:	ENVI54 09/14/11 9:25 AM 041124572
Fax: (888) 838-1160 Project: 20100607.A20/RIDEM - FC MIDDLE SCHOOL	Phone: (860) 646-2469 DRMER WOONSOCKET	EMSL Proj: Analysis Date:	9/18/2011

Description CAFETERIA - YELLOW MASTIC A/W 12X12 FT CAFETERIA (MAIN OFFICE HALL) - RED MOTTLED 12X12 FLOOR TILE AUDITORIUM (MAIN OFFICE HALL) - RED	Appearance Yellow Non-Fibrous Heterogeneous Red Non-Fibrous Heterogeneous	% suggest ten	Fibrous	% Non-Fibrous 100% Non-fibrous (other) 100% Non-fibrous (other)	% Type None Detected None Detected
YELLOW MASTIC A/W 12X12 FT CAFETERIA (MAIN OFFICE HALL) - RED MOTTLED 12X12 FLOOR TILE AUDITORIUM (MAIN OFFICE HALL) - RED	Non-Fibrous Heterogeneous Red Non-Fibrous Heterogeneous Red Non-Fibrous	suggest ten	1		None Detected
(MAIN OFFICE HALL) - RED MOTTLED 12X12 FLOOR TILE AUDITORIUM (MAIN OFFICE HALL) - RED	Non-Fibrous Heterogeneous Red Non-Fibrous	suggest ten	n	100% Non-fibrous (other)	
(MAIN OFFICE HALL) - RED	Non-Fibrous				
MOTTLED 12X12 FLOOR TILE	Heterogeneous			100% Non-fibrous (other)	None Detected
AUDITORIUM - 1X1 PEGBOARD (LARGE HOLE) CEILING TILE	Brown/White Fibrous Heterogeneous	80%	Cellulose	20% Non-fibrous (other)	None Detected
AUDITORIUM - 1X1 PEGBOARD (LARGE HOLE) CEILING TILE	Brown/White Fibrous Heterogeneous	80%	Cellulose	20% Non-fibrous (other)	None Detected
9/2011 09:55:54				Strate_ Sient	
9/				2011 09:55:54	

Christine Hatter (11) Erica Valent (66) Garret Vliet (45) Johnny Yu (46) Laura Torres (38 Melanie Koenig Stephen Siegel, CIH, Laboratory Manager or other approved signatory

EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report meet the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request.

I	Pat Dowling Fuss & O'Neill Envirc 146 Hartford Road	Scien	ce, LLC	Customer ID: Customer PO:	ENVI54
				Received:	09/14/11 9:25 AM
	Manchester, CT 0604	0		EMSL Order:	041124572
Fax:	(888) 838-1160	Phone:	(860) 646-2469	EMSL Proj:	
Project:	20100607.A20/RIDEM - FC MIDDLE SCHOOL	RMER W	OONSOCKET	Analysis Date:	9/18/2011

			Asbestos			
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
77DD-91C 041124572-0111	AUDITORIUM - 1X1 PEGBOARD (LARGE HOLE) CEILING TILE	Brown/White Fibrous Heterogeneous	95%	Cellulose	5% Non-fibrous (other)	None Detected
77DD-92A 041124572-0112	PROJECTOR BOOTH - TRANSITE PANELS	Gray/White Fibrous Heterogeneous			70% Non-fibrous (other)	30% Chrysotile
77DD-92B 041124572-0113	PROJECTOR BOOTH - TRANSITE PANELS					Stop Positive (Not Analyzed)
77DD-92C 041124572-0114	PROJECTOR BOOTH - TRANSITE PANELS					Stop Positive (Not Analyzed)
77DD-93A 041124572-0115	STAGE (AUDITORIUM) - BLACK FLOORING PAPER	Brown/Black Non-Fibrous Heterogeneous	50%	Cellulose	50% Non-fibrous (other)	None Detected

Initial report from 09/19/2011 09:55:54 - Sien Analyst(s) Christine Hatter (11) Garret Vliet (45) Laura Torres (38 Stephen Siegel, CIH, Laboratory Manager or other approved signatory Erica Valent (66) Johnny Yu (46) Melanie Koenig EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report meet the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request.

	Pat Dowling Fuss & O'Neill Envire	oScienc	ce, LLC	Customer ID: Customer PO:	ENVI54
	146 Hartford Road Manchester, CT 0604	0		Received: EMSL Order:	09/14/11 9:25 AM 041124572
Fax: Project:	(888) 838-1160 20100607.A20/RIDEM - FC MIDDLE SCHOOL		(860) 646-2469 OONSOCKET	EMSL Proj: Analysis Date:	9/18/2011

				<u>Non-Ast</u>	pestos	<u>Asbestos</u>
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
77DD-93B 041124572-0116	STAGE (AUDITORIUM) - BLACK FLOORING PAPER	Brown/Black Non-Fibrous Heterogeneous	50%	Cellulose	50% Non-fibrous (other)	None Detected
77DD-93C 041124572-0117	STAGE (AUDITORIUM) - BLACK FLOORING PAPER	Brown/Black Fibrous Heterogeneous	70%	Cellulose	30% Non-fibrous (other)	None Detected
77DD-94A 041124572-0118	LEFT PRACTICE AREA OFF STAGE - TEXTURED CEILING SKIM COAT	White Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected
77DD-94B 041124572-0119	LEFT PRACTICE AREA OFF STAGE - TEXTURED CEILING SKIM COAT	White Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected

Initial report from 09/19/2011 09:55:54

Analyst(s)

Christine Hatter (11) Erica Valent (66)

Garret Vliet (45) Johnny Yu (46) Laura Torres (38 Melanie Koenig

- Sien

Stephen Siegel, CIH, Laboratory Manager or other approved signatory

EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report meet the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request.

	Pat Dowling Fuss & O'Neill Enviro	Scien	ce, LLC	Customer ID: Customer PO:	ENVI54
	146 Hartford Road	•		Received:	09/14/11 9:25 AM
ſ	Manchester, CT 0604	.0		EMSL Order:	041124572
Fax:	(888) 838-1160		(860) 646-2469	EMSL Proj:	
Project:	20100607.A20/RIDEM - FC MIDDLE SCHOOL	RMER W	OONSOCKET	Analysis Date:	9/18/2011

			<u>Asbestos</u>			
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
77DD-94C 041124572-0120	LEFT PRACTICE AREA OFF STAGE - TEXTURED CEILING SKIM COAT	White Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected
77DD-95A 041124572-0121	NEW GYM - BROWN FLOORING PAPER	Brown Fibrous Heterogeneous	95%	Cellulose	5% Non-fibrous (other)	None Detected
77DD-95B 041124572-0122	NEW GYM - BROWN FLOORING PAPER	Brown Fibrous Heterogeneous	95%	Cellulose	5% Non-fibrous (other)	None Detected
77DD-96A 041124572-0123	NEW GYM - THICK BROWN BASECOVE	Brown Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected
77DD-96B 041124572-0124	NEW GYM - THICK BROWN BASECOVE	Brown Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected

Initial report from 09/19/2011 09:55:54

Analyst(s)

Christine Hatter (11) Erica Valent (66)

Garret Vliet (45) Johnny Yu (46) Laura Torres (3٤ Melanie Koenig

- Sien

Stephen Siegel, CIH, Laboratory Manager or other approved signatory

EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report meet the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request.

l 1	Pat Dowling Fuss & O'Neill Enviro 146 Hartford Road		ce, LLC	Customer ID: Customer PO: Received:	ENVI54 09/14/11 9:25 AM
I	Manchester, CT 0604	0		EMSL Order:	041124572
Fax:	(888) 838-1160	Phone:	(860) 646-2469	EMSL Proj:	
Project:	20100607.A20/RIDEM - FC MIDDLE SCHOOL	RMER W	OONSOCKET	Analysis Date:	9/18/2011

				Non-Asbest	tos	Asbestos
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
77DD-97A 041124572-0125	NEW GYM - TAN/YELLOW MASTIC (THICK) A//W THICK BROWN BASECOVE	Yellow Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected
77DD-97B 041124572-0126	NEW GYM - TAN/YELLOW MASTIC (THICK) A//W THICK BROWN BASECOVE	Yellow Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected
77DD-97C 041124572-0127	NEW GYM - TAN/YELLOW MASTIC (THICK) A//W THICK BROWN BASECOVE	Yellow Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected
77DD-98A 041124572-0128	CAFETERIA - BUMPY 2X2 CEILING TILE (WHITE)	Gray Fibrous Heterogeneous	90%	Min. Wool	10% Non-fibrous (other)	None Detected
77DD-98B 041124572-0129	CAFETERIA - BUMPY 2X2 CEILING TILE (WHITE)	Gray Fibrous Heterogeneous	60%	Min. Wool	40% Non-fibrous (other)	None Detected
tial report from 09/	19/2011 09:55:54					
Analyst(s)					Style Signel	
Christine Hatter (11 Erica Valent (66)	,	et Vliet (45) nny Yu (46)		Laura Torres (3٤ Melanie Koenig	Stephen Siegel, CIH, Laboratory or other approved signator	

	Pat Dowling Fuss & O'Neill Enviro	oScien	ce, LLC	Customer ID: Customer PO:	ENVI54
	146 Hartford Road	0		Received:	09/14/11 9:25 AM
	Manchester, CT 0604			EMSL Order:	041124572
Fax:	(888) 838-1160	Phone:		EMSL Proj:	
Project:	20100607.A20/RIDEM - FO MIDDLE SCHOOL	ORMER W	OONSOCKET	Analysis Date:	9/18/2011

	<u>Non-Asbestos</u>					<u>Asbestos</u>	
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type	
77DD-99A 041124572-0130	CAFETERIA - 4" BLUE VINYL BASEBOARD	Blue Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected	
77DD-100A 041124572-0131	CAFETERIA - WHITE MASTIC A/W 4" BLUE VINYL BASEBOARD	White Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected	
77DD-100B 041124572-0132	CAFETERIA - WHITE MASTIC A/W 4" BLUE VINYL BASEBOARD	White Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected	
77DD-100C 041124572-0133	CAFETERIA - WHITE MASTIC A/W 4" BLUE VINYL BASEBOARD	White Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected	
77DD-101A 041124572-0134	LEFT STAGE - DOTTED 2X4 CEILING TILE	Gray/White Fibrous Heterogeneous		Cellulose Min. Wool	30% Non-fibrous (other)	None Detected	
77DD-101B 041124572-0135	LEFT STAGE - DOTTED 2X4 CEILING TILE	Gray/White Fibrous Heterogeneous		Cellulose Min. Wool	30% Non-fibrous (other)	None Detected	
itial report from 09/1	19/2011 09:55:54						
Analyst(s)					Style Siegel		
Christine Hatter (11) Erica Valent (66)	·	ret Vliet (45) nny Yu (46)		Laura Torres (3٤ Melanie Koenig	Stephen Siegel, CIH, Laboratory Ma or other approved signatory	anager	

F 1	Pat Dowling Fuss & O'Neill Enviro I46 Hartford Road Manchester, CT 0604		e, LLC	Customer ID: Customer PO: Received: EMSL Order:	ENVI54 09/14/11 9:25 AM 041124572
Fax:	(888) 838-1160	Phone:	(860) 646-2469	EMSL Proj:	
Project:	20100607.A20/RIDEM - FO MIDDLE SCHOOL	RMER WO	DONSOCKET	Analysis Date:	9/18/2011

				Non-Asbest	tos	Asbestos
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
77DD-101C 041124572-0136	LEFT STAGE - DOTTED 2X4 CEILING TILE	Gray/White Fibrous Heterogeneous	40% 30%	Cellulose Glass	30% Non-fibrous (other)	None Detected
77DD-102A 041124572-0137	NEW GYM LOCKER ROOM (BOYS) - PAPER COATING TO 1X1 FIBERGLASS CEILING TILE	Brown/Tan Fibrous Heterogeneous	80%	Glass	20% Non-fibrous (other)	None Detected
77DD-102B 041124572-0138	NEW GYM LOCKER ROOM (BOYS) - PAPER COATING TO 1X1 FIBERGLASS CEILING TILE	Brown/Tan Fibrous Heterogeneous	80%	Glass	20% Non-fibrous (other)	None Detected
77DD-102C 041124572-0139	ROOM 455 - PAPER COATING TO 1X1 FIBERGLASS CEILING TILE	White/Yellow Fibrous Heterogeneous	75%	Min. Wool	25% Non-fibrous (other)	None Detected
77DD-103A 041124572-0140	CAFETERIA - DRYWALL	Gray/White Fibrous Heterogeneous	55%	Cellulose	45% Non-fibrous (other)	None Detected
itial report from 09/1	9/2011 09:55:54					
Analyst(s)					Style Siege	1
Christine Hatter (11)) Garr	et Vliet (45)		Laura Torres (38	Stephen Siegel, CIH, Laboratory	Manager
Erica Valent (66)		ny Yu (46)		Melanie Koenig	or other approved signate	

F 1	Pat Dowling Fuss & O'Neill Envirc I46 Hartford Road Manchester, CT 0604		ce, LLC	Customer ID: Customer PO: Received: EMSL Order:	ENVI54 09/14/11 9:25 AM 041124572
Fax:	(888) 838-1160	Phone:	(860) 646-2469	EMSL Proj:	
Project:	20100607.A20/RIDEM - FO MIDDLE SCHOOL	RMER W	OONSOCKET	Analysis Date:	9/18/2011

				<u>Non-Ast</u>	<u>Asbestos</u>	
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
77DD-103B 041124572-0141	CAFETERIA - DRYWALL	Gray/White Fibrous Heterogeneous	40%	Cellulose	60% Non-fibrous (other)	None Detected
77DD-103C 041124572-0142	CAFETERIA - DRYWALL	Gray/White Fibrous Heterogeneous	55%	Cellulose	45% Non-fibrous (other)	None Detected
77DD-104A 041124572-0143	CAFETERIA - JOINT COMPOUND	White Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected
77DD-104B 041124572-0144	CAFETERIA - JOINT COMPOUND	White Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected
77DD-104C 041124572-0145	CAFETERIA - JOINT COMPOUND	White Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected
711DD-105A 041124572-0146	CLASSROOM WING TYPICAL BATHROOMS (#407) - WHITE DRYWALL 2X4 CEILING TILE	Tan/White Fibrous Homogeneous	18% 2%		80% Non-fibrous (other)	None Detected

Initial report from 09/19/2011 09:55:54

Analyst(s)

Christine Hatter (11) Erica Valent (66) Garret Vliet (45) Johnny Yu (46) Laura Torres (3٤ Melanie Koenig

Sien

Stephen Siegel, CIH, Laboratory Manager or other approved signatory

EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report meet the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request.

I	Pat Dowling Fuss & O'Neill Enviro 146 Hartford Road	Scien	ce, LLC	Customer ID: Customer PO:	ENVI54
	140 Halliolu Koau			Received:	09/14/11 9:25 AM
I	Manchester, CT 0604	0		EMSL Order:	041124572
Fax:	(888) 838-1160	Phone:	(860) 646-2469	EMSL Proj:	
Project:	20100607.A20/RIDEM - FC MIDDLE SCHOOL	ORMER W	OONSOCKET	Analysis Date:	9/18/2011

			Asbestos			
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
711DD-105B 041124572-0147	CLASSROOM WING TYPICAL BATHROOMS (#407) - WHITE DRYWALL 2X4 CEILING TILE	Tan/White Fibrous Homogeneous	8% 2%		90% Non-fibrous (other)	None Detected
711DD-105C 041124572-0148	CLASSROOM WING TYPICAL BATHROOMS (#407) - WHITE DRYWALL 2X4 CEILING TILE	Tan/White Fibrous Homogeneous	12% 3%		85% Non-fibrous (other)	None Detected
711DD-106A 041124572-0149	ROOM 405 - MAROON W/ BLACK & WHITE SPLOTCHES 12X12 FLOOR TILE	Violet Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
711DD-106B 041124572-0150	ROOM 405 - YELLOW MASTIC	Violet Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected

Initial report from 09/19/2011 09:55:54

Analyst(s)

Christine Hatter (11) Erica Valent (66)

Garret Vliet (45) Johnny Yu (46) Laura Torres (3٤ Melanie Koenig

- Sien

Stephen Siegel, CIH, Laboratory Manager or other approved signatory

EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report meet the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request.

	Pat Dowling Fuss & O'Neill Enviro 146 Hartford Road	oScience, LLC	Customer ID: Customer PO:	ENVI54
			Received:	09/14/11 9:25 AM
	Manchester, CT 0604	10	EMSL Order:	041124572
Fax: Project:		Phone: (860) 646-2469 DRMER WOONSOCKET	EMSL Proj: Analysis Date:	9/18/2011
	MIDDLE SCHOOL			0, 10, 2011

			Non-As	<u>Asbestos</u>	
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Type
711DD-107A 041124572-0151	ROOM 405 - ORANGE & TAN MOTTLED 12X12 FLOOR TILE	Tan/Various/Oran ge Non-Fibrous Homogeneous		98% Non-fibrous (other)	2% Chrysotile
	(BOTTOM LAYER)(BLACK)				
711DD-107B 041124572-0152	ROOM 405 - ORANGE & TAN MOTTLED 12X12 FLOOR TILE (BOTTOM LAYER)(BLACK)				Stop Positive (Not Analyzed)
711DD-108A	ROOM 451 -	Gray		100% Non-fibrous (other)	None Detected
041124572-0153	GREY WITH DARK GREY & WHITE SPLOTCHES 12X12 FLOOR TILE	Non-Fibrous Homogeneous			
			Suggest TEM.		
711DD-108B 041124572-0154	ROOM 451 - GREY WITH DARK GREY & WHITE SPLOTCHES 12X12 FLOOR TILE	Gray Non-Fibrous Heterogeneous		100% Non-fibrous (other)	None Detected
			suggest tem		
tial report from 09/1	9/2011 09:55:54				
Analyst(s)				Styphen Sieg	d
Christine Hatter (11,) Garre	et Vliet (45)	Laura Torres (3		
Erica Valent (66)	John	ny Yu (46)	Melanie Koenig	or other approved sign	atory

I	Pat Dowling Fuss & O'Neill Envire	oScien	ce, LLC	Customer ID: Customer PO:	ENVI54
	146 Hartford Road Manchester, CT 0604	10		Received: EMSL Order:	09/14/11 9:25 AM 041124572
Fax: Project:	(888) 838-1160 20100607.A20/RIDEM - FO MIDDLE SCHOOL		(860) 646-2469 YOONSOCKET	EMSL Proj: Analysis Date:	9/18/2011

		Non-Asbestos				Asbestos
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
711DD-109A 041124572-0155	ROOM 459 - SMOOTH WHITE 1X1 CEILING TILE	Tan/White Fibrous Homogeneous	90%	Cellulose	10% Non-fibrous (other)	None Detected
711DD-109B 041124572-0156	ROOM 461 - SMOOTH WHITE 1X1 CEILING TILE	Tan/White Fibrous Homogeneous	95%	Cellulose	5% Non-fibrous (other)	None Detected
711DD-110A 041124572-0157	ROOM 462 - BROWN CORKBOARD MASTIC	Brown/Tan Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
711DD-110B 041124572-0158	ROOM 462 - BROWN CORKBOARD MASTIC	Brown/Tan Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected
711DD-111A 041124572-0159	ROOM 459 - PAPER BACKING ACCOCIATED WITH FIBERGLASS BATT INSULATION	Tan/Black Fibrous Homogeneous	75%	Cellulose	25% Non-fibrous (other)	None Detected

 Initial report from 09/19/2011 09:55:54

 Analyst(s)

 Christine Hatter (11)
 Garret Vliet (45)

 Johnny Yu (46)
 Laura Torres (3٤

 Melanie Koenig
 Stephen Siegel, CIH, Laboratory Manager or other approved signatory

 EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report meet the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data

I	Pat Dowling Fuss & O'Neill Enviro	oScience, LLC	Customer ID: Customer PO:	ENVI54
•	146 Hartford Road		Received:	09/14/11 9:25 AM
I	Manchester, CT 0604	10	EMSL Order:	041124572
Fax:	(888) 838-1160	Phone: (860) 646-2469	EMSL Proj:	
Project:	20100607.A20/RIDEM - FC MIDDLE SCHOOL	DRMER WOONSOCKET	Analysis Date:	9/18/2011

				Non-Asbest	tos	<u>Asbestos</u>	
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type	
711DD-111B 041124572-0160	ROOM 459 - PAPER BACKING ACCOCIATED WITH FIBERGLASS BATT INSULATION	Tan/Black Fibrous Homogeneous	60%	Cellulose	40% Non-fibrous (other)	None Detected	
711DD-112A 041124572-0161	CUSTODIAN ROOM NEXT TO ROOM 461 - BROWN WITH WHITE & BROWN SPECKS 9X9 FLOOR TILE	Brown Non-Fibrous Homogeneous			96% Non-fibrous (other)	4% Chrysotile	
711DD-112B 041124572-0162	CUSTODIAN ROOM NEXT TO ROOM 461 - BROWN WITH WHITE & BROWN SPECKS 9X9 FLOOR TILE					Stop Positive (Not Analyzed)	
711DD-113A 041124572-0163	ROOM 458 - GREEN WITH WHITE 9X9 FLOOR TILE	Green Non-Fibrous Homogeneous			94% Non-fibrous (other)	6% Chrysotile	
itial report from 09/1	9/2011 09:55:54				Strate Sie	J	
Analyst(s)							
Analyst(s) Christine Hatter (11) Garre	et Vliet (45)		Laura Torres (3t	Stephen Siegel, CIH, Laborato	orv Manager	

	Pat Dowling Fuss & O'Neill Envir 146 Hartford Road Manchester, CT 0604		Customer ID: Customer PO: Received: EMSL Order:		
Fax: Project:	(888) 838-1160 20100607.A20/RIDEM - F	Phone: (860) 646-2469	EMSL Proj:		
Fiojeci.	MIDDLE SCHOOL		Analysis Date:	9/18/2011	

	Asbestos			
Description	Appearance	% Fibrous	% Non-Fibrous	% Type
ROOM 458 - GREEN WITH WHITE 9X9 FLOOR TILE				Stop Positive (Not Analyzed)
ROOM 455 - BROWN GLUE ASSOCIATED WITH LUAN PANELING (WALL)	Brown Non-Fibrous Homogeneous		100% Non-fibrous (other)	None Detected
		Suggest TEM.		
CUSTODIAN ROOM N/T 461 - BROWN GLUE ASSOCIATED WITH LUAN PANELING (WALL)	Brown Non-Fibrous Heterogeneous		100% Non-fibrous (other)	None Detected
CORRIDORS AT CLASSROOM WING - TAN WINDOW GLAZING COMPOUND ASSOCIATED W/ DOORS	Tan Fibrous Homogeneous		97% Non-fibrous (other)	3% Chrysotile
)/2011 09:55:54				
			Styphen Siege	J
Garre	et Vliet (45)	Laura Torres (38	Stephen Siegel, CIH, Laborato	ry Manager
	. ,	Melanie Koenig		
	ROOM 458 - GREEN WITH WHITE 9X9 FLOOR TILE ROOM 455 - BROWN GLUE ASSOCIATED WITH LUAN PANELING (WALL) CUSTODIAN ROOM N/T 461 - BROWN GLUE ASSOCIATED WITH LUAN PANELING (WALL) CORRIDORS AT CLASSROOM WING - TAN WINDOW GLAZING COMPOUND ASSOCIATED W/ DOORS	ROOM 458 - GREEN WITH WHITE 9X9 FLOOR TILEBrown Non-Fibrous HomogeneousROOM 455 - BROWN GLUE ASSOCIATED WITH LUAN PANELING (WALL)Brown Non-Fibrous HomogeneousCUSTODIAN ROOM N/T 461 - BROWN GLUE ASSOCIATED WITH LUAN PANELING (WALL)Brown Non-Fibrous HeterogeneousCUSTODIAN ROOM N/T 461 WITH LUAN PANELING (WALL)Brown Non-Fibrous HeterogeneousCUSTODIAN ROOM N/T 461 BROWN GLUE ASSOCIATED WITH LUAN PANELING (WALL)Tan Fibrous HeterogeneousCORRIDORS AT CLASSROOM WING - TAN WINDOW GLAZING COMPOUND ASSOCIATED W/ DOORSTan Fibrous Homogeneous	ROOM 458 - GREEN WITH WHITE 9X9 FLOOR TILE Brown Non-Fibrous Homogeneous ROOM 455 - BROWN GLUE ASSOCIATED WITH LUAN PANELING (WALL) Brown Non-Fibrous Homogeneous CUSTODIAN ROOM N/T 461 - BROWN GLUE ASSOCIATED WITH LUAN PANELING (WALL) Brown Non-Fibrous Heterogeneous CUSTODIAN ROOM N/T 461 - BROWN GLUE ASSOCIATED WITH LUAN PANELING (WALL) Brown Non-Fibrous 	ROOM 458 - GREEN WITH WHITE 9X9 FLOOR TILE Brown Non-Fibrous Homogeneous 100% Non-fibrous (other) ROOM 455 - BROWN GLUE ASSOCIATED WITH LUAN PANELING (WALL) Brown Non-Fibrous Homogeneous 100% Non-fibrous (other) CUSTODIAN ROOM N/T 461 - SROWN GLUE ASSOCIATED WITH LUAN PANELING (WALL) Brown Non-Fibrous Heterogeneous 100% Non-fibrous (other) CORRIDORS AT CLASSROOM WING - TAN WINDOW GLAZING COMPOUND ASSOCIATED W/ DOORS Tan Fibrous Homogeneous 97% Non-fibrous (other) WINDOW GLAZING COMPOUND ASSOCIATED W/ DOORS Fibrous Homogeneous 97% Non-fibrous (other) WINDOW GLAZING COMPOUND ASSOCIATED W/ DOORS Fibrous Homogeneous 97% Non-fibrous (other) WINDOW GLAZING COMPOUND ASSOCIATED W/ DOORS Eaura Torres (32 Stephen Siegel, CIH, Laborato

	Pat Dowling Fuss & O'Neill Envir	oScienc	e, LLC	Customer ID: Customer PO:	ENVI54	
	146 Hartford Road			Received:	09/14/11 9:25 AM	
	Manchester, CT 0604	10		EMSL Order:	041124572	
Fax:	(888) 838-1160	Phone:	(860) 646-2469	EMSL Proj:		
Project	Project: 20100607.A20/RIDEM - FORMER WOONSOCKET MIDDLE SCHOOL		Analysis Date:	9/18/2011		

		Non-Asbestos				Asbestos		
Sample	Description	Appearance	%	Fibrous	%	Non-Fibrous	% Type	
711DD-115B 041124572-0168	CORRIDORS AT CLASSROOM WING (O/S ROOM 464) - TAN WINDOW GLAZING COMPOUND ASSOCIATED W/ DOORS						Stop Positive (Not Analyzed)	
711DD-116A 041124572-0169	ROOM 461 - ORANGE, BROWN & TAN SPECKLED 9X9 FLOOR TILE (LIGHTER)	Brown/Various/Or ange Non-Fibrous Homogeneous			S	95% Non-fibrous (other)	5% Chrysotile	
711DD-116B 041124572-0170	ROOM 461 - ORANGE, BROWN & TAN SPECKLED 9X9 FLOOR TILE (LIGHTER)						Stop Positive (Not Analyzed)	

Initial report from 09/19/2011 09:55:54

Analyst(s)

Christine Hatter (11) Erica Valent (66) Garret Vliet (45) Johnny Yu (46) Laura Torres (3٤ Melanie Koenig

- Sien

Stephen Siegel, CIH, Laboratory Manager or other approved signatory

EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report meet the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request.

	Pat Dowling Fuss & O'Neill Enviro	Scienc	e, LLC	Customer ID: Customer PO:	ENVI54	
146 Hartford Road Manchester, CT 06040				Received: EMSL Order:	09/14/11 9:25 AM 041124572	
Fax: Project:	(888) 838-1160 20100607.A20/RIDEM - FC MIDDLE SCHOOL	Phone: DRMER W	()	EMSL Proj: Analysis Date:	9/18/2011	

			Non-Asb	<u>Asbestos</u>	
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Type
711DD-117A 041124572-0171	HALLWAY OUTSIDE ROOM 464 - CONCEALED GREY VINYL FLOOR TILE UNDERNEATH PLYWOOD	Gray Non-Fibrous Homogeneous		100% Non-fibrous (other)	None Detected
			Suggest TEM.		
711DD-117B 041124572-0172	ROOM 464 - CONCEALED GREY VINYL FLOOR TILE UNDERNEATH PLYWOOD	Gray Non-Fibrous Heterogeneous		100% Non-fibrous (other)	None Detected
			suggest tem		
711DD-118A 041124572-0173	ROOM 455 - LIGHT BROWN W/ WHITE STREAKS 9X9 FLOOR TILE (CHECKERED)	Tan Non-Fibrous Homogeneous		92% Non-fibrous (other)	8% Chrysotile
711DD-118B 041124572-0174	ROOM 455 - LIGHT BROWN W/ WHITE STREAKS 9X9 FLOOR TILE (CHECKERED)				Stop Positive (Not Analyzed)
itial report from 09/1	9/2011 09:55:54				
Analyst(s)				Strate Sie	d
Christine Hatter (11)	Garre	et Vliet (45)	Laura Torres (3٤	Stephen Siegel, CIH, Laborato	
Erica Valent (66)	John	ny Yu (46)	Melanie Koenig	or other approved signa	atory
EMSL. EMSL bears no re must not be used by the cl report meet the requirement available upon request.	sponsibility for sample collect ient to claim product certificants of NELAC unless otherw	ction activities or analytical ation, approval or endorsen	method limitations. Interpretation and nent by NVLAP, NIST or any agency o eived in good condition unless otherwi	not be reproduced, except in full, without written a use of test results are the responsibility of the clie f the federal government. The test results contain se noted. Estimated accuracy, precision and unco	nt. This report ned within this

I	Pat Dowling Fuss & O'Neill Enviro	oScience, LLC	Customer ID: Customer PO:	ENVI54	
	146 Hartford Road		Received:	09/14/11 9:25 AM	
I	Manchester, CT 0604	10	EMSL Order:	041124572	
Fax:	(888) 838-1160	Phone: (860) 646-2469	EMSL Proj:		
Project:	20100607.A20/RIDEM - FC MIDDLE SCHOOL	ORMER WOONSOCKET	Analysis Date:	9/18/2011	

				Non-As	bestos	<u>Asbestos</u>
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Туре
711DD-119A 041124572-0175	ROOM 455 - BROWN W/ WHITE STREAKS 9X9 FLOOR TILE (CHECKERED)	Brown Non-Fibrous Homogeneous			90% Non-fibrous (other)	10% Chrysotile
711DD-119B 041124572-0176	ROOM 455 - BROWN W/ WHITE STREAKS 9X9 FLOOR TILE (CHECKERED)					Stop Positive (Not Analyzed)
711DD-120A 041124572-0177	HALLWAY OUTSIDE ROOM 464 - ORANGISH BROWN W/ BROWN & TAN SPLOTCHES 12X12 FLOOR TILE (TOP LAYER)	Orange Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
			Suggest TE	М.		

Initial report from 09/19/2011 09:55:54

Analyst(s)

Christine Hatter (11) Erica Valent (66) Garret Vliet (45) Johnny Yu (46) Laura Torres (3٤ Melanie Koenig

- Sien

Stephen Siegel, CIH, Laboratory Manager or other approved signatory

EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report meet the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request.

l 1	Pat Dowling Fuss & O'Neill Envirc 146 Hartford Road Manchester, CT 0604		ce, LLC	Customer ID: Customer PO: Received: EMSL Order:	ENVI54 09/14/11 9:25 AM 041124572
Fax: Project:	(888) 838-1160	Phone:	()	EMSL Proj: Analysis Date:	9/18/2011

<u>estos</u>
уре
e Detected
e Detected
e Detected
er
er.

I	Pat Dowling Fuss & O'Neill Enviro	Science,	LLC	Customer ID: Customer PO:	ENVI54	
146 Hartford Road Manchester, CT 06040				Received: EMSL Order:	09/14/11 9:25 AM 041124572	
Fax: Project:	(888) 838-1160 20100607.A20/RIDEM - FC MIDDLE SCHOOL	· · ·	0) 646-2469 NSOCKET	EMSL Proj: Analysis Date:	9/18/2011	

			Asbestos			
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
711DD-121A 041124572-0179	CUSTODIAN ROOM N/T ROOM 461 - BROWN GLUE ASSOCIATED WITH WALL PANELING	Brown Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
711DD-121B 041124572-0180	CUSTODIAN ROOM N/T ROOM 461 - BROWN GLUE ASSOCIATED WITH WALL PANELING	Brown Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected
711DD-122A 041124572-0181	ROOM 462 (UPPER) - OFF WHITE 1X1 CEILING TILE	Tan/White Fibrous Homogeneous	95%	Cellulose	5% Non-fibrous (other)	None Detected
711DD-122B 041124572-0182	ROOM 462 (UPPER) - OFF WHITE 1X1 CEILING TILE	Tan/White Fibrous Homogeneous	90%	Cellulose	10% Non-fibrous (other)	None Detected

Initial report from 09/19/2011 09:55:54

Analyst(s)

Christine Hatter (11) Erica Valent (66) Garret Vliet (45) Johnny Yu (46) Laura Torres (3٤ Melanie Koenig

- Sien

Stephen Siegel, CIH, Laboratory Manager or other approved signatory

EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report meet the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request.

l	Pat Dowling Fuss & O'Neill Enviro 146 Hartford Road		Customer ID: Customer PO: Received:	ENVI54 09/14/11 9:25 AM
ſ	Manchester, CT 0604	łŪ	EMSL Order:	041124572
Fax:	(888) 838-1160	Phone: (860) 646-2469	EMSL Proj:	
Project:	20100607.A20/RIDEM - FC MIDDLE SCHOOL	DRMER WOONSOCKET	Analysis Date:	9/18/2011

			Non-Asbest	<u>:05</u>	<u>Asbestos</u>
Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
CLASSROOM WING (451) - GREY LEVELING COMPOUND (@THRESHOLDS)	Gray Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
CLASSROOM WING (451) - GREY LEVELING COMPOUND (@THRESHOLDS)	Gray Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected
ROOM 456 - GREENISH GREY W/ WHITE STREAKS 12X12 FLOOR TILE (TOP LAYER)	Green Non-Fibrous Homogeneous			94% Non-fibrous (other)	6% Chrysotile
ROOM 456 - GREENISH GREY W/ WHITE STREAKS 12X12 FLOOR TILE (TOP LAYER)					Stop Positive (Not Analyzed)
9/2011 09:55:54				Styphen Sieg	J
Garre	t Vliet (45)		Laura Torres (3t	Stephen Siegel, CIH, Laborato	ry Manager
	ny Yu (46)		Melanie Koenig	or other approved signa	
	CLASSROOM WING (451) - GREY LEVELING COMPOUND (@THRESHOLDS) CLASSROOM WING (451) - GREY LEVELING COMPOUND (@THRESHOLDS) ROOM 456 - GREENISH GREY W/ WHITE STREAKS 12X12 FLOOR TILE (TOP LAYER) ROOM 456 - GREENISH GREY W/ WHITE STREAKS 12X12 FLOOR TILE (TOP LAYER) 9/2011 09:55:54	CLASSROOM WING (451) - GREY LEVELING COMPOUND (@THRESHOLDS) CLASSROOM WING (451) - GREY LEVELING COMPOUND (@THRESHOLDS) ROOM 456 - GREENISH GREY W/ WHITE STREAKS 12X12 FLOOR TILE (TOP LAYER) ROOM 456 - GREENISH GREY W/ WHITE STREAKS 12X12 FLOOR TILE (TOP LAYER) 9/2011 09:55:54 Garret Vliet (45)	CLASSROOM WING (451) - GREY LEVELING COMPOUND (@THRESHOLDS Gray Non-Fibrous Homogeneous CLASSROOM (@THRESHOLDS Gray Non-Fibrous Heterogeneous ROOM 456 - GREENISH GREY W/ WHITE STREAKS 12X12 FLOOR TILE (TOP LAYER) Green Non-Fibrous Homogeneous ROOM 456 - GREENISH GREY W/ WHITE STREAKS 12X12 FLOOR TILE (TOP LAYER) Green Non-Fibrous Homogeneous P/2011 09:55:54 Garret Vliet (45)	CLASSROOM WING (451) - GREY LEVELING COMPOUND (@THRESHOLDS Gray Non-Fibrous Homogeneous CLASSROOM (@THRESHOLDS Gray Non-Fibrous Heterogeneous CLASSROOM (@THRESHOLDS Gray Non-Fibrous Heterogeneous ROOM 456 - GREENISH GREY W/ WHITE STREAKS 12X12 FLOOR TILE (TOP LAYER) Green Non-Fibrous Homogeneous ROOM 456 - GREENISH GREY W/ WHITE STREAKS 12X12 FLOOR TILE (TOP LAYER) Green Non-Fibrous Homogeneous 800M 456 - GREENISH GREY W/ WHITE STREAKS 12X12 FLOOR TILE (TOP LAYER) Green Non-Fibrous Homogeneous 9/2011 09:55:54 Laura Torres (3£	CLASSROOM WING (451) - GREY LEVELING COMPOUND (@THRESHOLDS Gray Non-Fibrous Homogeneous 100% Non-fibrous (other) CLASSROOM (@THRESHOLDS Gray Non-Fibrous Heterogeneous 100% Non-fibrous (other) CLASSROOM (@THRESHOLDS Gray Non-Fibrous Heterogeneous 100% Non-fibrous (other) ROOM 456 - GREENISH GREY W/WHITE STREAKS 12X12 FLOOR TILE (TOP LAYER) Green Non-Fibrous Homogeneous 94% Non-fibrous (other) ROOM 456 - GREENISH GREY W/ WHITE STREAKS 12X12 FLOOR TILE (TOP LAYER) Green Non-Fibrous Heterogeneous 94% Non-fibrous (other) P/2011 09:55:54 Jagac Jagac Jagac B/2011 09:55:54 Laura Torres (38 Stephen Siegel, CIH, Laborato

F 1	Pat Dowling Fuss & O'Neill Enviro 46 Hartford Road Manchester, CT 0604		Customer ID: Customer PO: Received: EMSL Order:	ENVI54 09/14/11 9:25 AM 041124572	
Fax: (888) 838-1160 Phone: (860) 646-2469 Project: 20100607.A20/RIDEM - FORMER WOONSOCKET MIDDLE SCHOOL				EMSL Proj: Analysis Date:	9/18/2011

				Non-Asbest	tos	Asbestos	
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type	
711DD-125A 041124572-0187	ROOM 458 - TAN WITH WHITE & BROWN STREAKS 9X9 FLOOR TILE	Gray Non-Fibrous Homogeneous			98% Non-fibrous (other)	2% Chrysotile	
711DD-125B 041124572-0188	ROOM 458 - TAN WITH WHITE & BROWN STREAKS 9X9 FLOOR TILE					Stop Positive (Not Analyzed)	
711DD-125B-Mastic 041124572-0188A	ROOM 458 - TAN WITH WHITE & BROWN STREAKS 9X9 FLOOR TILE	Black Fibrous Heterogeneous	25%	Cellulose	75% Non-fibrous (other)	None Detected	
711DD-126A 041124572-0189	ROOM 460 - GREY W/ PINK & WHITE ST 9X9 FLOOR TILE	Gray Non-Fibrous Homogeneous			96% Non-fibrous (other)	4% Chrysotile	
711DD-126B 041124572-0190	ROOM 460 - GREY W/ PINK & WHITE ST 9X9 FLOOR TILE					Stop Positive (Not Analyzed)	
itial report from 09/19 Analyst(s))/2011 09:55:54				Style_ Siej	d	
Christine Hatter (11)	Garre	et Vliet (45)		Laura Torres (3٤	Stephen Siegel, CIH, Laborato	ory Manager	
. ,		ny Yu (46)		Melanie Koenig	or other approved sign	atory	

F	Pat Dowling Fuss & O'Neill Enviro	Science, LLC	Customer ID: Customer PO:	ENVI54
	46 Hartford Road Anchester, CT 0604	0	Received: EMSL Order:	09/14/11 9:25 AM 041124572
Fax: Project:	(888) 838-1160 20100607.A20/RIDEM - FC MIDDLE SCHOOL	Phone: (860) 646-2469	EMSL Proj: Analysis Date:	9/18/2011

			<u>Asbestos</u>			
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
711DD-127A 041124572-0191	ROOM 460 - LIGHT GREEN W/ PINK & BLACK STREAKS 9X9 FLOOR TILE	Green Non-Fibrous Homogeneous			97% Non-fibrous (other)	3% Chrysotile
711DD-127B 041124572-0192	ROOM 460 - LIGHT GREEN W/ PINK & BLACK STREAKS 9X9 FLOOR TILE					Stop Positive (Not Analyzed)
711DD-128A 041124572-0193	CUSTODIAN ROOM N/T 461 - TAN W/ WHITE & BROWN SPECKS 9X9 FLOOR TILE	Tan Non-Fibrous Homogeneous			95% Non-fibrous (other)	5% Chrysotile
711DD-128B 041124572-0194	CUSTODIAN ROOM N/T 461 - TAN W/ WHITE & BROWN SPECKS 9X9 FLOOR TILE					Stop Positive (Not Analyzed)

Initial report from 09/19/2011 09:55:54

Analyst(s)

Christine Hatter (11) Erica Valent (66) Garret Vliet (45) Johnny Yu (46) Laura Torres (38 Melanie Koenig

- Sien

Stephen Siegel, CIH, Laboratory Manager or other approved signatory

EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report meet the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request.

	Pat Dowling Fuss & O'Neill Enviro	Scien	Customer ID: Customer PO:	ENVI54
	46 Hartford Road	0	Received: EMSL Order:	09/14/11 9:25 AM 041124572
Fax: Project:	(888) 838-1160 20100607.A20/RIDEM - FC MIDDLE SCHOOL	Phone:	EMSL Proj: Analysis Date:	9/18/2011

			Asbestos			
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
711DD-129A 041124572-0195	ROOM 464 - GREY W/ DARK GREY & WHITE SPLOTCHES 12X12 FLOOR TILE	Gray Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
711DD-129B 041124572-0196	ROOM 464 - GREY W/ DARK GREY & WHITE SPLOTCHES 12X12 FLOOR TILE	Gray Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected
711DD-130 041124572-0197	ROOM 554A - PINK SINK UNDERCOATING	Pink Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected
711DD-131A 041124572-0198	ROOM 556 - CONCEALED BOTTOM VINYL FLOOR TILE (ASSUME 9X9)- MIXED PATTERN	Green Non-Fibrous Heterogeneous			94% Non-fibrous (other)	6% Chrysotile

Initial report from 09/19/2011 09:55:54

Analyst(s)

Christine Hatter (11) Erica Valent (66) Garret Vliet (45) Johnny Yu (46) Laura Torres (38 Melanie Koenig

- Sien

Stephen Siegel, CIH, Laboratory Manager or other approved signatory

EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report meet the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request.

	Pat Dowling Fuss & O'Neill Enviro	oScience, LLC	Customer ID: Customer PO:	ENVI54
	146 Hartford Road Manchester, CT 0604	10	Received: EMSL Order:	09/14/11 9:25 AM 041124572
Fax: Project:	(888) 838-1160 20100607.A20/RIDEM - FC MIDDLE SCHOOL	Phone: (860) 646-2469 DRMER WOONSOCKET	EMSL Proj: Analysis Date:	9/18/2011

			Asbestos			
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
711DD-131B 041124572-0199	ROOM 557 - CONCEALED BOTTOM VINYL FLOOR TILE (ASSUME 9X9)- MIXED PATTERN	Black Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
711DD-131C 041124572-0200	ROOM 562 - CONCEALED BOTTOM VINYL FLOOR TILE (ASSUME 9X9)- MIXED PATTERN	Green Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
711DD-132 041124572-0201	STAIR TO ATTIC (561D) - BLACK MASTIC ON BRICK	Black Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
711DD-133A 041124572-0202	ROOM 554 - BLACK COMPOSITE COUNTER TOP	Brown Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
711DD-133B 041124572-0203	ROOM 557 - BLACK COMPOSITE COUNTER TOP	Brown/Gray Fibrous Heterogeneous	60%	Cellulose	40% Non-fibrous (other)	None Detected

Initial report from 09/19/2011 09:55:54

Analyst(s)

Christine Hatter (11) Erica Valent (66)

Garret Vliet (45) Johnny Yu (46) Laura Torres (3٤ Melanie Koenig

- Sien

Stephen Siegel, CIH, Laboratory Manager or other approved signatory

EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report meet the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request.

l	Pat Dowling Fuss & O'Neill Enviro 146 Hartford Road Manchester, CT 0604		e, LLC	Customer ID: Customer PO: Received: EMSL Order:	ENVI54 09/14/11 9:25 AM 041124572
Fax: Project:		`	860) 646-2469 DNSOCKET	EMSL Proj: Analysis Date:	9/18/2011
	MIDDLE SCHOOL				

			Asbestos			
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
711DD-133C 041124572-0204	ROOM 561 - BLACK COMPOSITE COUNTER TOP	Gray/Black Non-Fibrous Homogeneous	55%	Cellulose	45% Non-fibrous (other)	None Detected
711DD-134A 041124572-0205	ROOM 557A - CORKBOARD (BROWN) MASTIC	Brown Fibrous Heterogeneous	20%	Cellulose	80% Non-fibrous (other)	None Detected
711DD-134B 041124572-0206	ROOM 560 - CORKBOARD (BROWN) MASTIC	Brown Fibrous Heterogeneous	8%	Cellulose	92% Non-fibrous (other)	None Detected
711DD-134C 041124572-0207	ROOM 557A - CORKBOARD (BROWN) MASTIC (CAULKBOARD FASTNERS)	Brown Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected
711DD-135A 041124572-0208	ROOM 557A - PEA GREEN MOTTLED 12X12 FT	Green Non-Fibrous Homogeneous			98% Non-fibrous (other)	2% Chrysotile

 Initial report from 09/19/2011 09:55:54

 Analyst(s)

 Christine Hatter (11)
 Garret Vliet (45)

 Johnny Yu (46)
 Laura Torres (3٤

 Melanie Koenig
 Stephen Siegel, CIH, Laboratory Manager or other approved signatory

Attn: Pat Dowling Fuss & O'Neill Envi 146 Hartford Road Manchester, CT 060	,	Customer ID: Customer PO: Received: EMSL Order:	ENVI54 09/14/11 9:25 AM 041124572
Fax: (888) 838-1160 Project: 20100607.A20/RIDEM - I MIDDLE SCHOOL	Phone: (860) 646-2469 FORMER WOONSOCKET	EMSL Proj: Analysis Date:	9/18/2011

				Non-Asbes	stos	Asbestos
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
711DD-135B 041124572-0209	ROOM 557A - PEA GREEN MOTTLED 12X12 FT					Stop Positive (Not Analyzed)
711DD-136A 041124572-0210	HALLWAY O/S 557A - BROWN, DARK BROWN & TAN MOTTLED 12X12 FT (TOP LAYER)	Tan Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
711DD-136B 041124572-0211	HALLWAY O/S 557A - BROWN, DARK BROWN & TAN MOTTLED 12X12 FT (TOP LAYER)	Tan Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
711DD-137A 041124572-0212	ROOM 556 - ORANGISH-RED W/ BROWN SLOPTCHES 12X12 FT	Red Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
711DD-137B 041124572-0213	ROOM 556 - ORANGISH-RED W/ BROWN SLOPTCHES 12X12 FT	Red Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
itial report from 09/1	9/2011 09:55:54					
Analyst(s)					Style Sie	d
Christine Hatter (11)	Garre	et Vliet (45)		Laura Torres (3٤	Stephen Siegel, CIH, Laborato	ry Manager
Erica Valent (66)	John	ny Yu (46)		Melanie Koenig	or other approved signa	atory
EMSL. EMSL bears no re must not be used by the cl report meet the requirement available upon request.	sponsibility for sample collect lient to claim product certification	tion activities or analytical me tion, approval or endorsemen ise specified. Samples receive	thod limitat t by NVLAF	ions. Interpretation and us P, NIST or any agency of the state of the	t be reproduced, except in full, without written a e of test results are the responsibility of the clien e federal government. The test results contain noted. Estimated accuracy, precision and unce	nt. This report ed within this

	Pat Dowling Fuss & O'Neill Enviro	oScience, LLC	Customer ID: Customer PO:	ENVI54
	146 Hartford Road Manchester, CT 0604	10	Received: EMSL Order:	09/14/11 9:25 AM 041124572
Fax: Project:	(888) 838-1160 20100607.A20/RIDEM - FC MIDDLE SCHOOL	Phone: (860) 646-2469 DRMER WOONSOCKET	EMSL Proj: Analysis Date:	9/18/2011

			Asbestos			
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
711DD-138A 041124572-0214	ROOM 562 - GREEN W/ DARK GREEN & WHITE 12X12 STICK TILE	Green Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
711DD-138B 041124572-0215	ROOM 562 - GREEN W/ DARK GREEN & WHITE 12X12 STICK TILE	Green Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
711DD-139A 041124572-0216	ROOM 561 - GREY W/ WHITE SPLOTCHES 12X12 FT (TOP LAYER)	Gray Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
711DD-139B 041124572-0217	ROOM 561 - GREY W/ WHITE SPLOTCHES 12X12 FT (TOP LAYER)	Gray Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected

 Initial report from 09/19/2011 09:55:54

 Analyst(s)

 Christine Hatter (11)
 Garret Vliet (45)

 Johnny Yu (46)
 Laura Torres (3٤

 Stephen Siegel, CIH, Laboratory Manager or other approved signatory

 EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report met the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request.

	Pat Dowling Fuss & O'Neill Enviro	Science, LLC	;	Customer ID: Customer PO:	ENVI54
	146 Hartford Road Manchester, CT 0604	0		Received: EMSL Order:	09/14/11 9:25 AM 041124572
Fax: Project:	(888) 838-1160 20100607.A20/RIDEM - FC MIDDLE SCHOOL	Phone: (860) 646 RMER WOONSOC		EMSL Proj: Analysis Date:	9/18/2011

			Asbestos			
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
711DD-140A 041124572-0218	ROOM 554 - GREYISH BROWN W/ DARK GREY & WHITE SPLOTCHES 12X12 FT	Gray Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
711DD-140B 041124572-0219	ROOM 554 - GREYISH BROWN W/ DARK GREY & WHITE SPLOTCHES 12X12 FT	Gray Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
711DD-141A 041124572-0220	ROOM 300A - BROWN SWIRL LINOLEUM FLOORING	Tan/Black Fibrous Heterogeneous	65%	Cellulose	35% Non-fibrous (other)	None Detected
711DD-141B 041124572-0221	ROOM 300A - BROWN SWIRL LINOLEUM FLOORING	Tan/Black Non-Fibrous Heterogeneous	20% 25%	Cellulose Synthetic	55% Non-fibrous (other)	None Detected

Initial report from 09/19/2011 09:55:54

Analyst(s)

Christine Hatter (11) Erica Valent (66) Garret Vliet (45) Johnny Yu (46) Laura Torres (3٤ Melanie Koenig

- Sien

Stephen Siegel, CIH, Laboratory Manager or other approved signatory

EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report meet the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request.

ļ	Pat Dowling Fuss & O'Neill Enviro I46 Hartford Road Manchester, CT 0604	·		Customer ID: Customer PO: Received: EMSL Order:	ENVI54 09/14/11 9:25 AM 041124572
Fax:	(888) 838-1160	Phone: (860) 646		EMSL Proj:	
Project:	20100607.A20/RIDEM - FC MIDDLE SCHOOL	RMER WOONSOCH	(ET	Analysis Date:	9/18/2011

			Asbestos			
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
711DD-142A 041124572-0222	ROOM 300A - BLACK PAPER COATING A/W LINOLEUM FLOORING	Black Fibrous Heterogeneous	75%	Cellulose	25% Non-fibrous (other)	None Detected
711DD-142B 041124572-0223	ROOM 300A - BLACK PAPER COATING A/W LINOLEUM FLOORING	Tan/Black Fibrous Homogeneous	75%	Cellulose	25% Non-fibrous (other)	None Detected
711DD-143A 041124572-0224	ROOM 305 - GREEN W/ WHITE SPECKS 12X12 FT	Green Fibrous Homogeneous			97% Non-fibrous (other)	3% Chrysotile
711DD-143B 041124572-0225	ROOM 305 - GREEN W/ WHITE SPECKS 12X12 FT					Stop Positive (Not Analyzed)
711DD-144A 041124572-0226	ROOM 316 - GREEN W/ WHITE STREAKS 12X12 FT	Green Non-Fibrous Heterogeneous			97% Non-fibrous (other)	3% Chrysotile

 Initial report from 09/19/2011 09:55:54

 Analyst(s)

 Christine Hatter (11)
 Garret Vliet (45)

 Johnny Yu (46)
 Laura Torres (3£

 Stephen Siegel, CIH, Laboratory Manager or other approved signatory

 EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report met the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request.

 ,	Pat Dowling Fuss & O'Neill Envire 146 Hartford Road Manchester, CT 0604		Customer ID: Customer PO: Received: EMSL Order:	ENVI54 09/14/11 9:25 AM 041124572
Fax:	(888) 838-1160	Phone: (860) 646-2469	EMSL Proj:	
Project:	20100607.A20/RIDEM - FO MIDDLE SCHOOL	DRMER WOONSOCKET	Analysis Date:	9/18/2011

		Asbestos				
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
711DD-144B 041124572-0227	ROOM 316 - GREEN W/ WHITE STREAKS 12X12 FT					Stop Positive (Not Analyzed)
711DD-145A 041124572-0228	BATHROOM BY ROOM 309 - WHITE CERAMIC TILE GROUT (ADHESIVE)	White Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected
711DD-145B 041124572-0229	BATHROOM BY BR 301A - WHITE CERAMIC TILE GROUT (ADHESIVE)	Gray/White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
711DD-146A 041124572-0230	ROOM 303 - CEMENT BOARD CHALK BOARD	Gray Fibrous Heterogeneous			70% Non-fibrous (other)	30% Chrysotile
711DD-146B 041124572-0231	ROOM 316 - CEMENT BOARD CHALK BOARD					Stop Positive (Not Analyzed)
711DD-147A 041124572-0232	ROOM 322 - OFF WHITE W/ BROWN SPECKS 12X12 FT (2ND LAYER)	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
itial report from 09/1	9/2011 09:55:54					
Analyst(s)					Style Sie	d
Christine Hatter (11,	Garre	et Vliet (45)		Laura Torres (38	Stephen Siegel, CIH, Laborate	
Erica Valent (66)	Johni	ny Yu (46)		Melanie Koenig	or other approved sign	atory

	Pat Dowling Fuss & O'Neill Enviro	oScien	ce, LLC	Customer ID: Customer PO:	ENVI54
	146 Hartford Road	0		Received:	09/14/11 9:25 AM
	Manchester, CT 0604			EMSL Order:	041124572
Fax:	(888) 838-1160	Phone:		EMSL Proj:	
Project:	20100607.A20/RIDEM - FO MIDDLE SCHOOL	ORMER W	OONSOCKET	Analysis Date:	9/18/2011

			Asbestos			
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
711DD-147B 041124572-0233	ROOM 322 - OFF WHITE W/ BROWN SPECKS 12X12 FT (2ND LAYER)	Tan/Beige Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
711DD-148 041124572-0234	ROOM 322 - TAN GLUE STRIPS ON WOOD	Various Non-Fibrous Heterogeneous			98% Non-fibrous (other)	2% Chrysotile
711DD-149A 041124572-0235	ROOM 306 - GREY VINYL BASEBOARD	Gray Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected
711DD-149B 041124572-0236	ROOM 306 - GREY VINYL BASEBOARD	Gray Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
711DD-150A 041124572-0237	ROOM 306 - BROWN MASTIC A/W GREY VBB	Brown/Tan Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected
711DD-150B 041124572-0238	ROOM 306 - BROWN MASTIC A/W GREY VBB	Brown/Tan Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected

Initial report from 09/19/2011 09:55:54

Analyst(s)

Christine Hatter (11) Erica Valent (66)

Garret Vliet (45) Johnny Yu (46) Laura Torres (3٤ Melanie Koenig

- Sien

Stephen Siegel, CIH, Laboratory Manager or other approved signatory

EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report meet the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request.

	Pat Dowling Fuss & O'Neill Enviro 146 Hartford Road Manchester, CT 0604	e, LLC	Customer ID: Customer PO: Received: EMSL Order:	ENVI54 09/14/11 9:25 AM 041124572	
Fax: Project		()	EMSL Proj: Analysis Date:	9/18/2011	
	MIDDLE SCHOOL		, maryolo Duto.	0,10,2011	

				Non-Asbest	los	Asbestos
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
810DD-151A 041124572-0239	TYPICAL BATHROOMS (N/T #260) - GREEN COMPOSITE STALL PANELS	Gray/Tan Fibrous Heterogeneous	75%	Cellulose	25% Non-fibrous (other)	None Detected
810DD-151B 041124572-0240	TYPICAL BATHROOMS (N/T #260) - GREEN COMPOSITE STALL PANELS	Various Non-Fibrous Homogeneous	50%	Cellulose	50% Non-fibrous (other)	None Detected
810DD-152A 041124572-0241	ROOM 260 - STUCCO-TYPE 1X1 CEILING TILE	Brown Fibrous Heterogeneous	95%	Cellulose	5% Non-fibrous (other)	None Detected
810DD-152B 041124572-0242	ROOM 260 - STUCCO-TYPE 1X1 CEILING TILE	Brown Fibrous Homogeneous	95%	Cellulose	5% Non-fibrous (other)	None Detected
810DD-153A 041124572-0243	ROOM 260 - TAN MASTIC A/W 1X1 CT	Brown/Tan Fibrous Heterogeneous	20%	Cellulose	80% Non-fibrous (other)	None Detected
810DD-153B 041124572-0244	ROOM 260 - TAN MASTIC A/W 1X1 CT	Brown Non-Fibrous Homogeneous	30%	Cellulose	70% Non-fibrous (other)	None Detected
itial report from 09/1	9/2011 09:55:54					
Analyst(s)					Style Siegel	
Christine Hatter (11, Erica Valent (66)		t Vliet (45) ny Yu (46)		Laura Torres (3٤ Melanie Koenig	Stephen Siegel, CIH, Laboratory M or other approved signatory	anager

	Pat Dowling Fuss & O'Neill Enviro 146 Hartford Road	oScience, LLC	Customer ID: Customer PO:	ENVI54
			Received:	09/14/11 9:25 AM
	Manchester, CT 0604	40	EMSL Order:	041124572
Fax:	(888) 838-1160	Phone: (860) 646-2469	EMSL Proj:	
Project	20100607.A20/RIDEM - FO MIDDLE SCHOOL	ORMER WOONSOCKET	Analysis Date:	9/18/2011

OYS ATHROOM- ASEMENT -	Appearance Gray	%	Fibrous	% Non-Fibrous	% Type
ATHROOM-	Gray				Nama Datastad
REY ADHESIVE SSOCIATED W/ ERAMIC WALL	Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
GIRLS ATHROOM N/T COM 256 - GREY ADHESIVE SSOCIATED W/ CERAMIC WALL ILE	Gray Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
COOM 258 - EMENTITIOUS EVELING COMPOUND ON OURED CONCRETE	Gray/Tan Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
COOM 258 - CEMENTITIOUS EVELING COMPOUND ON OURED CONCRETE	Tan Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
011 09:55:54					
				Style Sign	1
	. ,		Laura Torres (3٤ Melanie Koenig		
	ILE ILE ILE IRLS ATHROOM N/T OOM 256 - IREY ADHESIVE SSOCIATED W/ ERAMIC WALL ILE OOM 258 - EMENTITIOUS EVELING OMPOUND ON OURED ONCRETE OOM 258 - EMENTITIOUS EVELING OMPOUND ON OURED ONCRETE OONCRETE OONCRETE OONCRETE OONCRETE OONCRETE OONCRETE	ILE ILE ILE IRES ATHROOM N/T OOM 256 - BREY ADHESIVE SSOCIATED W/ ERAMIC WALL ILE OOM 258 - EMENTITIOUS EVELING OMPOUND ON OURED ONCRETE OOM 258 - Tan Non-Fibrous Homogeneous Homogeneous Homogeneous Homogeneous Tan Non-Fibrous Homogeneous OURED ONCRETE OOM 258 - Tan Non-Fibrous Homogeneous OURED ONCRETE OOM 258 - Tan Non-Fibrous Homogeneous OURED ONCRETE OOM 258 - Tan Non-Fibrous Homogeneous OURED ONCRETE OOM 258 - Tan Non-Fibrous Homogeneous OURED ONCRETE OOM 258 - Tan Non-Fibrous Homogeneous OURED ONCRETE OOM 258 - Tan Non-Fibrous Homogeneous OURED ONCRETE OOM 258 - Tan Non-Fibrous Homogeneous ONCRETE OOM 258 - Tan Non-Fibrous Homogeneous OURED ONCRETE OOM 258 - Tan Non-Fibrous Homogeneous OURED ONCRETE OOM 258 - Tan Non-Fibrous Homogeneous OURED ONCRETE OOM 258 - Tan Non-Fibrous Homogeneous OURED ONCRETE OOM 258 - Tan Non-Fibrous Homogeneous ONCRETE OOM 258 - Tan Non-Fibrous Homogeneous ONCRETE OOM 258 - Tan Non-Fibrous Homogeneous ONCRETE OOM 258 - Tan Non-Fibrous Homogeneous ONCRETE OOM 258 - Tan Non-Fibrous Homogeneous ONCRETE OOM 258 - Tan Non-Fibrous Homogeneous ONCRETE OOM 258 - Tan Non-Fibrous Homogeneous ONCRETE	ILE I	ILE IILE IIRLS ATHROM N/T OOM 256 - SEY ADHESIVE SSOCIATED W/ ERAMIC WALL ILE OOM 258 - Gray/Tan Non-Fibrous Homogeneous OURED ONCRETE OOM 258 - Tan Non-Fibrous Homogeneous OURED ONCRETE OOM 258 - Tan Non-Fibrous Homogeneous OURED ONCRETE OUM 258 - Tan Non-Fibrous Homogeneous OURED OUN 00 OURED ONCRETE OUM 258 - Tan Non-Fibrous Homogeneous OURED OUN 00 OURED ONCRETE OUM 258 - Tan Non-Fibrous Homogeneous OURED OUN 258 - Tan Non-Fibrous Homogeneous OURED OUN 00 OUN 00 OURED OUN 00 OURED OUN 00 OU	ILE IILE IIRES ATHROOM NT ATHROOM NT OOM 256 - INEY ADHESIVE EXAMIC WALL ILE OOM 258 - EMENTITIOUS EVELING OMPOUND ON OURED ONCRETE OOM 258 - Tan Non-Fibrous Homogeneous Non-Fibrous Homogeneous Homogeneous OM 258 - Tan Non-Fibrous Homogeneous OM 258 - Tan Non-Fibrous Homogeneous OM 258 - Tan Non-Fibrous Homogeneous OM 258 - Tan Stephen Siegel, CIH, Laborator Rever Viet (45) Laura Torres (35 Stephen Siegel, CIH, Laborator Rever Viet (45)

F 1	Pat Dowling Fuss & O'Neill Enviro 46 Hartford Road		ce, LLC	Customer ID: Customer PO: Received:	ENVI54 09/14/11 9:25 AM
	Manchester, CT 0604		<i></i>	EMSL Order:	041124572
Fax:	(888) 838-1160		(860) 646-2469	EMSL Proj:	
Project:	20100607.A20/RIDEM - FC MIDDLE SCHOOL	RMER W	OONSOCKET	Analysis Date:	9/18/2011

				Non-Asbest	<u>Asbestos</u>	
ample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Туре
810DD-156A 041124572-0249	ROOM 258 - BROWN GLUE DAUBS A/W 1X1 CT (UNDER	Brown Fibrous Homogeneous	75%	Cellulose	25% Non-fibrous (other)	None Detected
810DD-156B	STAIRS ONLY)	Brown	5%	Cellulose	95% Non-fibrous (other)	None Detected
041124572-0250	BROWN GLUE DAUBS A/W 1X1 CT (UNDER STAIRS ONLY)	Non-Fibrous Homogeneous				
810DD-157A	ROOM 258 -	Brown	95%	Cellulose	5% Non-fibrous (other)	None Detected
041124572-0251	PINHOLE 1X1 CEILING TILE	Fibrous Homogeneous				
810DD-157B	GIRLS	Tan/White	85%	Cellulose	15% Non-fibrous (other)	None Detected
041124572-0252	BATHROOM N/T ROOM 256 - PINHOLE 1X1 CEILING TILE	Fibrous Heterogeneous				
810DD-158A	TYPICAL	Brown	95%	Cellulose	5% Non-fibrous (other)	None Detected
041124572-0253	BATHROOMS (N/T 256) - BROWN PAPER INSULATION INSIDE STALL PANELS	Fibrous Homogeneous				
tial report from 09/1	9/2011 09:55:54					
nalyst(s)					Style Siege	1
Christine Hatter (11)) Garro	et Vliet (45)		Laura Torres (3t	Stephen Siegel, CIH, Laborato	
Erica Valent (66)	John	ny Yu (46)		Melanie Koenig	or other approved signa	itory

I	Pat Dowling Fuss & O'Neill Enviro	oScien	ce, LLC	Customer ID: Customer PO:	ENVI54
	46 Hartford Road			Received:	09/14/11 9:25 AM
I	Manchester, CT 0604	0		EMSL Order:	041124572
Fax:	(888) 838-1160	Phone:	(860) 646-2469	EMSL Proj:	
Project:	20100607.A20/RIDEM - FO MIDDLE SCHOOL	ORMER W	OONSOCKET	Analysis Date:	9/18/2011

			<u>Asbestos</u>			
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
810DD-158B 041124572-0254	TYPICAL BATHROOMS (N/T 256) - BROWN PAPER INSULATION INSIDE STALL PANELS	Brown Fibrous Heterogeneous	95%	Cellulose	5% Non-fibrous (other)	None Detected
810DD-159A 041124572-0255	TYPICAL BATHROOMS (N/T 260) - DRYWALL 2X4 CEILING TILE	Brown Non-Fibrous Homogeneous	15%	Cellulose	85% Non-fibrous (other)	None Detected
810DD-159B 041124572-0256	TYPICAL BATHROOMS (N/T 260) - DRYWALL 2X4 CEILING TILE	White Fibrous Heterogeneous	10% 20%	Glass Cellulose	70% Non-fibrous (other)	None Detected
810DD-160A 041124572-0257	BOYS BATHROOM N/T ROOM 260 - LIGHTWEIGHT CONCRETE UNDERNEATH WALL TILE	Gray Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected

Initial report from 09/19/2011 09:55:54 - Sien Analyst(s) Christine Hatter (11) Garret Vliet (45) Laura Torres (38 Stephen Siegel, CIH, Laboratory Manager or other approved signatory Erica Valent (66) Johnny Yu (46) Melanie Koenig EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report meet the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data

	Pat Dowling Fuss & O'Neill Envir	oScience, LLC	Customer ID: Customer PO:	ENVI54	
	146 Hartford Road	40	Received:	09/14/11 9:25 AM	
	Manchester, CT 0604	40	EMSL Order:	041124572	
Fax:	(888) 838-1160	Phone: (860) 646-2469	EMSL Proj:		
Project:	20100607.A20/RIDEM - FO MIDDLE SCHOOL	ORMER WOONSOCKET	Analysis Date:	9/18/2011	

			Non-Asbestos				
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type	
810DD-160B 041124572-0258	GIRLS BATHROOM N/T ROOM 256 - LIGHTWEIGHT CONCRETE UNDERNEATH WALL TILE	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected	
810DD-161A 041124572-0259	BASEMENT CORRIDOR OLD HS BUILDING - ROUGH PLASTER DROP CEILING	Gray/White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected	
810DD-161B 041124572-0260	BASEMENT CORRIDOR OLD HS BUILDING - ROUGH PLASTER DROP CEILING	Gray/White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected	
810DD-161C 041124572-0261	BASEMENT CORRIDOR OLD HS BUILDING - ROUGH PLASTER DROP CEILING	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected	
itial report from 09/	/19/2011 09:55:54						
Analyst(s)					Style Siege	1	
Christine Hatter (1	1) Garre	et Vliet (45)		Laura Torres (3٤	Stephen Siegel, CIH, Laborator	y Manager	
Erica Valent (66)	,	ny Yu (46)		Melanie Koenig	or other approved signa		

	Pat Dowling Fuss & O'Neill Enviro	oScience, LLC	Customer ID: Customer PO:	ENVI54
	146 Hartford Road Manchester, CT 0604	10	Received: EMSL Order:	09/14/11 9:25 AM 041124572
Fax: Project:	(888) 838-1160 20100607.A20/RIDEM - FC MIDDLE SCHOOL	Phone: (860) 646-2469 DRMER WOONSOCKET	EMSL Proj: Analysis Date:	9/18/2011

			<u>Asbestos</u>			
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Туре
810DD-162A 041124572-0262	CAFETERIA HALLWAY (TO ROOM 255) - TAN WINDOW GLAZING A/W INTERIOR WOOD SASHES	Tan Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
810DD-162B 041124572-0263	CAFETERIA HALLWAY (TO ROOM 255) - TAN WINDOW GLAZING A/W INTERIOR WOOD SASHES	Tan Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected
810DD-163A 041124572-0264	BASEMENT CORRIDOR OLD HS BUILDING - TEXT SKIM PLASTER (GOES WITH SAMPLE- 161)	Gray/Tan Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected

Initial report from 09/19/2011 09:55:54

Analyst(s)

Christine Hatter (11)

Erica Valent (66)

Garret Vliet (45) Johnny Yu (46)

Laura Torres (38 Melanie Koenig

- Sien

Stephen Siegel, CIH, Laboratory Manager or other approved signatory

EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report meet the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request.

I	Pat Dowling Fuss & O'Neill Enviro	Science, LLC	Customer ID: Customer PO:	ENVI54
	146 Hartford Road Manchester, CT 0604	0	Received: EMSL Order:	09/14/11 9:25 AM 041124572
Fax: Project:	(888) 838-1160 20100607.A20/RIDEM - FC MIDDLE SCHOOL	Phone: (860) 646-2469 PRMER WOONSOCKET	EMSL Proj: Analysis Date:	9/18/2011

				Non-Asbest	Asbestos	
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
810DD-163B 041124572-0265	BASEMENT CORRIDOR OLD HS BUILDING - TEXT SKIM PLASTER (GOES WITH SAMPLE- 161)	Gray Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
810DD-163C 041124572-0266	BASEMENT CORRIDOR OLD HS BUILDING - TEXT SKIM PLASTER (GOES WITH SAMPLE- 161)	White/Beige Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected
810DD-164A 041124572-0267	ROOM 258 - 6" BLACK VINYL BASEBOARD	Black Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
810DD-164B 041124572-0268	ROOM 258 (THROUGHOUT) - 6" BLACK VINYL BASEBOARD	Black Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
810DD-165A 041124572-0269	ROOM 258 - DARK BROWN MASTIC A/W 6" BLACK VBB	Brown Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected
itial report from 09/1	9/2011 09:55:54					
Analyst(s)					Style Sien	1
Christine Hatter (11)	Garre	et Vliet (45)		Laura Torres (3٤	Stephen Siegel, CIH, Laborato	ry Manager
Erica Valent (66)	Johni	ny Yu (46)		Melanie Koenig	or other approved signa	tory

EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report meet the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request.

	Pat Dowling Fuss & O'Neill Enviro 146 Hartford Road	oScience, LLC	Customer ID: Customer PO:	ENVI54
			Received:	09/14/11 9:25 AM
	Manchester, CT 0604	40	EMSL Order:	041124572
Fax:	(888) 838-1160	Phone: (860) 646-2469	EMSL Proj:	
Project	20100607.A20/RIDEM - FO MIDDLE SCHOOL	ORMER WOONSOCKET	Analysis Date:	9/18/2011

			Asbestos			
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
810DD-165B 041124572-0270	ROOM 258 - DARK BROWN MASTIC A/W 6" BLACK VBB	Brown Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
810DD-166A 041124572-0271	ROOM 256 MECH CLOSET - CEMENTITIOUS PENETRATION SEALANT (TYPICAL)	Gray Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected
810DD-166B 041124572-0272	ROOM 256 MECH CLOSET - CEMENTITIOUS PENETRATION SEALANT (TYPICAL)	Gray Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
711DD-167A 041124572-0273	ROOM 408 - BROWN PAPER UNDERNEATH WOOD FLOOR	Brown Fibrous Heterogeneous	40%	Cellulose	60% Non-fibrous (other)	None Detected
711DD-167B 041124572-0274	ROOM 408 - BROWN PAPER UNDERNEATH WOOD FLOOR	Brown Non-Fibrous Homogeneous	50%	Cellulose	50% Non-fibrous (other)	None Detected
itial report from 09	/19/2011 09:55:54					
Analyst(s)				_	Style Siege	1
Christine Hatter (1	1) Garr	et Vliet (45)		Laura Torres (3٤	Stephen Siegel, CIH, Laborator	ry Manager

Erica Valent (66)

Johnny Yu (46)

Melanie Koenig

or other approved signatory

EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report meet the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request.

F 1	Pat Dowling Fuss & O'Neill Envirc 46 Hartford Road Manchester, CT 0604	ce, LLC	Customer ID: Customer PO: Received: EMSL Order:	ENVI54 09/14/11 9:25 AM 041124572
Fax: Project:	(888) 838-1160 20100607.A20/RIDEM - FO MIDDLE SCHOOL	(860) 646-2469 OONSOCKET	EMSL Proj: Analysis Date:	9/18/2011

			Asbestos			
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
711DD-168A 041124572-0275	ROOM 419 - SELF STICK BROWN FLOOR TILE	Brown Fibrous Heterogeneous			95% Non-fibrous (other)	5% Chrysotile
711DD-168B 041124572-0276	ROOM 419 - SELF STICK BROWN FLOOR TILE					Stop Positive (Not Analyzed)
711DD-169A 041124572-0277	ROOM 452 CLOSET - TAN W/ RED SWIRL PATTERN LINOLEUM FLOORING	Brown/Black Fibrous Heterogeneous	60%	Cellulose	40% Non-fibrous (other)	None Detected
711DD-169B 041124572-0278	ROOM 452 CLOSET - TAN W/ RED SWIRL PATTERN LINOLEUM FLOORING	Brown/Black Fibrous Homogeneous		Synthetic Cellulose	30% Non-fibrous (other)	None Detected
711DD-170A 041124572-0279	ROOM 410 - LIGHT BLUE/GREY MOTTLED 12X12 FT	Gray Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
tial report from 09/1	9/2011 09:55:54					
Analyst(s)					Styphen Sieg	d
Christine Hatter (11,) Garre	et Vliet (45)		Laura Torres (3٤	Stephen Siegel, CIH, Laborato	ory Manager
Erica Valent (66)		ny Yu (46)		Melanie Koenig	or other approved signa	

	Pat Dowling Fuss & O'Neill Envir 146 Hartford Road Manchester, CT 060	·	Customer ID: Customer PO: Received: EMSL Order:	ENVI54 09/14/11 9:25 AM 041124572
Fax: Project		Phone: (860) 646-2469 ORMER WOONSOCKET	EMSL Proj: Analysis Date:	9/18/2011
	MIDDLE SCHOOL		, maryolo Duto.	0,10,2011

		Non-Asbestos				Asbestos	
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type	
711DD-170B 041124572-0280	ROOM 410 - LIGHT BLUE/GREY MOTTLED 12X12 FT	Gray Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected	
711DD-171A 041124572-0281	ROOM 411 - LIGHT BEIGE (LAYER II) FLOOR TILE	Gray Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected	
711DD-171B 041124572-0282	ROOM 411 - LIGHT BEIGE (LAYER II) FLOOR TILE	Gray Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected	
711DD-172A 041124572-0283	ROOM 413 - OFF WHITE W/ BROWN SPECKS 12X12 FLOOR TILE	Tan Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected	
711DD-172B 041124572-0284	ROOM 413 - OFF WHITE W/ BROWN SPECKS 12X12 FLOOR TILE	Gray/Tan Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected	

Initial report from 09/19/2011 09:55:54

Analyst(s)

Christine Hatter (11) Erica Valent (66)

Garret Vliet (45) Johnny Yu (46) Laura Torres (38 Melanie Koenig

- Sien

Stephen Siegel, CIH, Laboratory Manager or other approved signatory

EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report meet the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request.

	Pat Dowling Fuss & O'Neill Enviro	Scien	ce, LLC	Customer ID: Customer PO:	ENVI54
	146 Hartford Road			Received:	09/14/11 9:25 AM
	Manchester, CT 0604	0		EMSL Order:	041124572
Fax:	(888) 838-1160	Phone:	(860) 646-2469	EMSL Proj:	
Project	20100607.A20/RIDEM - FO MIDDLE SCHOOL	ORMER W	OONSOCKET	Analysis Date:	9/18/2011

		Non-Asbestos				Asbestos	
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type	
811DD-173A 041124572-0285	BOILER ROOM - BLACK PIPE GASKETS	Black Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected	
811DD-173B 041124572-0286	BOILER ROOM - BLACK PIPE GASKETS	Black Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected	
811DD-174A 041124572-0287	BOILER ROOM - GREY INT DOOR CAULK TO GROUND LEVEL EXT	Gray Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected	
811DD-175A 041124572-0288	BOILER ROOM - RESIDUAL BLACK DUCT SEALANT A/W SAW DUST EXHAUST	Black Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected	
811DD-176A 041124572-0289	BOILER ROOM - CEMENT OVERCOAT @ TOP OF BOILERS	Black Non-Fibrous Homogeneous			98% Non-fibrous (other)	2% Chrysotile	

 Initial report from 09/19/2011 09:55:54

 Analyst(s)

 Christine Hatter (11)
 Garret Vliet (45)

 Johnny Yu (46)
 Laura Torres (3٤

 Stephen Siegel, CIH, Laboratory Manager or other approved signatory

 EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report met the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request.

l 1	Pat Dowling Fuss & O'Neill Enviro I46 Hartford Road Manchester, CT 0604		Customer ID: Customer PO: Received: EMSL Order:	ENVI54 09/14/11 9:25 AM 041124572
Fax:	(888) 838-1160	Phone: (860) 646-2469	EMSL Proj:	
Project:	20100607.A20/RIDEM - FC MIDDLE SCHOOL	ORMER WOONSOCKET	Analysis Date:	9/18/2011

				Non-Asbest	Asbestos	
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
811DD-176B 041124572-0290	BOILER ROOM - CEMENT OVERCOAT @ TOP OF BOILERS					Stop Positive (Not Analyzed)
811DD-177A 041124572-0291	BOILER ROOM - TAN DOOR INTERIOR BLOCKING	Orange Non-Fibrous Homogeneous			94% Non-fibrous (other)	6% Chrysotile
811DD-177B 041124572-0292	BOILER ROOM - TAN DOOR INTERIOR BLOCKING					Stop Positive (Not Analyzed)
811DD-178A 041124572-0293	BOILER ROOM	Orange Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
811DD-178B 041124572-0294	BOILER ROOM	Yellow Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected
811DD-179A 041124572-0295	BOILER ROOM OFFICE - SKIM COAT ON CONCRETE CEILING	Gray Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
itial report from 09/1	19/2011 09:55:54					
Analyst(s)					Style Sieg	d
Christine Hatter (11) Garre	t Vliet (45)		Laura Torres (38	Stephen Siegel, CIH, Laborato	
	la haa	ny Yu (46)		Melanie Koenig	or other approved signa	atory

	Pat Dowling Fuss & O'Neill Enviro	Scien	Customer ID: Customer PO:	ENVI54	
	146 Hartford Road			Received:	09/14/11 9:25 AM
	Manchester, CT 0604	0		EMSL Order:	041124572
Fax:	(888) 838-1160	Phone:	(860) 646-2469	EMSL Proj:	
Project	20100607.A20/RIDEM - FO MIDDLE SCHOOL	ORMER W	OONSOCKET	Analysis Date:	9/18/2011

			Asbestos			
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
811DD-179B 041124572-0296	BOILER ROOM OFFICE - SKIM COAT ON CONCRETE CEILING	Gray Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected
811DD-180A 041124572-0297	BOILER ROOM - INTERIOR BOILER DEBRIS	Brown Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
811DD-180B 041124572-0298	BOILER ROOM - INTERIOR BOILER DEBRIS	Brown Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
811DD-180C 041124572-0299	BOILER ROOM - INTERIOR BOILER DEBRIS	Brown Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected
811DD-181A 041124572-0300	BOILER ROOM - FRIABLE INSULATION @ BOILER TOP	Gray Fibrous Homogeneous			85% Non-fibrous (other)	15% Chrysotile
811DD-181B 041124572-0301	BOILER ROOM - FRIABLE INSULATION @ BOILER TOP					Stop Positive (Not Analyzed)

Initial report from 09/19/2011 09:55:54

Analyst(s)

Christine Hatter (11) Erica Valent (66)

Garret Vliet (45) Johnny Yu (46) Laura Torres (3٤ Melanie Koenig

- Sien

Stephen Siegel, CIH, Laboratory Manager or other approved signatory

EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report meet the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request.

F 1	Pat Dowling Fuss & O'Neill Enviro 46 Hartford Road Manchester, CT 0604		Customer ID: Customer PO: Received: EMSL Order:	ENVI54 09/14/11 9:25 AM 041124572
Fax: Project:	(888) 838-1160 20100607.A20/RIDEM - FC MIDDLE SCHOOL	Phone: (860) 646-2469	EMSL Proj: Analysis Date:	9/18/2011

			Asbestos			
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
811DD-181C 041124572-0302	BOILER ROOM - FRIABLE INSULATION @ BOILER TOP					Stop Positive (Not Analyzed)
811DD-182A 041124572-0303	261A CLOSET - WHITE/TAN CLOTH VIBRATION ISOLATOR	Tan Fibrous Homogeneous	90%	Cellulose	10% Non-fibrous (other)	None Detected
811DD-182B 041124572-0304	SMALL BOILER ROOM - WHITE/TAN CLOTH VIBRATION ISOLATOR	Tan Fibrous Heterogeneous	95%	Cellulose	5% Non-fibrous (other)	None Detected
811DD-183A 041124572-0305	SMALL BOILER ROOM - DEBRIS ON FLOOR	Gray Non-Fibrous Homogeneous	Samples ar	e not homogenous.	100% Non-fibrous (other)	None Detected
811DD-183B 041124572-0306	SMALL BOILER ROOM - DEBRIS ON FLOOR	Brown Non-Fibrous Homogeneous			97% Non-fibrous (other)	3% Chrysotile

Initial report from 09/19/2011 09:55:54

Analyst(s)

Christine Hatter (11) Erica Valent (66)

Garret Vliet (45) Johnny Yu (46) Laura Torres (38 Melanie Koenig

- Sien

Stephen Siegel, CIH, Laboratory Manager or other approved signatory

EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report meet the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request.

F 1	Pat Dowling Fuss & O'Neill Envirc 46 Hartford Road Manchester, CT 0604	·	Customer ID: Customer PO: Received: EMSL Order:	ENVI54 09/14/11 9:25 AM 041124572
Fax: Project:	(888) 838-1160 20100607.A20/RIDEM - FO MIDDLE SCHOOL	Phone: (860) 646-2469	EMSL Proj: Analysis Date:	9/18/2011

				Non-Asbest	tos	Asbestos
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
811DD-184A 041124572-0307	SMALL BOILER ROOM - TAN PIPE-TREAD SEALANT	Tan Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
811DD-184B 041124572-0308	SMALL BOILER ROOM - TAN PIPE-TREAD SEALANT	Tan Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected
811DD-185A 041124572-0309	BOILER TUNNEL - PREFORMED BLOCK-TYPE PIPE INSULATION	White Fibrous Homogeneous			78% Non-fibrous (other)	20% Chrysotile 2% Amosite
811DD-185B 041124572-0310	CAFETERIA - PREFORMED BLOCK-TYPE PIPE INSULATION					Stop Positive (Not Analyzed)
811DD-185C 041124572-0311	ROOM 314 - PREFORMED BLOCK-TYPE PIPE INSULATION					Stop Positive (Not Analyzed)
tial report from 09/1	9/2011 09:55:54					
Analyst(s)					Styple Sieg	d
Christine Hatter (11)) Garı	ret Vliet (45)		Laura Torres (3٤	Stephen Siegel, CIH, Laborato	ry Manager
Erica Valent (66)	Johr	nny Yu (46)		Melanie Koenig	or other approved signa	atory

 ,	Pat Dowling Fuss & O'Neill Enviro 146 Hartford Road		LC	Customer ID: Customer PO: Received:	ENVI54 09/14/11 9:25 AM
	Manchester, CT 0604	0		EMSL Order:	041124572
Fax: Project:	(888) 838-1160 20100607.A20/RIDEM - FC) 646-2469 SOCKET	EMSL Proj:	0/40/2044
-	MIDDLE SCHOOL			Analysis Date:	9/18/2011

		Non-Asbestos				Asbestos	
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type	
811DD-186A 041124572-0312	ROOM 255 - AIRCELL PIPE INSULATION	White Fibrous Homogeneous			75% Non-fibrous (other)	15% Chrysotile 10% Amosite	
811DD-186B 041124572-0313	ROOM 256 MECH CLOSET - AIRCELL PIPE INSULATION					Stop Positive (Not Analyzed)	
811DD-186C 041124572-0314	BOILER ROOM - AIRCELL PIPE INSULATION					Stop Positive (Not Analyzed)	
811DD-187A 041124572-0315	BOILER TUNNEL - MUDDED FITTINGS	White Fibrous Homogeneous	10%	Cellulose	67% Non-fibrous (other)	8% Chrysotile 15% Amosite	
811DD-187B 041124572-0316	GIRLS BATHROOM N/T 256 - MUDDED FITTINGS					Stop Positive (Not Analyzed)	
811DD-187C 041124572-0317	CAFETERIA - MUDDED FITTINGS					Stop Positive (Not Analyzed)	

Analyst(s)

Christine Hatter (11) Erica Valent (66)

Garret Vliet (45) Johnny Yu (46) Laura Torres (3٤ Melanie Koenig

Sien

Stephen Siegel, CIH, Laboratory Manager or other approved signatory

EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report meet the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request.

	Pat Dowling Fuss & O'Neill Enviro	oScience, LLC	Customer ID: Customer PO:	ENVI54
	146 Hartford Road Manchester, CT 0604	10	Received: EMSL Order:	09/14/11 9:25 AM 041124572
Fax: Project:	(888) 838-1160 20100607.A20/RIDEM - FC MIDDLE SCHOOL	Phone: (860) 646-2469 DRMER WOONSOCKET	EMSL Proj: Analysis Date:	9/18/2011

			Asbestos			
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
812DD-188A 041124572-0318	OLD GYM - CEILING SKIM COAT	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
812DD-188B 041124572-0319	OLD GYM - CEILING SKIM COAT	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
812DD-188C 041124572-0320	OLD GYM - CEILING SKIM COAT	White Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected
812DD-189A 041124572-0321	OLD GYM BOYS LOCKER - TAN ADHESIVE A/W CERAMIC WALL TILE	Tan Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
812DD-189B 041124572-0322	OLD GYM BOYS LOCKER - TAN ADHESIVE A/W CERAMIC WALL TILE	White Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected

 Initial report from 09/19/2011 09:55:54

 Analyst(s)

 Christine Hatter (11)
 Garret Vliet (45)

 Johnny Yu (46)
 Laura Torres (3٤

 Melanie Koenig
 Stephen Siegel, CIH, Laboratory Manager or other approved signatory

 EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report meet the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data

F 1	Pat Dowling Fuss & O'Neill Enviro 46 Hartford Road		ce, LLC	Customer ID: Customer PO: Received:	ENVI54 09/14/11 9:25 AM
N	Manchester, CT 0604	0		EMSL Order:	041124572
Fax:	(888) 838-1160	Phone:	(860) 646-2469	EMSL Proj:	
Project:	20100607.A20/RIDEM - FO MIDDLE SCHOOL	ORMER W	OONSOCKET	Analysis Date:	9/18/2011

			Asbestos			
Sample	Description	Appearance	%	Fibrous % Non-Fibrous		% Type
812DD-190A 041124572-0323	OLD GYM GIRLS LOCKER - BLACK BUILDING PAPER UNDERNEATH WOOD FLOOR	Brown/Black Fibrous Homogeneous	60%	Cellulose	40% Non-fibrous (other)	None Detected
812DD-190B 041124572-0324	ROOM 114 - BLACK BUILDING PAPER UNDERNEATH WOOD FLOOR	Brown/Black Fibrous Heterogeneous	45%	Cellulose	55% Non-fibrous (other)	None Detected
812DD-191A 041124572-0325	SCIENCE BASEMENT HALL - POURED CONCRETE FLOORING	Gray/Black Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected
812DD-191B 041124572-0326	SCIENCE BASEMENT HALL - POURED CONCRETE FLOORING	Gray/Black Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected

 Initial report from 09/19/2011 09:55:54

 Analyst(s)

 Christine Hatter (11)
 Garret Vliet (45)

 Johnny Yu (46)
 Laura Torres (3٤

 Melanie Koenig
 Stephen Siegel, CIH, Laboratory Manager or other approved signatory

 EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report met the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request.

	Pat Dowling Fuss & O'Neill Enviro	Scien	ce, LLC	Customer ID: Customer PO:	ENVI54		
	146 Hartford Road Manchester, CT 0604	0		Received: EMSL Order:	09/14/11 9:25 AM 041124572		
Fax: Project:	(888) 838-1160 20100607.A20/RIDEM - FC MIDDLE SCHOOL	Phone: DRMER W	()	EMSL Proj: Analysis Date:	9/18/2011		

				Non-Asbest	Asbestos		
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type	
812DD-192A	OLD GYM GIRLS SHOWER -	Gray			75% Non-fibrous (other)	20% Chrysotile	
041124572-0327	TRANSITE SHOWER STALLS	Fibrous Homogeneous				5% Amosite	
812DD-192B 041124572-0328	OLD GYM GIRLS SHOWER - TRANSITE SHOWER STALLS					Stop Positive (Not Analyzed)	
812DD-193A	ROOM 251C - BROWN GLUE	Brown/Green Non-Fibrous			60% Non-fibrous (other)	40% Chrysotile	
041124572-0329	DAUBS A/W LUAN PANELING	Homogeneous					
812DD-193B	ROOM 251C -					Stop Positive (Not Analyzed)	
041124572-0330	BROWN GLUE DAUBS A/W LUAN PANELING					, mary 2007	
812DD-194A	WOODSHOP HALLWAY -	Brown			100% Non-fibrous (other)	None Detected	
041124572-0331	DOOR GLAZING COMPOUND (WINDOWS)	Non-Fibrous Homogeneous					
itial report from 09/1	9/2011 09:55:54						
Analyst(s)					Styple Sieg	d	
Christine Hatter (11)	Garre	et Vliet (45)		Laura Torres (38	Stephen Siegel, CIH, Laborato		
Erica Valent (66)	lohn	ny Yu (46)		Melanie Koenig	or other approved sign	atory	

EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report meet the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request.

F 1-	at Dowling uss & O'Neill Envirc 46 Hartford Road lanchester, CT 0604		Customer ID: Customer PO: Received: EMSL Order:	ENVI54 09/14/11 9:25 AM 041124572
Fax: Project:	(888) 838-1160 20100607.A20/RIDEM - FO MIDDLE SCHOOL	Phone: (860) 646-2469 RMER WOONSOCKET	EMSL Proj: Analysis Date:	9/18/2011

			Asbestos			
Sample	Description	Appearance	% Fibrous		% Non-Fibrous	% Type
812DD-194B 041124572-0332	WOODSHOP HALLWAY - DOOR GLAZING COMPOUND (WINDOWS)	Brown Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected
812DD-195 041124572-0333	OLD GYM - THICK BLACK VINYL BASEBOARD (RIGHT ANGLE)	Black Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
812DD-195A 041124572-0334	OLD GYM - BROWN MASTIC A/W (-195 VBB)	Brown Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
812DD-195B 041124572-0335	OLD GYM - BROWN MASTIC A/W (-195 VBB)	Brown Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected
812DD-196A 041124572-0336	OLD GYM GIRLS SHOWER - YELLOW MASTIC A/W CERAMIC FLOOR TILE	Yellow Non-Fibrous Homogeneous			98% Non-fibrous (other)	2% Chrysotile

Initial report from 09/19/2011 09:55:54

Analyst(s)

Christine Hatter (11) Erica Valent (66) Garret Vliet (45) Johnny Yu (46) Laura Torres (38 Melanie Koenig

Sien

Stephen Siegel, CIH, Laboratory Manager or other approved signatory

EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report meet the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request.

Attn: Pat Dowling Fuss & O'Neill Envir 146 Hartford Road Manchester, CT 060		Customer ID: Customer PO: Received: EMSL Order:	ENVI54 09/14/11 9:25 AM 041124572
Fax: (888) 838-1160 Project: 20100607.A20/RIDEM - F MIDDLE SCHOOL	Phone: (860) 646-2469 ORMER WOONSOCKET	EMSL Proj: Analysis Date:	9/18/2011

			Asbestos			
Sample	Description	Appearance	% Fibrous		% Non-Fibrous	% Type
812DD-196B 041124572-0337	OLD GYM GIRLS SHOWER - YELLOW MASTIC A/W CERAMIC FLOOR TILE					Stop Positive (Not Analyzed)
812DD-197A 041124572-0338	OLD HS OFFICE AREA - CLOTH WALL COVERING	Tan Fibrous Homogeneous	95%	Cellulose	5% Non-fibrous (other)	None Detected
812DD-197B 041124572-0339	ROOM 258 - CLOTH WALL COVERING	Tan Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected
812DD-198A 041124572-0340	HS MAIN OFFICE - 4" DARK BROWN VINYL BASEBOARD	Brown Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
812DD-199A 041124572-0341	HS MAIN OFFICE - DARK BROWN MASTIC A/W 4" DARK BROWN VBB	Brown Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected

 Initial report from 09/19/2011 09:55:54

 Analyst(s)

 Christine Hatter (11)
 Garret Vliet (45)

 Johnny Yu (46)
 Laura Torres (3٤

 Melanie Koenig
 Stephen Siegel, CIH, Laboratory Manager or other approved signatory

 EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report meet the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data

	Pat Dowling Fuss & O'Neill Envir	oScience, LLC	Customer ID: Customer PO:	ENVI54	
	146 Hartford Road	40	Received:	09/14/11 9:25 AM	
	Manchester, CT 0604	40	EMSL Order:	041124572	
Fax:	(888) 838-1160	Phone: (860) 646-2469	EMSL Proj:		
Project:	20100607.A20/RIDEM - FO MIDDLE SCHOOL	ORMER WOONSOCKET	Analysis Date:	9/18/2011	

				Non-Asbest	tos	<u>Asbestos</u>
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
812DD-199B 041124572-0342	HS MAIN OFFICE - DARK BROWN MASTIC A/W 4" DARK BROWN VBB	Brown Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected
812DD-200A 041124572-0343	ROOM 108 - TAN/YELLOW MASTIC A/W FLOOR TILE (TOP LAYER)	Yellow Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
812DD-200B 041124572-0344	ROOM 550 - TAN/YELLOW MASTIC A/W FLOOR TILE (TOP LAYER)	Yellow Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
812DD-200C 041124572-0345	ROOM 557 - TAN/YELLOW MASTIC A/W FLOOR TILE (TOP LAYER)	Yellow Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected
812DD-201A 041124572-0346	HALLWAY O/S #554-550 - YELLOW/CLEAR MASTIC A/W TOP 12X12 FT	Brown Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
	19/2011 09:55:54				Strole Sien	1
tial report from 09/ Analyst(s) Christine Hatter (11		et Vliet (45)			Stephen Siegel, CIH, Laborato	

	Pat Dowling Fuss & O'Neill Enviro	Science, LLC	Customer ID: Customer PO:	ENVI54		
	146 Hartford Road Manchester, CT 0604	.0	Received: EMSL Order:	09/14/11 9:25 AM 041124572		
Fax: Project:	(888) 838-1160 20100607.A20/RIDEM - FC MIDDLE SCHOOL	Phone: (860) 646-2469 DRMER WOONSOCKET	EMSL Proj: Analysis Date:	9/18/2011		

			Asbestos			
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
812DD-201B 041124572-0347	ROOM 502A - YELLOW/CLEAR MASTIC A/W TOP 12X12 FT	Yellow Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected
812DD-202A 041124572-0348	ROOM 218 (CLASSROOM WING) - 4" REDDISH BROWN VINYL BASEBOARD	Brown Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
812DD-203A 041124572-0349	ROOM 218 - BROWN MASTIC A/W 4" R/B VBB	Brown Non-Fibrous Homogeneous			97% Non-fibrous (other)	3% Chrysotile
812DD-203B 041124572-0350	ROOM 317 - BROWN MASTIC A/W 4" R/B VBB					Stop Positive (Not Analyzed)
812DD-204A 041124572-0351	ROOM 456 - TOP LAYER WHITE MASTIC A/W VINYL BASEBOARD	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected

 Initial report from 09/19/2011 09:55:54

 Analyst(s)

 Christine Hatter (11)
 Garret Vliet (45)

 Johnny Yu (46)
 Laura Torres (3٤

 Melanie Koenig
 Stephen Siegel, CIH, Laboratory Manager or other approved signatory

 EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this

must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report meet the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request.

F 1	Pat Dowling Fuss & O'Neill Enviro 46 Hartford Road Manchester, CT 0604	·	Customer ID: Customer PO: Received: EMSL Order:	ENVI54 09/14/11 9:25 AM 041124572
Fax: Project:	(888) 838-1160 20100607.A20/RIDEM - FC MIDDLE SCHOOL	Phone: (860) 646-2469 DRMER WOONSOCKET	EMSL Proj: Analysis Date:	9/18/2011

		Non-Asb			<u>estos</u>		Asbestos
Sample	Description	Appearance	%	Fibrous		% Non-Fibrous	% Type
812DD-204B 041124572-0352	ROOM 550 - TOP LAYER WHITE MASTIC A/W VINYL BASEBOARD	White Non-Fibrous Heterogeneous				100% Non-fibrous (other)	None Detected
812DD-205-Cove Base 041124572-0353	ROOM 224 - 4" BLACK VBB (TYPICAL BROWN MASTIC)	Black Non-Fibrous Homogeneous				100% Non-fibrous (other)	None Detected
812DD-205-Mastic 041124572-0353A	ROOM 224 - 4" BLACK VBB (TYPICAL BROWN MASTIC)	Brown Non-Fibrous Homogeneous				100% Non-fibrous (other)	None Detected
812DD-206 041124572-0354	ROOM 458 - 6" BLACK (THIN) VBB	Black Non-Fibrous Homogeneous				100% Non-fibrous (other)	None Detected
812DD-207A 041124572-0355	ROOM 458 - DARK BROWN MASTIC A/W 6" BLACK VBB	Brown Non-Fibrous Homogeneous				100% Non-fibrous (other)	None Detected
812DD-207B 041124572-0356	ROOM 458 - DARK BROWN MASTIC A/W 6" BLACK VBB	Brown Non-Fibrous Heterogeneous				100% Non-fibrous (other)	None Detected
itial report from 09/1	9/2011 09:55:54						
Analyst(s)						Styple Siege	1

Christine Hatter (11) Erica Valent (66) Garret Vliet (45) Johnny Yu (46) Laura Torres (3٤ Melanie Koenig Stephen Siegel, CIH, Laboratory Manager or other approved signatory

EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report meet the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request.

	Pat Dowling Fuss & O'Neill Enviro	Scien	Customer ID: Customer PO:	ENVI54	
	46 Hartford Road	0	Received: EMSL Order:	09/14/11 9:25 AM 041124572	
Fax: (888) 838-1160 Phone: (860) 646-2469 Project: 20100607.A20/RIDEM - FORMER WOONSOCKET MIDDLE SCHOOL				EMSL Proj: Analysis Date:	9/18/2011

				Non-Asb	<u>estos</u>	Asbestos
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Туре
812DD-208 041124572-0357	ROOM 259A - 6" BLACK (THICK) VBB	Black Non-Fibrous Homogeneous			97% Non-fibrous (other)	3% Chrysotile
812DD-209A 041124572-0358	ROOM 259A - BLACK MASTIC A/W6" BLACK (THICK) VBB	Black Non-Fibrous Homogeneous			94% Non-fibrous (other)	6% Chrysotile
812DD-209B 041124572-0359	ROOM 259A - BLACK MASTIC A/W6" BLACK (THICK) VBB					Stop Positive (Not Analyzed)
812DD-210A 041124572-0360	ROOM 306 - BLACK MASTIC (UNDER WOOD)	Black Non-Fibrous Homogeneous	60%	Cellulose	40% Non-fibrous (other)	None Detected
812DD-210B 041124572-0361	ROOM 409 - BLACK MASTIC (12X12 FT) TOP LAYER	Black Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
812DD-210C 041124572-0362	HALL O/S 464 - BLACK MASTIC (12X12 FT) TOP LAYER	Black Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected

Initial report from 09/19/2011 09:55:54

Analyst(s)

Christine Hatter (11) Erica Valent (66)

Garret Vliet (45) Johnny Yu (46) Laura Torres (3٤ Melanie Koenig

- Sien

Stephen Siegel, CIH, Laboratory Manager or other approved signatory

EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report meet the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request.

l	Pat Dowling Fuss & O'Neill Enviro I46 Hartford Road Manchester, CT 0604		Customer ID: Customer PO: Received: EMSL Order:	ENVI54 09/14/11 9:25 AM 041124572	
Fax: (888) 838-1160 Phone: (860) 646-2469 Project: 20100607.A20/RIDEM - FORMER WOONSOCKET MIDDLE SCHOOL MIDDLE SCHOOL<				EMSL Proj: Analysis Date:	9/18/2011

				Non-Asbes	Asbestos	
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
812DD-210D 041124572-0363	ROOM 456 - BLACK MASTIC (12X12 FT) TOP LAYER	Black Non-Fibrous Homogeneous			96% Non-fibrous (other)	4% Chrysotile
			Samples II	n group do not appear homo	ogenous.	
812DD-210E 041124572-0364	ROOM 553 - BLACK MASTIC (12X12 FT) TOP LAYER					Stop Positive (Not Analyzed)
812DD-211A 041124572-0365	ROOM 259A - BLACK (BOTTOM) MASTIC A/W 9X9 FT	Black Non-Fibrous Homogeneous			98% Non-fibrous (other)	2% Chrysotile
812DD-211B 041124572-0366	ROOM 356 - BLACK (BOTTOM) MASTIC A/W 9X9 FT					Stop Positive (Not Analyzed)
812DD-211C 041124572-0367	HALL O/S 456 - BLACK (BOTTOM) MASTIC A/W 9X9 FT					Stop Positive (Not Analyzed)
itial report from 09/1	9/2011 09:55:54					
					Style Sie	d
Analyst(s)		et Vliet (45)		Laura Torres (3٤	Stephen Siegel, CIH, Laborato	ory Manager
Analyst(s) Christine Hatter (11)) Garre	(VIIEL (40)			or other approved sign	

Attn: Pat Dowling Fuss & O'Neill Env 146 Hartford Road Manchester, CT 06		Customer ID: Customer PO: Received: EMSL Order:	ENVI54 09/14/11 9:25 AM 041124572
Fax: (888) 838-1160 Project: 20100607.A20/RIDEM - MIDDLE SCHOOL	Phone: (860) 646-2469 FORMER WOONSOCKET	EMSL Proj: Analysis Date:	9/18/2011

			<u>Asbestos</u>		
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Type
812DD-212A 041124572-0368	ROOM 105 - BLACK MASTIC A/W 9X9 FLOOR TILE	Black Non-Fibrous Homogeneous		100% Non-fibrous (other)	None Detected
			Samples do not appear homogen	ous.	
812DD-212B 041124572-0369	ROOM 203 - BLACK MASTIC A/W 9X9 FLOOR TILE	Black Non-Fibrous Homogeneous		100% Non-fibrous (other)	None Detected
812DD-212C 041124572-0370	BOILER ROOM - BLACK MASTIC A/W 9X9 FLOOR TILE	Black/Silver Non-Fibrous Homogeneous		100% Non-fibrous (other)	None Detected
812DD-212D 041124572-0371	ROOM 109 WOODSHOP - BLACK MASTIC A/W 9X9 FLOOR TILE (UNDER WOOD FLOOR)	Black Non-Fibrous Homogeneous		100% Non-fibrous (other)	None Detected
812DD-213A 041124572-0372	AUDITORIUM WALL - SKIM PLASTER (NOT HORSE HAIR)	White Non-Fibrous Homogeneous		100% Non-fibrous (other)	None Detected

Initial report from 09/19/2011 09:55:54 - Sien Analyst(s) Christine Hatter (11) Garret Vliet (45) Laura Torres (38 Stephen Siegel, CIH, Laboratory Manager or other approved signatory Erica Valent (66) Johnny Yu (46) Melanie Koenig EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report

EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report meet the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request.

	Pat Dowling Fuss & O'Neill Enviro	oScience, LLC	Customer ID: Customer PO:	ENVI54
	146 Hartford Road Manchester, CT 0604	10	Received: EMSL Order:	09/14/11 9:25 AM 041124572
Fax: Project	(888) 838-1160 20100607.A20/RIDEM - FC MIDDLE SCHOOL	Phone: (860) 646-2469 DRMER WOONSOCKET	EMSL Proj: Analysis Date:	9/18/2011

			Asbestos			
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
812DD-213B 041124572-0373	AUDITORIUM PANEL - SKIM PLASTER (NOT HORSE HAIR)	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
812DD-213C 041124572-0374	AUDITORIUM BALCONY CEILING - SKIM PLASTER (NOT HORSE HAIR)	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
812DD-213D 041124572-0375	ROOM 251C WALL - SKIM PLASTER (NOT HORSE HAIR)	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
812DD-213E 041124572-0376	SCIENCE HALL LOW CEILING - SKIM PLASTER (NOT HORSE HAIR)	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
812DD-213F 041124572-0377	KITCHEN CEILING - SKIM PLASTER (NOT HORSE HAIR)	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected

Initial report from 09/19/2011 09:55:54

Analyst(s)

Christine Hatter (11)	
Erica Valent (66)	

Garret Vliet (45) Johnny Yu (46) Laura Torres (38 Melanie Koenig

Sien

Stephen Siegel, CIH, Laboratory Manager or other approved signatory

EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report meet the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request.

F 1	Pat Dowling Fuss & O'Neill Enviro I46 Hartford Road Manchester, CT 0604	·	, LLC	Customer ID: Customer PO: Received: EMSL Order:	ENVI54 09/14/11 9:25 AM 041124572
Fax:	(888) 838-1160	Phone: (86	60) 646-2469	EMSL Proj:	
Project:	20100607.A20/RIDEM - FORMER WOONSOCKET MIDDLE SCHOOL			Analysis Date:	9/18/2011

				<u>Non-Asl</u>	<u>Asbestos</u>	
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
812DD-213G 041124572-0378	GRAND ENTRY WALL - SKIM PLASTER (NOT HORSE HAIR)	White Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected
812DD-214A 041124572-0379	AUDITORIUM WALL - ROUGH PLASTER (NOT HORSE HAIR)	Gray Non-Fibrous Homogeneous	1%	Synthetic	99% Non-fibrous (other)	None Detected
812DD-214B 041124572-0380	AUDITORIUM PANEL - ROUGH PLASTER (NOT HORSE HAIR)	Gray Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
812DD-214C 041124572-0381	AUDITORIUM BALCONY CEILING - ROUGH PLASTER (NOT HORSE HAIR)	Gray Non-Fibrous Homogeneous	1%	Synthetic	99% Non-fibrous (other)	None Detected
812DD-214D 041124572-0382	ROOM 251C WALL - ROUGH PLASTER (NOT HORSE HAIR)	Gray Fibrous Homogeneous	2%	Synthetic	98% Non-fibrous (other)	None Detected

Initial report from 09/19/2011 09:55:54

Analyst(s)

Christine Hatter (11) Erica Valent (66) Garret Vliet (45) Johnny Yu (46) Laura Torres (3٤ Melanie Koenig

Sien

Stephen Siegel, CIH, Laboratory Manager or other approved signatory

EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report meet the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request.

	Pat Dowling Fuss & O'Neill Enviro	Scien	Customer ID: Customer PO:	ENVI54	
	146 Hartford Road Manchester, CT 0604	0	Received: EMSL Order:	09/14/11 9:25 AM 041124572	
Fax: Project:	(888) 838-1160 20100607.A20/RIDEM - FC MIDDLE SCHOOL		(860) 646-2469 OONSOCKET	EMSL Proj: Analysis Date:	9/18/2011

				Non-Asbest	Asbestos	
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
812DD-214E 041124572-0383	SCIENCE HALL LOW CEILING - ROUGH PLASTER (NOT HORSE HAIR)	Gray Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
812DD-214F 041124572-0384	KITCHEN CEILING - ROUGH PLASTER (NOT HORSE HAIR)	Gray Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
812DD-214G 041124572-0385	GRAND ENTRY WALL - ROUGH PLASTER (NOT HORSE HAIR)	Gray Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected
812DD-215A 041124572-0386	OLD HS ENTRANCE (WALL) - SKIM PLASTER (A/W HORSE HAIR)	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
812DD-215B 041124572-0387	OLD GYM GIRLS LOCKER CEIL - SKIM PLASTER (A/W HORSE HAIR)	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
itial report from 09/1	9/2011 09:55:54				0 1 0	
Analyst(s)					Style Sien	1
Christine Hatter (11, Erica Valent (66)		et Vliet (45) ny Yu (46)		– Laura Torres (3٤ Melanie Koenig	Stephen Siegel, CIH, Laboratory or other approved signat	

EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request.

	Pat Dowling Fuss & O'Neill Enviro	oScience, LLC	Customer ID: Customer PO:	ENVI54 09/14/11 9:25 AM 041124572	
	146 Hartford Road Manchester, CT 0604	10	Received: EMSL Order:		
Fax: Project	(888) 838-1160 20100607.A20/RIDEM - FC MIDDLE SCHOOL	Phone: (860) 646-2469 DRMER WOONSOCKET	EMSL Proj: Analysis Date:	9/18/2011	

			Non-Asbestos			
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
812DD-215C 041124572-0388	ROOM 109 WOODSHOP CEIL - SKIM PLASTER (A/W HORSE HAIR)	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
812DD-215D 041124572-0389	ROOM 258 LOWER WALL (ON BRICK) - SKIM PLASTER (A/W HORSE HAIR)	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
812DD-215E 041124572-0390	ROOM 356 WALL - SKIM PLASTER (A/W HORSE HAIR)	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
812DD-215F 041124572-0391	ROOM 451 WALL - SKIM PLASTER (A/W HORSE HAIR)	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
812DD-215G 041124572-0392	ROOM 501 WALL - SKIM PLASTER (A/W HORSE HAIR)	White Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected

Analyst(s)

Christine Hatter (11) Erica Valent (66)

Garret Vliet (45) Johnny Yu (46) Laura Torres (38 Melanie Koenig

Sien

Stephen Siegel, CIH, Laboratory Manager or other approved signatory

EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report meet the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request.

I	Pat Dowling Fuss & O'Neill Enviro 146 Hartford Road	oScien	Customer ID: Customer PO: Received:	ENVI54 09/14/11 9:25 AM	
	Manchester, CT 0604	0	EMSL Order:	041124572	
Fax:	(888) 838-1160	Phone:	(860) 646-2469	EMSL Proj:	
Project:	20100607.A20/RIDEM - FO MIDDLE SCHOOL	ORMER W	OONSOCKET	Analysis Date:	9/18/2011

		Non-Asbestos				Asbestos	
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type	
812DD-216A 041124572-0393	OLD HS ENTRANCE (WALL) - ROUGH HORSE HAIR PLASTER	Gray Fibrous Homogeneous	5%	Synthetic	95% Non-fibrous (other)	None Detected	
812DD-216B 041124572-0394	OLD GYM GIRLS LOCKER CEIL - ROUGH HORSE HAIR PLASTER	Gray Non-Fibrous Homogeneous	1%	Cellulose	99% Non-fibrous (other)	None Detected	
812DD-216C 041124572-0395	ROOM 109 WOODSHOP CEIL - ROUGH HORSE HAIR PLASTER	Gray Fibrous Homogeneous	4%	Cellulose	96% Non-fibrous (other)	None Detected	
812DD-216D 041124572-0396	ROOM 258 LOWER WALL (ON BRICK) - ROUGH HORSE HAIR PLASTER	Gray Fibrous Homogeneous	4%	Synthetic	96% Non-fibrous (other)	None Detected	
812DD-216E 041124572-0397	ROOM 356 WALL - ROUGH HORSE HAIR PLASTER	Gray Fibrous Homogeneous	2%	Synthetic	98% Non-fibrous (other)	None Detected	

Initial report from 09/19/2011 09:55:54

Analyst(s)

Christine Hatter (11) Erica Valent (66)

Garret Vliet (45) Johnny Yu (46) Laura Torres (3٤ Melanie Koenig

- Sien

Stephen Siegel, CIH, Laboratory Manager or other approved signatory

EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report meet the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request.

I	Pat Dowling Fuss & O'Neill Enviro	Science, L	LC	Customer ID: Customer PO:	ENVI54	
	46 Hartford Road			Received:	09/14/11 9:25 AM	
l l	Manchester, CT 0604	0		EMSL Order:	041124572	
Fax:	(888) 838-1160	Phone: (860)) 646-2469	EMSL Proj:		
Project:	ct: 20100607.A20/RIDEM - FORMER WOONSOCKET MIDDLE SCHOOL		SOCKET	Analysis Date:	9/18/2011	

			Non-Asbestos			
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Туре
812DD-216F 041124572-0398	ROOM 451 WALL - ROUGH HORSE HAIR PLASTER	Gray Non-Fibrous Homogeneous	1%	Cellulose	99% Non-fibrous (other)	None Detected
812DD-216G 041124572-0399	ROOM 501 WALL - ROUGH HORSE HAIR PLASTER	Gray Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected

Initial report from 09/19/2011 09:55:54

Analyst(s)

Christine Hatter (11) Erica Valent (66) Garret Vliet (45) Johnny Yu (46) Laura Torres (38 Melanie Koenig

- Sien

Stephen Siegel, CIH, Laboratory Manager or other approved signatory

EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government. The test results contained within this report meet the requirements of NELAC unless otherwise specified. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request.

Samples analyzed by EMSL Analytical, Inc. Cinnaminson, NJ NVLAP Lab Code 101048-0, AIHA-LAP, LLC-IHLAP Lab 100194, NYS ELAP 10872, NJ DEP 03036

87

Appendix C

Asbestos TEM Laboratory Analytical Results

EMSL ANALYTICAL, INC. 200 ROUTE 130 NORTH CINNAMINSON, NJ 08077 PHONE: (800) 220-3675 FAX: (856) 786-0235

September 9, 2011

Steven Hubbs Fuss & O'Neill EnviroScience, LLC 146 Hartford Road Manchester, CT 06040

shubbs@fando.com

Re: Narrative EMSL Order ID 041126490

Dear Steven:

On September 14, 2011 EMSL Analytical, Inc. (Woburn, MA) received 415 bulk samples for 20100607.A20/RIDEM - FORMER WOONSOCKET MIDDLE SCHOOL project. These samples were brought in by Federal Express. The EMSL NJ lab accepted these samples and received them on September 14, 2011. All samples were logged in following normal lab procedures and were received in acceptable condition. All 415 samples were present and in acceptable condition.

TEM EPA NOB (Gravimetric Reduction)

After initial PLM analysis and data review by the client, 40 samples were chosen by the client for follow-up TEM analysis via EPA 600/R-93/11 -116. This method incorporates matrix reduction and preparation (organic/inorganic components). Asbestos content in the samples are reported on a % basis for the asbestos concentration. The limit of quantification for this method of <1%. Positive stops as well as sample layers were established by the client as applicable.

TEM batch lab blanks, scope alignments, inter and intra QC analysis were performed in accordance with EMSL's QC SOP. All QC data was deemed as acceptable.

State Siegel

Stephen Siegel, CIH Asbestos Lab Manager EMSL Cinnaminson, NJ

INITIAL DATE: OCTOBER 2011 REVISION DATE: FEBRUARY 2012 REVISION: 1.0

TEM-041126490

GENERIC QUALITY ASSURANCE PROJECT PLAN FOR PROJECTS IN CONNECTICUT, MASSACHUSETTS AND RHODE ISLAND MODIFIED TIER I COMPLETENESS CHECKLIST

	YES	<u>NO</u>
 SAMPLING AND FIELD MEASUREMENTS: 		
Field measurement calibration records		D N/A
Groundwater field measurements (if applicable)		
Soil sampling field measurements (if applicable)		
Sediment sampling field measurements (if applicable)		
Surface water sampling field measurements (if applicable)		
Low-flow sampling field measurements (if applicable)		
Documentation of field activities	X	
Sample numbering and labeling	X	
Chain-of-Custody records	X	
Trip blanks		ONIA
Duplicate samples		
Equipment blanks		
Split samples (if any)		
2. LABORATORY MEASUREMENTS:		
Trip blanks		DN/A
Instrument blanks		
Laboratory control samples	X	
Duplicates samples	X	
Equipment blanks		DNIA
Matrix spike/matrix spike duplicates		$\Box \uparrow$
Analysis type	X	
Chain-of-Custody records	X	
Surrogate recoveries		DIA
Sample Project Narratives	X	
Split samples (if any)		D N/A
G		Territoria
TOTAL:		
		100
PERCENT COMPL	.ETE:	%

INITIAL DATE: OCTOBER 2011 REVISION DATE: FEBRUARY 2012 REVISION: 1.0

GENERIC QUALITY ASSURANCE PROJECT PLAN FOR PROJECTS IN CONNECTICUT, MASSACHUSETTS AND RHODE ISLAND FUSS & O'NEILL MODIFIED TIER II DATA VALIDATION CHECKLIST

PERFORMED AND, WHERE APPLICABLE, WITHIN ACCEPTABLE LIMITS?

1. SAMPLING AND FIELD MEASUREMENTS:	YES	NO	COMMENTS
1. SAMPLING AND FIELD MEASUREMENTS:			
Field measurement calibration records			
$pH - \pm 0.3 pH$ units			NIA
S.C \pm 5% of calibration solution, within?			N
calibration range			
Temperature - \pm 0.5 °C			
D.O \pm 5% of calibration solution			
Groundwater field measurements (if applicable)			
Water depth measured to within 0.01 ft.?			
Soil sampling field measurements (if applicable)			
OVM - ±2 ppm			
OVA - ±2 ppm			
Sediment sampling field measurements (if applicable)			
Descriptive information recorded?			
Surface water sampling field measurements (if applicable)			
Water depth measured to within 0.01 ft.?			
Low-flow sampling field measurements (if applicable)			
S.C ± 10%			
$pH - \pm 0.2 pH$ units			
Temperature - ± 10%			
Turbidity - ±5 NTU			$\overline{\mathbf{v}}$
Documentation of field activities	1		
Site-specific information documented in field notebook?	X		and the second se
Field data sheets completed?	X		
Sample numbering and labeling			monkering specific to
Sample numbering conforms to sample I.D. system	_	al	winding specific to
identified in QAPP?		0x	
Chain-of-Custody records	¥	-	
Chain-of-Custody forms completed?	K		

INITIAL DATE: OCTOBER 2011 REVISION DATE: FEBRUARY 2012 REVISION: 1.0

GENERIC QUALITY ASSURANCE PROJECT PLAN FOR PROJECTS IN CONNECTICUT, MASSACHUSETTS AND RHODE ISLAND FUSS & O'NEILL MODIFIED TIER II DATA VALIDATION CHECKLIST (Continued)

PERFORMED AND, WHERE APPLICABLE, WITHIN ACCEPTABLE LIMITS?

	YES	NO	COMMENTS
Trip blanks			
Trip blanks submitted, one per day?			NIA
Any compounds detected in trip blanks?			
Duplicate samples			
Field duplicates performed, 1/20 samples?			
Duplicates performed on 10% of samples screened			
for explosives?			
Is percent difference within 30% for all field parameters?			
Equipment blanks			
Equipment blanks submitted, one per sampling day?			
Any compounds detected in equipment blank?			
Split samples (if any)	-	_	
Split samples collected?			
Is percent difference within 30% for split samples?			
2. LABORATORY MEASUREMENTS:			
Trip blanks			
Trip blanks submitted, one per day?			AIG
Any compounds detected in trip blanks?			1
Instrument blanks**	X		
Laboratory control samples**	X		
Duplicates samples**			NIA
Equipment blanks**			
Matrix spike/matrix spike duplicates**			1
Analysis type	₩		
Chain-of-Custody records	JS.		
Surrogate recoveries**			NIA
Sample Project Narratives	X		
Split samples (if any)**			NIA
Most recent EPA WP-PE sample results**			Y

F 1	Karron Redfield Fuss & O'Neill Enviro 46 Hartford Road Manchester, CT 0604		Customer ID: Customer PO: Received: EMSL Order:	ENVI54 10/03/11 3:00 PM 041126490
Fax: Project:	(888) 838-1160 ORIG 0411245722010060 WOONSOCKET MIDDLE S	Phone: (860) 646-2469 7.A20/RIDEM - FORMER	EMSL Proj: Analysis Date:	10/5/2011

SAMPLE ID	DESCRIPTION	APPEARANCE	% MATRIX MATERIAL	% NON-ASBESTOS FIBERS	ASBESTOS TYPES
818DD-01A 041126490-0001		Brown Non-Fibrous Heterogeneous	100	None	No Asbestos Detected
818DD-02A 041126490-0002		Tan Non-Fibrous Heterogeneous	100	None	No Asbestos Detected
818DD-09A 041126490-0003		Brown Non-Fibrous Heterogeneous	100	None	No Asbestos Detected
818DD-10A 041126490-0004		Tan Non-Fibrous Heterogeneous	100	None	No Asbestos Detected
818DD-13A 041126490-0005		Brown Non-Fibrous Heterogeneous	100	None	No Asbestos Detected
818DD-17A 041126490-0006		Brown Non-Fibrous Heterogeneous	100	None	No Asbestos Detected
818DD-18A 041126490-0007		Tan Non-Fibrous Heterogeneous	95.4	None	4.6% Chrysotile
818DD-22A 041126490-0008		Brown /Tan /Green Non-Fibrous Heterogeneous	100	None	No Asbestos Detected

Initial report from 10/05/2011 13:11:44

Analyst(s)

Peter Harrison (39)

Sient

Stephen Siegel, CIH, Laboratory Manager or other approved signatory

 ,	Karron Redfield Fuss & O'Neill Envirc 146 Hartford Road Manchester, CT 0604	Customer ID: Customer PO: Received: EMSL Order:	ENVI54 10/03/11 3:00 PM 041126490
Fax: Project:	(888) 838-1160 ORIG 0411245722010060 WOONSOCKET MIDDLE S	EMSL Proj: Analysis Date:	10/5/2011

SAMPLE ID	DESCRIPTION	APPEARANCE	% MATRIX MATERIAL	% NON-ASBESTOS FIBERS	ASBESTOS TYPES
818DD-24A 041126490-0009		Black Non-Fibrous Heterogeneous	100	None	<0.25% Chrysotile
818DD-34A 041126490-0010		Gray Non-Fibrous Heterogeneous	100	None	No Asbestos Detected
818DD-35A 041126490-0011		Brown /Tan Non-Fibrous Heterogeneous	100	None	No Asbestos Detected
818DD-37A 041126490-0012		Blue /Green Non-Fibrous Heterogeneous	100	None	No Asbestos Detected
818DD-47A 041126490-0013		Brown /Tan /Beige Non-Fibrous Heterogeneous	100	None	No Asbestos Detected
76DD-48A 041126490-0014		Red Non-Fibrous Heterogeneous	100	None	No Asbestos Detected
76DD-49A 041126490-0015		Gray /Yellow Non-Fibrous Heterogeneous	99.6	None	0.45% Chrysotile
76DD-50A 041126490-0016		Gray Non-Fibrous Heterogeneous	96.8	None	3.2% Anthophyllite

Initial report from 10/05/2011 13:11:44

Analyst(s)

Peter Harrison (39)

Sient

Stephen Siegel, CIH, Laboratory Manager or other approved signatory

F 1-	arron Redfield uss & O'Neill Enviro 46 Hartford Road lanchester, CT 0604	Customer ID: Customer PO: Received: EMSL Order:	ENVI54 10/03/11 3:00 PM 041126490
Fax: Project:	(888) 838-1160 ORIG 0411245722010060 WOONSOCKET MIDDLE S	EMSL Proj: Analysis Date:	10/5/2011

SAMPLE ID	DESCRIPTION	APPEARANCE	% MATRIX MATERIAL	% NON-ASBESTOS FIBERS	ASBESTOS TYPES
76DD-51A 041126490-0017		Blue Non-Fibrous Heterogeneous	71.8	None	28.2% Chrysotile
76DD-56A 041126490-0018		Brown /White /Beige Non-Fibrous Heterogeneous	99.3	None	0.68% Chrysotile
76DD-57A 041126490-0019		Brown /Gray /White Non-Fibrous Heterogeneous	98.1	None	1.9% Chrysotile
76DD-59A 041126490-0020		Brown /White Non-Fibrous Heterogeneous	100	None	No Asbestos Detected
76DD-61A 041126490-0021		Green Non-Fibrous Heterogeneous	100	None	No Asbestos Detected
76DD-70A 041126490-0022		Black Non-Fibrous Heterogeneous	100	None	No Asbestos Detected
76DD-71A 041126490-0023		Brown Non-Fibrous Heterogeneous	100	None	No Asbestos Detected

76DD-89A 041126490-0024

Insufficient Material

Initial report from 10/05/2011 13:11:44

Analyst(s)

Peter Harrison (39)

Stephen Siegel, CIH, Laboratory Manager or other approved signatory

F 1-	arron Redfield uss & O'Neill Enviro 46 Hartford Road lanchester, CT 0604	Customer ID: Customer PO: Received: EMSL Order:	ENVI54 10/03/11 3:00 PM 041126490
Fax: Project:	(888) 838-1160 ORIG 0411245722010060 WOONSOCKET MIDDLE S	EMSL Proj: Analysis Date:	10/5/2011

SAMPLE ID	DESCRIPTION	APPEARANCE	% MATRIX MATERIAL	% NON-ASBESTOS FIBERS	ASBESTOS TYPES
76DD-96A 041126490-0025		Brown Non-Fibrous Heterogeneous	100	None	No Asbestos Detected
76DD-97A 041126490-0026		Tan /Yellow Non-Fibrous Heterogeneous	100	None	No Asbestos Detected
711DD-110A 041126490-0027		Brown Non-Fibrous Heterogeneous	100	None	No Asbestos Detected
711DD-114A 041126490-0028		Brown Non-Fibrous Heterogeneous	100	None	No Asbestos Detected
711DD-117A 041126490-0029		Gray Non-Fibrous Heterogeneous	95.7	None	4.3% Anthophyllite
711DD-131A 041126490-0030		Gray Non-Fibrous Heterogeneous	80.1	None	19.9% Chrysotile
711DD-140A 041126490-0031		Gray /White Non-Fibrous Heterogeneous	95.5	None	4.5% Chrysotile
711DD-149A 041126490-0032		Gray Non-Fibrous Heterogeneous	100	None	No Asbestos Detected

Initial report from 10/05/2011 13:11:44

Analyst(s)

Peter Harrison (39)

Sient

Stephen Siegel, CIH, Laboratory Manager or other approved signatory

Attn: Karron Redfield Fuss & O'Neill Er 146 Hartford Roa Manchester, CT (Customer ID: Customer PO: Received: EMSL Order:	ENVI54 10/03/11 3:00 PM 041126490
Fax: (888) 838-1160 Project: ORIG 04112457220 WOONSOCKET MID	Phone: (860) 646-2469 100607.A20/RIDEM - FORMER DLE SCHOOL	EMSL Proj: Analysis Date:	10/5/2011

SAMPLE ID	DESCRIPTION	APPEARANCE	% MATRIX MATERIAL	% NON-ASBESTOS FIBERS	ASBESTOS TYPES
711DD-150A 041126490-0033		Brown Non-Fibrous Heterogeneous	100	None	No Asbestos Detected
810DD-164A 041126490-0034		Black Non-Fibrous Heterogeneous	100	None	No Asbestos Detected
810DD-165A 041126490-0035		Brown Non-Fibrous Heterogeneous	100	None	No Asbestos Detected
812DD-195 041126490-0036		Black Non-Fibrous Heterogeneous	100	None	No Asbestos Detected
812DD-195A 041126490-0037		Brown Non-Fibrous Heterogeneous	100	None	No Asbestos Detected
812DD-198A 041126490-0038		Brown Non-Fibrous Heterogeneous	100	None	<0.25% Chrysotile
812DD-199A 041126490-0039		Brown Non-Fibrous Heterogeneous	100	None	No Asbestos Detected
812DD-212A 041126490-0040		Black Non-Fibrous Heterogeneous	100	None	No Asbestos Detected

Initial report from 10/05/2011 13:11:44

Analyst(s)

Peter Harrison (39)

Stephen Siegel, CIH, Laboratory Manager or other approved signatory

EMSL ORDER ID 04/124572 PLM+TEM

INITIAL DATE: JULY 2007 REVISION DATE: JULY 2007 REVISION: 0.0

-7

GENERIC QUALITY ASSURANCE PROJECT PLAN FOR PROJECTS IN RHODE ISLAND LABORATORY MODIFIED TIER II DATA VALIDATION CHECKLIST ORGANIC COMPOUNDS

PERFORMED AND, WHERE APPLICABLE, WITHIN ACCEPTABLE LIMTS?**

			<u>YES</u>	NO	<u>COMMENTS</u>
1.		SDG Project Narratives			MA
2.		Traffic Report		п.	1/1/
3.		Volatiles Data	td	<u> </u>	{
	a.	Sample Data			/
		Target Compound List (TCL) Results			/
		Reconstructed total ion chromatograms (RIC) for each sam	ple		
		For each sample:	1	-	
		Raw spectra and background-subtracted mass spectra of			
		target compounds identified			
		Mass spectra of all reported TICs with three best library			
		matches		Ω.	
		Percent solids calculations		□ _	
	b.				
		Initial Calibration Data		□ _	
		RICs and Quan Reports for all Standards		Ξ_	
		Continuing Calibration			
		RICs and Quan Reports for all Standards		□ _	
		Internal Standard Area Summary		Ο	
	c.	Raw QC Data			
		Blank Data	D		
		Matrix Spike Data			
		Matrix Spike Duplicate Data			
4.		Semivolatiles Data			
	a.	QC Summary			
		Surrogate Percent Recovery Summary		0	
		MS/MSD Summary		0 _	
		Method Blank Summary		0 C]
		Tuning and Mass Calibration	. 🗆		

INITIAL DATE: JULY 2007 REVISION DATE: JULY 2007 REVISION: 0.0

GENERIC QUALITY ASSURANCE PROJECT PLAN FOR PROJECTS IN RHODE ISLAND LABORATORY MODIFIED TIER II DATA VALIDATION CHECKLIST ORGANIC COMPOUNDS (Continued)


PERFORMED AND, WHERE APPLICABLE, WITHIN ACCEPTABLE LIMTS?**

		<u>YES</u>	<u>NO</u>	<u>COMMENTS</u>
b.	Sample Data TCL Results Tentatively Identified Compounds Reconstructed total ion chromatograms (RIC) for each			1/1A
	Sample For each sample: Raw spectra and background-subtracted mass			
	spectra of TCL compounds Mass spectra of TICs with 3 best library matches			
	GPC chromatograms (if GPC performed)			
c.	Standards Data (all instruments) Initial Calibration Data RICs and Quan Reports for all Standards Continuing Calibration RICs and Quan Reports for all Standards Internal Standard Areas Summary Internal Standard Areas Summary			
d.	Raw QC Data Decafluorotripbenylphosphine (DFTPP)			
	Blank Data Matrix Spike Data Matrix Spike Duplicate Data			
5.	Miscellaneous Data Original preparation and analysis forms or copies of prepara and analysis log book pages Internal sample & sample extract transfer chain-of custody records Screening Records	tion		pr pr D

F:\P2009\1532\A20\Lab-Data\E - Completeness Checklist.doc

All instrument output, including strip charts from screening activities (describe or list)	INITIAL DATE: JULY 2007 REVISION DATE: JULY 2007 REVISION: 0.0	

INITIAL DATE: JULY 2007 REVISION DATE: JULY 2007 **REVISION: 0.0**

GENERIC QUALITY ASSURANCE PROJECT PLAN FOR PROJECTS IN RHODE ISLAND LABORATORY MODIFIED TIER II DATA VALIDATION CHECKLIST **ORGANIC COMPOUNDS** (Continued)

PERFORMED AND, WHERE APPLICABLE, WITHIN ACCEPTABLE LIMTS?**

			<u>YES</u>	NO	<u>COMM</u>	<u>ENTS</u>
6.	Sample	of-Custody Records e Log-in Sheet (Lab & DC1) laneous Shipping/Receiving Records (describe or list)				
	7.	Internal Lab Sample Transfer Records and Tracking Sheets (describe or list)	? {		/	
	8.	Other Records (describe or list)				
	9.	Comments:				
	**	See laboratory Quality Assurance Plan for limits.				
Comple (Lab)	ted by:	(Signature) Shplen (Printed Name/Title	5 Sar 2)	el	(65 pare	9/19/1 Date
associat	ed with	above information is true and accurate. I further certif the above analyses will be made available for review for his document.	seven		rs following	

(Signature)

Certified by: (Lab)

45 MS7

Date

(Printed Name/Title)

INITIAL DATE: JULY 2007 REVISION DATE: JULY 2007 REVISION: 0.0

GENERIC QUALITY ASSURANCE PROJECT PLAN FOR PROJECTS IN RHODE ISLAND LABORATORY MODIFIED TIER II DATA VALIDATION CHECKLIST INORGANIC COMPOUNDS

PERFORMED AND, WHERE APPLICABLE, WITHIN ACCEPTABLE LIMTS?**

	 YES	NO	<u>COMME</u>
SDG Project Narratives	0/	1	
Inorganic Analysis Data Sheet	Y,		
Initial and Continuing Calibration Verification	6/	Ø	1/10
CRDL Standard for AA and ICP		16	TV JP
Blanks			t A
ICP Interference Check Sample		Q	MB
Spike Sample Recovery			J.
Post Digest Spike Sample Recovery			
Duplicates			NA
Laboratory Control Sample			
Standard Addition Results			
ICP Serial Dilutions			
Instrument Detection Limits, Quarterly			
ICP Interelement Correction Factors, Annually			
ICP Linear Ranges Quarterly		D	J
Preparation Log			
			و المحمد ال
Analysis Run Log			NT
ICP Raw Data			1
Furnace AA Raw Data			/
Mercury Raw Data			1
Percent Solids Calculations			
Digestion Logs			
EPA Shipping/Receiving Records			
(List all individual records)			
Chain-of Custody Records			
Sample Log-In sheet		Π.	
Miscellaneous Shipping/Receiving Records		Ο.	
(List all individual records)			

F:\P2009\1532\A20\Lab-Data\E - Completeness Checklist.doc

				IAL DATE: JULY 2007 ON DATE: JULY 2007 REVISION: 0.0
	GENERIC QUALITY ASSURANCE F FOR PROJECTS IN RHODE LABORATORY MODIFIED TIER II DATA VA INORGANIC COMPOUN (Continued)	ISLÂND LIDATI)	
	PERFORME WITHIN AC			RE APPLICABLE, MTS?**
		<u>YES</u>	<u>N0</u>	COMMENTS
25.	Internal Lab Sample Transfer Records and Tracking Shee (Describe or List) J-HQ/AN (UC)	ets		
26.	Internal Original Sample Preparation and analysis Record (Describe or List Preparation Records Analysis Records			
27.	Description Other Records (Describe or List)		L _	
28.	Comments:		e dreame and derrar	
**	See laboratory Quality Assurance Plan for limits.	<u> </u>		
Comp	oleted by: Stepk			1
(Lab)	(Signature) (Printed Name/7	Title)		Date

certification of this document.

(Signature)

Stich Sul Lby Mg (Printed Name/Title)

979-11 Date

Certified by: (Lab)

Appendix D

XRF Lead Testing Field Data Sheets

Address _____

Date___

Room	Side	Surface	Pb by XRF	Defective	Cult - Arr A
Main Ent	B	Door Filane		Defective	Substrate*
	ß	Door	-0.1		W III
	BCD	inll	1.5		M
	Ċ	Vall Door Radiator Molding	-0.1		 い
	C	Rediator	0.5		M
	Ac	Mold	6.2	y	
340	ABCD	Part	0.0	Y	
	K	2001 Frame	0.2		$\overline{\omega}$
			0.3-0.4		$\frac{\omega}{\rho}$
	+	Wall upper + lower	14-13		P
	\mathcal{D}	Reduktor	1.6-2.3 3.2		M
	MCD	Rad abor Chair rail	0.1	/	
		5:(1	0.1		W NO
	B	window components	0.0		ay
	B	L France	0.0		W
740B	B	L France L Sill L France	0.1		w w
	1	+ Frame	0.0		w
	B	+ conponents	~0.1		M
	みわし君	exper wall	1.0	Y	
	L	lover t	2.2	V	P P
	ABC	Chair Reil + Baseboard	0.2		w
×	B D	Rad abor	3.2	Y	M
	\mathcal{D}	hall	0.3	-/	\mathcal{D}
360C	ABCD	Upper well	1.0	Y	P
	×	lover L	1.3	V	P
	B	had rator	3.2	4	M
	B	nindar comp	Del		Ŵ
	ABCT	window comp CR +BB	0.1		w
	AD	Door + Fram	0.2		W
340 L: brary Hull	D BD	CK + BD Door + Fram Safe upper wall Tore wall Door & France wall Shelfes Door + Frame	4.2	y t	M
Library Hall	BD	upper wall	0.0-1.0	Ý I	P P
/		lover wall		ý l	P
	$\overline{D2}$	Door a Flame	6,0		4
Morac Closet	ABCD	wall	1.0	Y	P
Horac Closed across From 355 B Starr 15	AbcD B D	Shelves	0.0		W
355B		Voor + Frame	0.3		
Stair 15	ABLD	wall	2.2	y	B
		Stair Newel fost	0.0	7	C
·		Nevel fost	1.3	Y	M

and a figure of the second second

*P=Plaster S=Gypsum Wallboard (sheetrock) L=Lead Containing Alloy (No Coating) M=Metal A=Alumimum W=Wood V=Vinyl

Page _____ of _____

Address _____

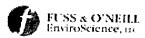
Date

والمحمول والمراجع والمحمول والمستقل والمعار والمعار ومعارفه والمعارفة والمراجع والمحمول والمراجع والمحمول

Room	Side	Surface	Pb by XRF	Defective	Substrate*
		Bullister	1-0	1	M
		Stringer	1.0	Y	M
·		Riser	1.1	1	M
		undernath Stains	0-1	<i>l</i>	M
		Metal Handrail	0.1		N
	BD	Door	0.1		M
342	ABCD	upper walf	1.3	K	P
	L	laver L	1-0	X	ρ
	B	Pad stor	2.5	Ý	M
	B	window S. []	0,0		W
	B	window conp	-0.1		M
	AACD	CR +BB	0.0		W
2	\mathcal{D}^{-}	Door + France	0.0-0.4		M.
357 LIBRARY		Celling (TIN)	-0.1		M (TIN)
		Ceiling (ABOVE TIN)	0.1		P
	BACD	hover &	2.5	Y	P
		buce I	1.7	Y Y	P
	ĊD	ind the	3.4	Y	M
	LD	windows:11	0.1		W
	LL	+ components	0.0		M
		Shelving	0.0		M
			0.0		W
	A	wall	0.1		P
355,355A+355B	ABCD	upp call	1.2	Y	P
		love +	3,3	Y	P
	\mathcal{D}	Red Tatos	3.2	Y	M
		Window comp Poor & Frame	0-1		M
· · · · · · · · · · · · · · · · · · ·	BI		0.0-0.1		W
		5 helves	0-1	i	ω
	#BCD	ingger wall	1.6	Y	ρ
work Room	+	lower +	2.3	X	ρ
<u>а</u>	A D	wall	0-1		Ð
	<u>D</u>	window pomps	0,1		W
2 -64	D	Radiator	0,1 3.3	Y	al
358	ABCD	wall	1.0-2.3	Ý	ρ
	٤	BB-CR	0.1		W
	Ð	Door + Frank	-0.i		\checkmark
	β	Radiator	3.0	У	M
		Cest my heetrock) L=Lead Containing Alloy (No Coating)	0.0		

*P=Plaster S=Gypsum Wallboard (sheetrock) L=Lead Containing Alloy (No Coating) M=Metal A=Alumimum W=Wood V=Vinyl

Address _


_____ Date_____

11 M. A. Market and Management of the second s

Room	Side	Surface	Pb by XRF	Defective	Substrate
356	ABCD	wall	1.3	1	ρ
	AB	wondar comp	0.1	<u> </u>	M
	Ľ_	+ 57(1	0.2		W
	Ċ	Obl Dawy	0.3		
354	ADED	wall	2.2	Y	₩ ₽
		CR-BB	0.2		W
	A	window comp	-0.1		M
	A	1 all	0.(w
		Computer parches	0.3		W/M
· · · · · · · · · · · · · · · · · · ·	AD	Radiators	3.(V	a
	AD BP	Door + Frame	0.1	/	M
Hall outside	ABCD	walf	0.2		P
353	ABCD	wood Trim	0.1		W
	1	Door + Franc	0.1		W
	L	locker	0.2		M
456	ABCD	wall	0,8-1.7	V	$\dot{\rho}$
	★B	Pad itor	3-1	-	M
	.×	wordow sill			w
		+ comp	0.2		M
tall outside	BD	wall	9.0-0.2		 P
458		CR+BB	0,1		- W
		Poor + Fime Wall	0.1		Ŵ
458	B	Wall	0.0		P
	ACD	1	1.1	×	P
	B	Radgitor	3.3	X	M
460	3	nall	1.5	Y	P
	ACD	wall	0.1		P
	B	Rodeator	3.2	V	RI
	B	s: l/	0.1		W
	B	windows comp	0.2		M
	B	BB	0.0		W W
	D	Door + Frame	-0.1		W
462	ABCD		1.2-5.0		P
		mold my	1,0	-{ +	- V
		Ceilow	0.0	-/	P
164	ABCD	nal)	1.0-2.2	- y	 P
		Rodiator	3.0	- 	M
	BC D	Don	0.0	-/	M
· ·	Ą	Door	0,0		<u></u>

*P=Plaster S=Gypsum Wallboard (sheetrock) L=Lead Containing Alloy (No Coating) M=Metal A=Alumimum W=Wood V=Vinyl

Page <u>3</u> of _____

Project #		Address		Date	<u> </u>
Room	Side	Surface	Pb by XRF	Defective	Substrate*
463	ABCD	hall	1.5-3.0	Y	P
		BBOCR	0.0		Ŵ
	CD_	Radiator	3,0	Y	M
	B	Door & France	0.2	_	M
Castodra R	m taca	wall Pareling Door & Frank	0,0		W
uth Floor	9	Dor & Frank	0.1		w
459+461	ABED		0.0		Ŵ
		- Ceiling	01		ρ
4570455	ABCD		0.0		6
	ß	Door & France	-0.1		W
	\mathbb{D}	windon sill	0.2		w
	$1\overline{\mathcal{D}}$	+ conservicts	O. d		M
	Ď	Radiator	0.1		n
454	AACD	Wall	1.3-2.0	Y	P
	AT)	Rad ator	3.1	V	M
	A	wall	0.1	雾	P
556	ABCD	wall	1.1-2.5	Ŷ	ρ
	AB	Radrators	3.1	4	M
·····	ABCD	CR+BB	0.3		W
556 storage		Floor	0.1		Ŵ
58-560	ABCD	walls	1.6	X	P
	B	bad into	3.3	y y	M
	ABCD	CRLAB	0.2		W
Vall outside 558	BD	walls	0.8-1.2	V	p
	B	Door mitters	-0.2		(e)
	BD	BB+CR	0,1		<u> </u>
·		Door	0.0		M
562	BD C HBCD	wall	1,2-2.5	Y T	D M P
·	BC	Rad tor	3.1	Y	M
	D	Door	-0.1		M
	BC D D	cabinets	0.3		Ŵ
561	ABCD BD	walls	1.1-2.6	Y	p
	ED)	Door wall Rad tor Door Cabonets walls Red for	3.0	¥.	M
561A	AMED	Wall Pareline	0.0		~
		Wall Panel: 12 Ce. (mg Wall	-0.1		CT
	ApeD	hall	1.0	Y	P
		Hand rail	0.1		$\overline{\omega}$
		Ballaster Wall		Y	M
559	ANCD	wall	1.0	V	P

*P=Plaster S=Gypsum Wallboard (sheetrock) L=Lead Containing Alloy (No Coating) M=Metal A=Alumimum W=Wood V=Vinyl

Address _____

Date___

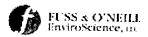
Room	Side	Surface	Pb by XRF	Defective	Substrate*
559	ABED	CRZBB	@,(Delective	
	2	Rudiator	3,1	X	W M
557 +555 ~554	ABCD	wall	0.7-1.7		P
a554	Ð	Radiator	3.1	- <u>/</u>	M
	\mathcal{P}	wall Radiator window 5:1/	0.1		
	\mathcal{D}	+ comp	-0,1		M
		+ comp Cabriets	-0.2		Ŵ
554A	ABCD	wall	1.0	Y	$\overline{\rho}$
		ce:/m	0.4		M
	A	Doon	8.1		an
256	Abc) AD	walls	0.4		B
	A J	Doon Doon walls Rudsator	1,1	Y	M
		Flore	0.4		Ċ
		P.pcs Window France Ceilony Certaine Tile Stall; Walls	0.5		as
	AB	window France	0.3		W
<i>a 1 i</i>		Ceiliny	0.2		ρ
Girls Jase	ABCD	cernine Tile	23	Y	Count
near 256		Stalls	0,2		
- <u> </u>	ABCD	walls	1,0	X	B
	D	DOD L	0.0		W
258	ABAD	fuall		Y	В
	C	Wall	0.5-0.7	,	P
240	BC D	ivall	1-0	¥	B
	A		0.6-0.8		Ρ
<u></u>	0	511/	0.0		W
Boys law		Ceraine Tile	0.4		Corner
nen 240	ABCD	wall	1.4	<u> </u>	ß
	A	Radeato	1.6	X	M
262	ABCD	wall	25	Y	B
	A	wall	0.2		\cup
		Door	0.0		w
Hall outside 262	BD	will	1.0	<u> </u>	3
		Ce:1mg	@,5	·	Ø
	5D	Door INFrand	6.2		<u>~</u>
116201A		Fire pipe	0.1		M
L614761A	ABCD	wall	Atte 0.0		Glazal B
		hall	_ € € 0.3-23	<u>y</u>	B
·	B	Door Frank	0.0		m
		eetrock) L=Lead Containing Alloy (No Co	1-3	<u> </u>	M

*P=Plaster S=Gypsum Wallboard (sheetrock) L=Lead Containing Alloy (No Coating) M=Metal A=Alumimum W=Wood V=Vinyl

,

Page <u>5</u> of _____

Project #	Address


արուց, որուշ հուցիս, շատ առաջանցություրը հայտորը։ Դանչորը շատ ընդելու էլչ եւթ. եւ թուց երթություն, ու ու թա

Date_____

Room	Side	Surface	Pb by XRF	Defective	Substrate*
257	ABCD	wall	0.0-0,3		B
257A	ABCD	wall	1.4	X	B
a257B	B	Door + France	03		
		Salves	0.1		
259+259A	AACD	Shelves Walls	0-0-1.1	Y	B W
	Z	Door	0-1		W
	L		0.0		M
		Cellone	0.1		P
		1 cites trane	03		M
255	ABCD	walls	0.0-0.5	Y	B
		Floor	0.2		C
		walls Floor Cetmy	01		P
		Pipe Walls Floor Wall Floor	0.5		M
253	ABOD	walls	03-166	Ý	B
		Floor	6.0 0.6-1.2		G
254	ABCD	wall	0.6-1.2	У	B
	-	Floor	0.2	, , , , , , , , , , , , , , , , , , , ,	Ĉ
	A	Floor Floor window Ivane + Comp Rad rates	0.2		Ŵ
•	A	+ Comp			M
	AB	Rod rator	0,1	Y	M
Hall ontside 252	ABC	wall	0.0-0.5		P
252	ABCD	Molding	0.0		Ŵ
<u> </u>	CI	Door & France	0.0		W
	4	Pol Door	6.0		M
352,350, 351,≈353	ABCD	Wall	0.1-0.2		P
351,-353	1	CR+BB	0.2		W
	A	window soll	0.1		W
	A	+ comp	-0.1		M
	A	had ontor	1-4	<u> </u>	A
	E	Door + France	0.0		Ŵ
Harwell	ABCD	wall	0.0		ß
outride 350		Floor	.0.0		C
		Hand rail	0.4		M
		Nevel fost	1.3	Y	bet
		Bullaster	1.3	У	M
		Rifer	0.5	-	M
		Stringen	1.3	Y	M
	ADCD	well	0.8		P
	D	Dbl Door	0.2		M

*P=Plaster S=Gypsum Wallboard (sheetrock) L=Lead Containing Alloy (No Coating) M=Metal A=Alumimum W=Wood V=Vinyl

Page 6 of



Project #_____ Address _____

Date____

Room	Side	Surface	Pb by XRF	Defective	Substrate [*]
317	ADED	Surface Wall banding Wall Dor Wall Dor France L			Ś
		wall	0.0		$\overline{\mathfrak{I}}$
	C	Padinter	0.0 0.3 -0.7		14
	A	Door	0,3		ny m
starmell 41	6 ADCD	wall	-0.2		B
\$7 99		Door France	8-3	Y	M
		LL	0.1		Ŵ
		L Door Reductor Floor Stair Conformats wall Ceiling Safe Radiator Walls Cinon Moulding Floor Chairs Walls Door Frame Radiator CR + BB	0.1		M
		Rudvator	3-(¥.	M
		Floor	0.5	7	C
		Star Conporents	0.3-0.5		M
324	ABCD	irall	0,4		P
		Ceiling	0,4 1.8 7.3	X	P
		Safe	7.3	4	M
		Pad alon	0.4		M
Audstorm	ABD	walls	0.4	У	p
upper_	Anch	Crown Moulding	0.4-0.6		P
		Floor	0.0		W
		Chairs	0.0		WIM
320,313,311	, AbcD	walls	0.2-1.0	У	W/M P
320,313,311 318,309,314 +314	·,	Door + France	0,4		
+314		Rad rator	0.4	У	M
		CRABB	0.0		
309B	ADOD	Walls Floor Door & Frank	6.0-0.1		<u></u> β
		Floor		_	w
		Door & Frang	0.1		W
all outside	ABCD	Wall	0.1-1.1	V	P
309B		Door + France	0-1	7	W
		chain Rail	01		Ŵ
		Lockers	0.4		M
312	ABCD	walls	0.0.0.6		P
		Chain Rail	-0.1		w
	$\widehat{\mathcal{D}}$	Wardow sill	0.0		V
	D	+ comp			M
	\mathcal{D}	Radiator	0.1	Y	M
10, 308, 307,	ABCD	walls.	0.7-6.4	- y	ρ
305, 304, 303		Chain Rail & BB	0.0		Ŵ
102, 2301	<u> </u>	Pad: atos	0.0-1.2	y	M
•		wordow S.M	0.0		W

Page _____ of _____

Project #_____ Address _____

Date

Room	Side	Surface	Pb by XRF	Defective	Substrate*
Boys Room near	ABCD	walls Ceraine	0.0-0.3		Caranie
- 307	L	L	0.1	1	Block
	B	Radoator	-0.1		M
306	ADCD		0.2-7.0	Ý	
	4	CR + AB	0.1		w
	\mathcal{D}	Radrator	1.3	Y	M
	B	Door & Frank	-0.1		/
Girls Recom	ADED	wall & ceramic	-0-1		Ceranica
Near 303	L	+			Mock
	B	Radiator	-0,1		M
	B	window Sill	0.3		W
301 A	AncD	walls	00-0.3		\mathcal{D}
	ABC	shelves	NC		Ŵ
	D	Davis + France	OIT		
300A	ABCD	Down + France Wall & ypen Lover	0.1-0.7		DP PP S
	L	here;	5-8		
	\mathcal{D}	Radrator	1.3		M
	A	Shaves	0-0		<u>در</u>
		E/an	0-0 0.3		$\overline{\mathbb{V}}$
300	ABCD	valls baren + upper wondowsself + Comp De E	0.0-0.4		P
	t L	J luna	6.0	V	- <u>ρ</u>
	C	wond a syll	-0-1		w
	C	¥ Com	0-1		M
	·B	Door a Frame	-0-1		W
	Å	Radiator	1.2	1/	
And Hornum /	ABCD	Walls	0.0-0.2	Y	M
Stage	+	+ infer			P
- p	3D	And into cover	0.1		<u>р</u>
	BD	had the	1.1		•
	~	Inva action	0.0		P
	ABCI)	C P	0,1		
	V	BB	0.1-0.5		
		Store Floor	0.0		w
	BD	Stage Door & Frame	0,1	<u> </u>	W
	BCD	Stage wall	-0.1-0.5		R
	C			1/	M
		Sporal stair	1.1		M
		Decorat ne Pluster			ρ
	ADCD	Back stage wells	0.4-0.7		φ

and a state of the second state

*P=Plaster S=Gypsum Wallboard (sheetrock) L=Lead Containing Alloy (No Coating) M=Metal A=Alumimum W=Wood V=Vinyl

Page <u>8</u> of _____

Project #_____ Address _____

Date_____

Room	Side	Surface	Pb by XRF	Defective	Substrate*
Hall From Cafe To Aud town	AC	wall	0.1		M
To And form		Floor	-0-1		C
	BD	Dor	0.0		w
	MD	+ Frank	0.0		M
	C	Padraton	0.1		M
		Hand mil	0.4	· · · · · · · · · · · · · · · · · · ·	M
Cafe	ABCD	wall	0.4 4.0	Ý	B
0	L	1	-0.1	1	Ø
		Vert columns	0.1		
		Mandrail	0.7		M
	C	Black will	3.3	4	Block
		Door & Frank	-0.1	5	
Kitchen	ABCD	Wall Ce: Trug Door + Frang	0.1-0.7		M B
		Ce: 1mg	00		P
	$\overline{\mathbf{r}}$	Door + Frang	0-3		M
45 Gym	ABCD	wall	0.1		ß
1	AC	well	Diz		Black
	BD	Bleechers	0.3		W
	BD	Sumart Bennis	1.3	У	M
		Support Bears Floor	0.0	- /	Ŵ
	B	test Duits	0.5		M
	C	Stringer to plughes	1-4	y	M
	L	Riser L	1.5	Y	M
	AC	Dleechers	0.0		W
	AC	uper Floor	0.1		C
	1	Door France	0.0		M
HS Gym Entry	ABCD	wall	0.4		Block
/ /		Radiator	0.2		M
HS Gym Beits	ANCD	walls	0.0		Block
		Stalls	0.1		M
			-0.1		
259B2C	AMCD	Coiling Wall	0.2		B
stair wells to	ABED	wall boven	6-1	Y	Block
Bleeders	X	L upper	811		L
		stronger	1.3	Y	M
Boys locker	AND	Tan Block wall	0.0		Bloch
Room 9	L	Gran L	1.1	Y	Black
Girls		Door Fram	0,1	/	M
		Ceilme	0.7	·····	$-\rho$

*P=Plaster S=Gypsum Wallboard (sheetrock) L=Lead Containing Alloy (No Coating) M=Metal A=Alumimum W=Wood V=Vinyl

Page _____ of _____

Project #		Address		Date			
Room	Side	Surface	Pb by XRF	Defective	Substrate*		
**************************************		Vert colem	0.5		M		
			0.0		M		
452 ,453 451.	ABCD	lockers ABCD wall	0.0-0.3		P.		
452,453,451, ~450		CR + BB	~0.1		Ŵ		
		CR + BB Red 4 ator	1.7	У	M		
		Ceilore	0.0		P		
		Dar	0.0		Ŵ		
		Ce: ling Door + Frame winder 5511	0.0		W		
	· · · ·	window still	0.0		W		
		+ con Danete	-0-1		M		
tall outside	ABCD	wall	0.3				
450		L conponents wall Door & Frame	0-1		Ŵ		
•		locker 5	-0.1		M		
419	ABCD	will loven	1.9	V.			
	ABCD	CR + BB Door + Frame	0.5	/			
···	i	CP + BB	-0.1		- L		
		Por + Fin de	0.1		M		
		Radiator	1.8	V	M		
424	ABCD	wall	1.0	V V	P		
	<u> </u>	Hand rail			M		
	A	Pad ator	3.0		1		
<u> </u>	A A	windor 5.11	-0.1		W		
417,415,413			0.6		- P		
((), (), ()	L	wall upper	2.8		ρ		
		CR + BB	0.1				
		Door + France	-0.1		w		
·		Stairs	0.1		$\frac{\omega}{\omega}$		
		winder 5:11	0.0				
·····		+ Comp	0-1		m		
		Puda to	1.9		M		
422,411,420,	AMOD	10	0.7-1.0	-/,	P		
409,418,416,	L	Jower +	2.4-7.0	-ý	$\frac{\rho}{\rho}$		
412 417410		AB & CR	0.1	($\frac{\rho}{\omega}$		
405,407,406		Dot a France	00				
404,401400		Padeator	0.1-1.7		11		
10, 10, 10		wondow Soll		/	/~/		
		& Cons	0.1		M		
409B ~A	n.h.	vall conp	0.2		P		
	AMLD	Fluor	-0.1				
· · · · · · · · · · · · · · · · · · ·		heetrock) L=Lead Containing Alloy (No Coating			w		

*P=Plaster S=Gypsum Wallboard (sheetrock) L=Lead Containing Alloy (No Coating) M=Metal A=Alumimum W=Wood V=Vinyl

Project #		Address	Address		
Room	Side	Surface	Pb by XRF	Defective	Substrate*
Hall outside	ABED	wall upper. t Lover			ρ
418	L	+ Leven	05-1.0	Ý	p
			D. (W
		Lockers Door + Frame	0.0		aj
		Door + Frame	0.1		W
		Ceilmy	0.3		P
414	AMCD	inall upper	0.3	Y	P
	<u> </u>	L Tower	>9.9	Y	Ø
		Rodrator Window S: // + Comp	1.3	Y	M
		wondon Sill	-0.1		ω
		- Comp	0.1		M
		0.			
<u> </u>					
				*	
······································					

l (

4,

Appendix E

TCLP Lead Laboratory Analytical Results and Data Verification Documentation

Modified Tier II Data Validation Narrative

Project: 20100607.A20 Site Investigation/Targeted Brownfields Assessment Former Woonsocket Middle School

ESS Laboratory Project Number:	E108E35
Date Samples Received at Laboratory:	August 19, 2011
Date of Review:	November 7, 2012

Five composited building materials sample, including one duplicate sample, were collected and submitted to Premier Laboratory (Premier) and analyzed for lead via the Toxicity Characteristic Leaching Procedure (TCLP) by United States Environmental Protection Agency (USEPA) Method 1311/6010.

Dedicated sampling equipment was utilized, so equipment blanks and field blanks were not collected during these sampling activities. The samples were analyzed within the method-specific holding times.

No analytical method non-conformances were reported in this analytical report. The relative percent difference (RPD) calculated for the primary duplicate pair was 76%. The elevated RPD for the primary-duplicate sample pair was most likely attributable to sample heterogeneity and/or matrix interference.

Analytical results were compared to the USEPA Resource Conservation and Recovery Act (RCRA) hazardous waste criterion for TCLP lead of 5.0 milligrams per liter. For all five samples, the laboratory reporting limits were low enough to allow direct comparison to this criterion.

INITIAL DATE: OCTOBER 2011 REVISION DATE: FEBRUARY 2012 REVISION: 1.0

EIOSESS

GENERIC QUALITY ASSURANCE PROJECT PLAN FOR PROJECTS IN CONNECTICUT, MASSACHUSETTS AND RHODE ISLAND MODIFIED TIER I COMPLETENESS CHECKLIST

	YES	NO
1. SAMPLING AND FIELD MEASUREMENTS:		
Field measurement calibration records		DNIA
Groundwater field measurements (if applicable)		
Soil sampling field measurements (if applicable)		
Sediment sampling field measurements (if applicable)		
Surface water sampling field measurements (if applicable)		
Low-flow sampling field measurements (if applicable)		
Documentation of field activities	X	
Sample numbering and labeling	X	
Chain-of-Custody records	X	
Trip blanks		AIND
Duplicate samples	X	
Equipment blanks		DNA
Split samples (if any)		
2. LABORATORY MEASUREMENTS:		
Trip blanks		DNA
Instrument blanks	X	
Laboratory control samples	₿¥	
Duplicates samples	0×	
Equipment blanks		ONIA
Matrix spike/matrix spike duplicates		□ J
Analysis type	K)	
Chain-of-Custody records	M	
Surrogate recoveries		Alen
Sample Project Narratives	12d	
Split samples (if any)		AIU D
TOTAL:	10	
PERCENT CO	MPLETE:	100_%

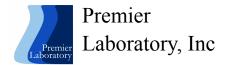
FUSS&O'NEILL

INITIAL DATE: OCTOBER 2011 REVISION DATE: FEBRUARY 2012 REVISION: 1.0

GENERIC QUALITY ASSURANCE PROJECT PLAN FOR PROJECTS IN CONNECTICUT, MASSACHUSETTS AND RHODE ISLAND FUSS & O'NEILL MODIFIED TIER II DATA VALIDATION CHECKLIST

PERFORMED AND, WHERE APPLICABLE, WITHIN ACCEPTABLE LIMITS?

	YES	NO	COMMENTS
1. SAMPLING AND FIELD MEASUREMENTS:			
Field measurement calibration records			NIA
pH - \pm 0.3 pH units			<u> </u>
S.C \pm 5% of calibration solution, within?			1
calibration range			
Temperature - ± 0.5 °C			
D.O \pm 5% of calibration solution			
Groundwater field measurements (if applicable)			
Water depth measured to within 0.01 ft.?			
Soil sampling field measurements (if applicable)			
OVM - ±2 ppm			
OVA - ±2 ppm			
Sediment sampling field measurements (if applicable)			
Descriptive information recorded?			
Surface water sampling field measurements (if applicable)			
Water depth measured to within 0.01 ft.?			
Low-flow sampling field measurements (if applicable)		-	
S.C ± 10%			
pH - ± 0.2 pH units			
Temperature - ± 10%			
Turbidity - ±5 NTU			<u>_</u>
Documentation of field activities			
Site-specific information documented in field notebook?	X		
Field data sheets completed?	X		
Sample numbering and labeling			simple numbering specific to building materials
Sample numbering conforms to sample I.D. system			to building materials
identified in QAPP?		×	0
Chain-of-Custody records			
Chain-of-Custody forms completed?	X		


F:\pad\ADEA&R\Basedocs\Report_Templates\QAPPs\Generic-QAPPs\CT-MA-R1\Rev-1\Appendicies\Appendix-1-Completeness-Checklist.doc

INITIAL DATE: OCTOBER 2011 REVISION DATE: FEBRUARY 2012 REVISION: 1.0

GENERIC QUALITY ASSURANCE PROJECT PLAN FOR PROJECTS IN CONNECTICUT, MASSACHUSETTS AND RHODE ISLAND FUSS & O'NEILL MODIFIED TIER II DATA VALIDATION CHECKLIST (Continued)

PERFORMED AND, WHERE APPLICABLE, WITHIN ACCEPTABLE LIMITS?

	<u>YES</u>	NO	<u>COMMENTS</u>
Trip blanks			
Trip blanks submitted, one per day?			NIA
Any compounds detected in trip blanks?			
Duplicate samples	1		
Field duplicates performed, 1/20 samples?	0×		
Duplicates performed on 10% of samples screened		_	AIU
for explosives?			
Is percent difference within 30% for all field parameters?			
Equipment blanks	1 1		
Equipment blanks submitted, one per sampling day?			
Any compounds detected in equipment blank?			
Split samples (if any)			
Split samples collected? Is percent difference within 30% for split samples?			
is percent difference within 50% for split samples:	لسا		
2. LABORATORY MEASUREMENTS: Trip blanks			
 LABORATORY MEASUREMENTS: Trip blanks Trip blanks submitted, one per day? 			NIA
Trip blanks Trip blanks submitted, one per day?			L
Trip blanks			NIA J
Trip blanks Trip blanks submitted, one per day? Any compounds detected in trip blanks?			NIA V
Trip blanks Trip blanks submitted, one per day? Any compounds detected in trip blanks? Instrument blanks ^{**}			<u>AIN</u>
Trip blanks Trip blanks submitted, one per day? Any compounds detected in trip blanks? Instrument blanks ^{**} Laboratory control samples ^{**}	A N -		NIA
Trip blanks Trip blanks submitted, one per day? Any compounds detected in trip blanks? Instrument blanks ^{**} Laboratory control samples ^{**} Duplicates samples ^{**}	反反对口		
Trip blanks Trip blanks submitted, one per day? Any compounds detected in trip blanks? Instrument blanks ^{**} Laboratory control samples ^{**} Duplicates samples ^{**} Equipment blanks ^{**}			
Trip blanks Trip blanks submitted, one per day? Any compounds detected in trip blanks? Instrument blanks ^{**} Laboratory control samples ^{**} Duplicates samples ^{**} Equipment blanks ^{**} Matrix spike/matrix spike duplicates ^{**}			
Trip blanks Trip blanks submitted, one per day? Any compounds detected in trip blanks? Instrument blanks ^{**} Laboratory control samples ^{**} Duplicates samples ^{**} Equipment blanks ^{**} Matrix spike/matrix spike duplicates ^{**} Analysis type	MOD N N N O		
Trip blanks Trip blanks submitted, one per day? Any compounds detected in trip blanks? Instrument blanks ^{**} Laboratory control samples ^{**} Duplicates samples ^{**} Equipment blanks ^{**} Matrix spike/matrix spike duplicates ^{**} Analysis type Chain-of-Custody records	发发口口及发发口!		N/A
Trip blanks Trip blanks submitted, one per day? Any compounds detected in trip blanks? Instrument blanks ^{**} Laboratory control samples ^{**} Duplicates samples ^{**} Equipment blanks ^{**} Matrix spike/matrix spike duplicates ^{**} Analysis type Chain-of-Custody records Surrogate recoveries ^{**}	文友 文文ダ		N/A
Trip blanks Trip blanks submitted, one per day? Any compounds detected in trip blanks? Instrument blanks ^{**} Laboratory control samples ^{**} Duplicates samples ^{**} Equipment blanks ^{**} Matrix spike/matrix spike duplicates ^{**} Analysis type Chain-of-Custody records Surrogate recoveries ^{**} Sample Project Narratives	XOXXOOXXO		NIA V

61 Louisa Viens Drive Dayville, CT 06241 Fax: 860-774-2689 Phone: 860-774-6814 Toll-Free: 800-334-0103

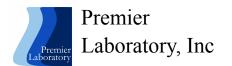
ANALYTICAL DATA REPORT

prepared for:

Fuss & O'Neill, Inc. 317 Iron Horse Way Suite 204 Providence, RI 02908 Attn: Pat Dowling

Report Number: E108E35 Project: 20100607.A20/ Former Middle School

Received Date: 08/19/2011 Report Date: 08/26/2011


Murasm

Premier Laboratory, Inc Authorized Signature

Certified and Compliant with: CT (PH-0465), EPA (CT00008), MA (M-CT008), ME (CT0050), NH (2020), NJ (CT007), NY (11549), PA (68-04413), RI (LAO00300), UCMR2 (CT00008), VT (VT11549)

61 Louisa Viens Drive Dayville, CT 06241 Fax: 860-774-2689 Phone: 860-774-6814 Toll-Free: 800-334-0103

> Report No: E108E35 Client: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

CASE NARRATIVE / METHOD CONFORMANCE SUMMARY

Premier Laboratory, Inc received five samples from Fuss & O'Neill on 08/19/2011. The samples were analyzed for the following list of analyses:

TCLP Metals by SW-846 6010B[3000]

Non-Conformances: Work Order:

None

Sample:

None

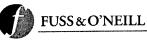
Analysis:

None

Premier Laboratory, Inc Analytical Data Report

Report No: E108E35 Date Received: 08/19/2011 15:46	Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School						
Parameter	Result	DL	Units	Completed	By	Dilution	
(1) 818DD-TCLP-01 Date Collected: 08/18/2011 10:00	Matrix: Other						
Metals by ICP by SW-846 6010B, TCLP Lead	0.050	0.040	mg/L	08/26/2011 10:14	NJB		
(2) 818DD-TCLP-02 Date Collected: 08/18/2011 11:00	Matrix: Other						
Metals by ICP by SW-846 6010B, TCLP Lead	0.080	0.040	mg/L	08/26/2011 10:16	NJB		
(3) 818DD-TCLP-03 Date Collected: 08/18/2011 12:00	Matrix: Other						
Metals by ICP by SW-846 6010B, TCLP Lead	0.79	0.040	mg/L	08/26/2011 10:18	NJB		
(4) 818DD-TCLP-04 Date Collected: 08/18/2011 12:30	Matrix: Other						
Metals by ICP by SW-846 6010B, TCLP Lead	0.44	0.040	mg/L	08/26/2011 10:21	NJB		
(5) 818DD-TCLP-05 Date Collected: 08/18/2011 13:00	Matrix: Other						
Metals by ICP by SW-846 6010B, TCLP Lead	0.18	0.040	mg/L	08/26/2011 10:23	NJB		

					Z	ACT BUN				
9	FUSS & O'NEILL Disciplines to Deliver (861) 646-2469 • www.FradO.com)'NEILL <i>beliver</i> ^^w.FandO.com			146 Hartford F 56 Quarry Roa 1419 Richland 78 Interstate D	 <i>COORDO</i> 146 Hartford Road, Manchester, CT 06040 56 Quarry Road, Trumbull, CT 06611 1419 Richland Street, Columbia, SC 29201 78 Interstate Drive, West Springfield, MA 01089 		field Street, Suite 10(JIII Succe, Succe, Suit shington Street, Suite	3:7 50 Redfield Street, Suite 100, Boston, MA 02122 275 Promenade Street, Suite 359, Providence, RI 02908 0 80 Washington Street, Suite 301, Poughkeepsie, NY 12601	317 12 KO 14755 02908 WMY Y 12601
	CH	CHAIN-OF-CUSTODY RECORI	ODY RE	SCORD	24401		∎ 1 Day*	Image: Turnaround Image	round D Other (anys) s) *Surcharge Applies	(sk
PRO PRO	PROJECT NAME	BANET MS.	PROJECT LOCATION	CATION ST	L L	PROJECT NUMBER	2	PREMIER	LABORATORY	
REPORT TO: INVOICE TO:	–		G Cunthun	. Cresher	Analysis Crentrances co	20100			Containers	P3r3,
P.O. No.:	914 20	914 ZOICOCOT. AZO	2	0		122 CS		100000	1000 UT	194717
Sampler s Signa Source Codes: MW=Monitoring W SW=Surface Water		P. C. R. R. V. S. Soil P.W.=Potable Water S.=Soil T=Treatment Facility B=Sediment	LDate: W=Waste A=Air				Nater Nater	02 02 02 02 02 02 02 02 02 02 02 02 02 0	C 110 100 100 100 100 100 100 100 100 10	
X=Other	X=Other BULLANG	MATERINS			E 4 B				20, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1	
Item No.	Transfer Check	Sample Number	Source Code S	Date Time Sampled Sampled	X	2011	07 105 201 CO	A A A A A A A A A A A A A A A A A A A	A LT SELECTION COMME	nts
1 1	100	818 DD- TCUP - Ø	X	IZNUE 11 1000	⊅ X X		×			
へ		81800-TCLP-02	×	ISAUF-11 1100	X		×			
m >		81800-40-40-83	×				× 1			
エ) > >			× >				X >			
<u>ຈ</u>	>> >>	818 00- 10- 20- 20	×	adac 1. 11-30000 1	×		<			
									-	
Transfer Number	Relinqu	Relinquished By	Accepted By		Date Time Repo	Reporting and Detection Limit Requirements:	rements: S	11		
0		Lo La	the Frid	20 81	http://www.addi					ļ
	the second	Doug of		18 19 19	11 072	please	j j	cutacter .	nen leven	
			athal 1	-angra	av. crth	R. R.	Ĺ]



INITIAL DATE: JULY 2007 REVISION DATE: JULY 2007 REVISION: 0.0

GENERIC QUALITY ASSURANCE PROJECT PLAN FOR PROJECTS IN RHODE ISLAND LABORATORY MODIFIED TIER II DATA VALIDATION CHECKLIST INORGANIC COMPOUNDS

PERFORMED AND, WHERE APPLICABLE, WITHIN ACCEPTABLE LIMTS?**

		<u>YES</u> <u>NO</u>	COMMENTS
1.	SDG Project Narratives		
2.	Inorganic Analysis Data Sheet		
3.	Initial and Continuing Calibration Verification		
4.	CRDL Standard for AA and ICP		
5.	Blanks		
6.	ICP Interference Check Sample		
7.	Spike Sample Recovery		
8.	Post Digest Spike Sample Recovery		NA
9.	Duplicates		
10.	Laboratory Control Sample		
11.	Standard Addition Results		147
12.	ICP Serial Dilutions	□/ .	INA
13.	Instrument Detection Limits, Quarterly		Annual
14.	ICP Interelement Correction Factors, Annually		
15.	ICP Linear Ranges Quarterly		
16.	Preparation Log	e, o .	
17.	Analysis Run Log		
18.	ICP Raw Data		
19.	Furnace AA Raw Data		NA
20.	Mercury Raw Data		NA
21.	Percent Solids Calculations		NA
22.	Digestion Logs		
23.	EPA Shipping/Receiving Records	_	
	(List all individual records)		
	Chain-of Custody Records		200 01
	Sample Log-In sheet		Umo_
24.	Miscellaneous Shipping/Receiving Records		
	(List all individual records)		

GENERIC QUALITY ASSURANCE PROJECT PLAN FOR PROJECTS IN RHODE ISLAND LABORATORY MODIFIED TIER II DATA VALIDATION CHECKLIST INORGANIC COMPOUNDS (Continued) PERFORMED AND, WHERE APPLICABLE, WITHIN ACCEPTABLE LIMTS?** **COMMENTS** YES NO Internal Lab Sample Transfer Records and Tracking Sheets 25. (Describe or List) NA Internal Original Sample Preparation and analysis Records 26. Π (Describe or List M Preparation Records Analysis Records Π Description Other Records (Describe or List) 27. 28. Comments: See laboratory Quality Assurance Plan for limits. ** Nicole Bat Completed by: NICAL BLOG (Printed Name/Title) (Signature) (Lab)

INITIAL DATE: JULY 2007 REVISION DATE: JULY 2007

REVISION: 0.0

FUSS&O'NEILL

I certify that the above information is true and accurate. I further certify that all laboratory results associated with the above analyses will be made available for review for seven (7) years following certification of this document.

(Printed Name/Title) ID/51/12 Date Certified by: (Lab)

Appendix F

Lead Paint Chip Laboratory Analytical Results and Data Verification Documentation

Modified Tier II Data Validation Narrative

Project: 20100607.A20 Site Investigation/Targeted Brownfields Assessment Former Woonsocket Middle School

Premeir Laboratory Project Number:	E108E34
Date Samples Received at Laboratory:	August 19, 2011
Date of Review:	November 7, 2012

Eleven paint samples, including one duplicate sample, were collected and submitted to Premier Laboratory (Premier) for analysis of total lead concentration by United States Environmental Protection Agency (USEPA) Method 6010.

Dedicated sampling equipment was utilized, so equipment blanks and field blanks were not collected during these sampling activities. The samples were analyzed within the method-specific holding times.

No non conformances were noted in this analytical report.

The RPDs calculated for the primary-duplicate sample pair was approximately 50%. The elevated RPDs are likely attributed to sample heterogeneity and/or matrix interference.

Analytical results for the building materials samples were compared to the Rhode Island Department of Health definition of lead-containing paint, which is 150 milligrams per kilogram (mg/kg) for building occupancy. Laboratory reporting limits were low enough to allow a direct comparison to this criteria.

EIOSESY

. . .

GENERIC QUALITY ASSURANCE PROJECT PLAN FOR PROJECTS IN CONNECTICUT, MASSACHUSETTS AND RHODE ISLAND MODIFIED TIER I COMPLETENESS CHECKLIST

	YES	NO
 SAMPLING AND FIELD MEASUREMENTS: 		
Field measurement calibration records	X	
Groundwater field measurements (if applicable)		ain D
Soil sampling field measurements (if applicable)		
Sediment sampling field measurements (if applicable)		
Surface water sampling field measurements (if applicable)		
Low-flow sampling field measurements (if applicable)		\square \vee
Documentation of field activities	Ċ\$K	
Sample numbering and labeling	X	
Chain-of-Custody records	X	
Trip blanks		AIUD
Duplicate samples	X	
Equipment blanks		AIND
Split samples (if any)		
2. LABORATORY MEASUREMENTS:	-	ALCI D
Trip blanks		hand
Instrument blanks	X	
Laboratory control samples	X	
Duplicates samples	DX.	
Equipment blanks		DNIA
Matrix spike/matrix spike duplicates		
Analysis type	Ø	
Chain-of-Custody records	X	
Surrogate recoveries		DNSMA
Sample Project Narratives	X	DNIA
Split samples (if any)		
TOTAL:		
		160
PERCENT COM	IPLETE:	100_%

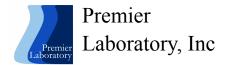
FUSS & O'NEILL

INITIAL DATE: OCTOBER 2011 REVISION DATE: FEBRUARY 2012 REVISION: 1.0

GENERIC QUALITY ASSURANCE PROJECT PLAN FOR PROJECTS IN CONNECTICUT, MASSACHUSETTS AND RHODE ISLAND FUSS & O'NEILL MODIFIED TIER II DATA VALIDATION CHECKLIST

PERFORMED AND, WHERE APPLICABLE, WITHIN ACCEPTABLE LIMITS?

	YES	NO	COMMENTS
1. SAMPLING AND FIELD MEASUREMENTS:			
Field measurement calibration records			
pH - \pm 0.3 pH units			NIA
S.C \pm 5% of calibration solution, within?			
calibration range			
Temperature - ± 0.5 °C			
D.O \pm 5% of calibration solution			
Groundwater field measurements (if applicable)			
Water depth measured to within 0.01 ft.?			
Soil sampling field measurements (if applicable)			
OVM - ± 2 ppm			
$OVA - \pm 2 ppm$			
Sediment sampling field measurements (if applicable)			
Descriptive information recorded?			
Surface water sampling field measurements (if applicable)			
Water depth measured to within 0.01 ft.?			
Low-flow sampling field measurements (if applicable)			
S.C ± 10%			
pH - \pm 0.2 pH units			
Temperature - \pm 10%			
Turbidity - ±5 NTU			V
Documentation of field activities			
Site-specific information documented in field notebook?	X		
Field data sheets completed?	X		
Sample numbering and labeling			
Sample numbering conforms to sample I.D. system			specific to building mater
identified in QAPP?		S.	specific to building mater
Chain-of-Custody records			
Chain-of-Custody forms completed?	R		



GENERIC QUALITY ASSURANCE PROJECT PLAN FOR PROJECTS IN CONNECTICUT, MASSACHUSETTS AND RHODE ISLAND FUSS & O'NEILL MODIFIED TIER II DATA VALIDATION CHECKLIST (Continued)

PERFORMED AND, WHERE APPLICABLE, WITHIN ACCEPTABLE LIMITS?

	YES	NO	COMMENTS
Trip blanks			
Trip blanks submitted, one per day?			NIA
Any compounds detected in trip blanks?			V
Duplicate samples			
Field duplicates performed, 1/20 samples?	VSK		
Duplicates performed on 10% of samples screened			
for explosives?			- NIA
Is percent difference within 30% for all field parameters?			
Equipment blanks)
Equipment blanks submitted, one per sampling day?			
Any compounds detected in equipment blank?			
Split samples (if any)			
Split samples collected?			
Is percent difference within 30% for split samples?			V
2. LABORATORY MEASUREMENTS: Trip blanks			
Trip blanks submitted, one per day?			NIA
Any compounds detected in trip blanks?			J
Instrument blanks**	X		
Laboratory control samples**	X		
Duplicates samples ^{**}	X		
Equipment blanks**			NIA
Matrix spike/matrix spike duplicates**			1
Analysis type	X		
Chain-of-Custody records	X		-
Surrogate recoveries**			NIA
Sample Project Narratives	X		
Split samples (if any)**			NIA
Most recent EPA WP-PE sample results**			V

F:\pad\ADEA&R\Basedocs\Report_Templates\QAPPs\Generic-QAPPs\CT-MA-RI\Rev-1\Appendicies\Appendix-I-Completeness-Checklist.doc

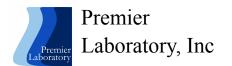
ANALYTICAL DATA REPORT

prepared for:

Fuss & O'Neill, Inc. 317 Iron Horse Way Suite 204 Providence, RI 02908 Attn: Pat Dowling

Report Number: E108E34 Project: 20100607.A20/ Former Middle School

Received Date: 08/19/2011 Report Date: 08/26/2011


Murasm

Premier Laboratory, Inc Authorized Signature

Certified and Compliant with: CT (PH-0465), EPA (CT00008), MA (M-CT008), ME (CT0050), NH (2020), NJ (CT007), NY (11549), PA (68-04413), RI (LAO00300), UCMR2 (CT00008), VT (VT11549)

> Report No: E108E34 Client: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

CASE NARRATIVE / METHOD CONFORMANCE SUMMARY

Premier Laboratory, Inc received 11 samples from Fuss & O'Neill on 08/19/2011. The samples were analyzed for the following list of analyses:

Trace Metals by 6010B 6010B[3000]

Non-Conformances: Work Order:

None

Sample:

None

Analysis:

None

Report No: E108E34 Date Received: 08/19/2011 15:46			uss & O'Neill 00607.A20/ Form	er Middle School		
Parameter	Result	DL	Units	Completed	By	Dilution
(1) 812DD-01 Date Collected: 08/12/2011 13:00 Trace Metals by 6010B Lead	Matrix: Other 3000	0.10	mg/kg	08/25/2011 12:46	NJB	
(2) 812DD-02 Date Collected: 08/12/2011 13:10	Matrix: Other					
Trace Metals by 6010B Lead	640	0.10	mg/kg	08/25/2011 12:48	NJB	
(3) 812DD-03 Date Collected: 08/12/2011 13:15 Trace Metals by 6010B Lead	Matrix: Other	0.10	mg/kg	08/25/2011 12:51	NIR	
(4) 812DD-04 Date Collected: 08/12/2011 13:20	Matrix: Other	0.10	Πης/ κε	00/23/2011 12.51	INJ	
Trace Metals by 6010B Lead	6.0	0.10	mg/kg	08/25/2011 12:53	NJB	
(5) 812DD-05 Date Collected: 08/12/2011 13:25	Matrix: Other					
Trace Metals by 6010B Lead	6600	0.50	mg/kg	08/25/2011 13:57	NJB	5
(6) 812DD-06 Date Collected: 08/12/2011 13:30	Matrix: Other					
Trace Metals by 6010B Lead	1.4	0.10	mg/kg	08/25/2011 13:53	NJB	
(7) 812DD-07 Date Collected: 08/12/2011 13:35	Matrix: Other					
Trace Metals by 6010B Lead	9200	0.50	mg/kg	08/25/2011 14:00	NJB	5
(8) 812DD-08 Date Collected: 08/12/2011 13:40 Trace Metals by 6010B	Matrix: Other					
Lead (9) 812DD-09	30	0.10	mg/kg	08/25/2011 13:11	NJB	
Date Collected: 08/12/2011 13:45 Trace Metals by 6010B	Matrix: Other					
Lead	2300	0.10	mg/kg	08/25/2011 13:13	NJB	

Report No: E108E34 Date Received: 08/19/2011 15:46	Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School					
Parameter	Result	DL	Units	Completed	By	Dilution
(10) 812DD-10 Date Collected: 08/12/2011 13:55 Trace Metals by 6010B Lead	Matrix: Other	0.10	mg/kg	08/25/2011 13:16	NJB	
(11) 812DD-11 Date Collected: 08/12/2011 14:00 Trace Metals by 6010B Lead	Matrix: Other	0.10	mg/kg	08/25/2011 13:18	NJB	

				724
FUSS & O'NEILL Disciplines to Deliver (860) 646-2469 • www.FandO.com		LIONE OC 146 Hartford Road, Manchester, CT 06040 56 Quarry Road, Trumbull, CT 06611 1419 Richland Street, Columbia, SC 29201 78 Interstate Drive, West Springfield, MA 01089	3:7 1 1 1 2:4 1 6040 50 50 Redfield Street, Suite 100, Boston, MA 02122 804 50 50 Redfield Street, Suite 100, Boston, MA 02122 804 50 50 Redfield Street, Suite 350, Providence, RI 02908 201 50 80 Washington Street, Suite 301, Poughkeepsie, NY 12601 20 1089 50 80	02908 1Y 12601
CHAIN-OF-CUSTODY RECO	TODY RECORD	24402	Turnaround D 1 Day* D 3 Days* O Other(d) D 2 Days* X Standard (days) *Surcharge Applies	(days)
PROJECT NAME		PROJECT NUMBER		
N DALLAS L	TY (LANDANA			
REPORT TO: R. MAY / P. DOWLING	Eunthie Cicolitancesco	Analysis Request	Containers	P370
100601.Arc				LIBERT C
Sampler's Signature:	Date: 8/18/11	Col 20		area L
Source Codes: MW=Monitoring Well PW=Porable Water S=Soil SW=Surface Water T=Treatment Facility B=Sediment	W=Waste A=Air	1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	12 12 12 12 12 12 12 12 12 12 12 12 12 1	311.3
CHIPS				
-		*	Lar Con Con Dr Ber	
Item I Tansfer Check Sample Number No. 1 2 3 4	Source Date Time Code Sampled Sampled		20. 20. 20. 50. 50. 20. 20. 20. 20. 20. 20. 20. 20. 20. 2	mments
1 1 1 1 212 010 - 021	× 12AUG11 13000	X	×	
2 11 81200-02	X IZAUKII 1310	×	×	
3 11 81200 - Ø3	X 12AUEI 1315	×	×	
4 V 1 8120D - X4	X RANGH 1320 X	×	~	
5 / 1 8120D-65	X IZANGII 1325 X	×	×	
6 V 1 812 DD - 06	X 12AVG11/330		×	
7 1/ 8/200-61	X 12AVE11 1335		×	
8 V 8120D-28	X 17AUGH 134 00	X	×	
9 VIIV 8/200-09	X 12AUGH (7345		~	
1 × 1 V V 81200 - 10	× 124411 1355		×	
Transfer Relinquished By Number	Accepted By Date	Time Reporting and Detection Limit Requirements: iSO pprv	it Requirements:	
I Mat IM	11/8/18 8/18/11	1760 Additional Comments:		
2 Fro Filse	AC	111 090 pieuss see	attached reard/checklist	
A A A A A A A A A A A A A A A A A A A	1	11. 15:41 o		ff bl

INITIAL DATE: JULY 2007 REVISION DATE: JULY 2007 REVISION: 0.0

GENERIC QUALITY ASSURANCE PROJECT PLAN FOR PROJECTS IN RHODE ISLAND LABORATORY MODIFIED TIER II DATA VALIDATION CHECKLIST INORGANIC COMPOUNDS

FUSS&O'NEILL

PERFORMED AND, WHERE APPLICABLE, WITHIN ACCEPTABLE LIMTS?**

		YES	<u>NO</u>	COMMENTS
1.	SDG Project Narratives			
2.	Inorganic Analysis Data Sheet	7	П	
2. 3.	Initial and Continuing Calibration Verification		Π	
J. 4.	CRDL Standard for AA and ICP		Π	
4. 5.	Blanks		П	····
5. 6.	ICP Interference Check Sample		п	
	Spike Sample Recovery			
7.				NA
8.	Post Digest Spike Sample Recovery		ю. П	
9.	Duplicates	6	ш. п	
10.	Laboratory Control Sample			NA
11.	Standard Addition Results			NA
12.	ICP Serial Dilutions		<u> </u>	Provide
13.	Instrument Detection Limits, Quarterly	_/		Annum
14.	ICP Interelement Correction Factors, Annually	_/	□ .	
15.	ICP Linear Ranges Quarterly		□ .	
16.	Preparation Log		Ξ.	
17.	Analysis Run Log	g	□ .	
18.	ICP Raw Data		□⁄.	
19.	Furnace AA Raw Data		٢, .	NV+
20.	Mercury Raw Data		٢, .	NA
21.	Percent Solids Calculations		٢.	INF
22.	Digestion Logs		Ο.	
23.	EPA Shipping/Receiving Records		/	
	(List all individual records)		ď .	
	Chain-of Custody Records		Ω.	
	Sample Log-In sheet		□⁄ .	LIMS
24.	Miscellaneous Shipping/Receiving Records		d .	
	(List all individual records)			

131/12

INITIAL DATE: JULY 2007 REVISION DATE: JULY 2007 REVISION: 0.0

GENERIC QUALITY ASSURANCE PROJECT PLAN FOR PROJECTS IN RHODE ISLAND LABORATORY MODIFIED TIER II DATA VALIDATION CHECKLIST INORGANIC COMPOUNDS (Continued)

PERFORMED AND, WHERE APPLICABLE, WITHIN ACCEPTABLE LIMTS?**

YES NO COMMENTS

25. Internal Lab Sample Transfer Records and Tracking Sheets (Describe or List)

Internal Original Sample Preparation and analysis Records (Describe or List	, D		
Preparation Records	I	, 🗌	lugbook
Analysis Records			electro
Description			
Other Records (Describe or List)			

** See laboratory Quality Assurance Plan for limits.

Completed by: NICOL DOUT Nicole Batos (Printed Name/Title) (Signature) (Lab)

I certify that the above information is true and accurate. I further certify that all laboratory results associated with the above analyses will be made available for review for seven (7) years following certification of this document.

(Lab) (Signature) (Printed Name/ Itile)	Certified by Montgomery (Lab) (Signature)	(Printed Name/Title)
---	--	----------------------

FUSS&O'NEILL

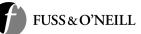
Appendix G

PCB Laboratory Analytical Results and Data Verification Documentation

Modified Tier II Data Validation Narrative

Project: 20100607.A20 Site Investigation/Targeted Brownfields Assessment Former Woonsocket Middle School

Premier Laboratory Project Number:	E108E18
Date Samples Received at Laboratory:	August 19, 2011
Date of Review:	November 8, 2012


Thirty four building materials samples were collected and submitted to Premier Laboratory (Premier) for analysis of polychlorinated biphenyls (PCBs) by United States Environmental Protection Agency (USEPA) Method 8082, with extraction via Soxhlet Method 3540.

Dedicated sampling equipment was utilized, so equipment blanks and field blanks were not collected during these sampling activities. Samples were analyzed within the method-specific holding times. Since multiple samples of each homogeneous material type (typically 3 samples) were collected for quality control purposes, separate duplicate samples were not collected for analysis.

The case narrative included in the analytical report documented non-conformances associated with recovery of surrogate compounds utilized during the analyses. Recoveries of laboratory surrogate compounds associated with analyses of select materials were reported as 0% in the analytical report. Twelve samples were affected by this laboratory non-conformance. Premier attributed the low surrogate recoveries to difficulty inherent in the Soxhlet extraction and subsequent clean-up of the affected sample matrices. According to Premier, all samples were subjected to Soxhlet extraction (USEPA Method 3540C) using hexane as the solvent. The extracts were then treated with sulfuric acid per USEPA Method 3665A. In the case of the affected samples, the sample volumes completely dissolved into the hexane solvent and did not respond to multiple rounds of acid treatment, requiring dilutions of individual affected samples in the range of 10 to 50 times. The high level of dilution required for the affected samples led to the surrogate compounds being "diluted out." According to Premier, the raw analytical data indicated that surrogate compounds were detected in the affected samples, but at concentrations below the instrument calibration range (approximately 2%-4% recovery). Therefore, these surrogate recoveries were reported as 0%. To address the surrogate recovery difficulties described above, and to evaluate the PCB content of the substrate underlying the brown interior window caulk, Fuss & O'Neill conducted additional PCB sampling to resolve these quality control issues.

The case narrative also documented non conformances associated with elevated detection limits. Sixteen samples were reported to have elevated detections limits which exceeded the requested detection limit of one milligram per kilogram (mg/kg). No PCBs were reported above laboratory reporting limits in any of these samples. Premier attributed this to matrix interference. Because conclusions regarding compliance of these samples with applicable regulatory criteria could not be made, the additional PCB sampling mentioned above was conducted.

As noted previously, specific duplicate samples were not collected and analyzed as part of this sample group. However, multiple samples of each homogeneous material were collected for quality control

purposes to evaluate teh consistency of the matrices and PCB content. Since PCBs were not detected at concentrations above laboratory reporting limits in the majority of the samples, relative percent differences (RPDs) could not be calculated for most materials. Two samples of one three sample homogeneous material sample set (914110818-PCB-09A, 9B & 9C) were reported to contain PCB at concentrations greater than the laboratory reporting limit. The RPD between these two samples was 18%, within the typically acceptable range of RPDs (i.e. <30%). However, when these results were compared to the third sample in the data set which was not reported to contain a detectable concentration of PCB greater than the reporting limit, the resulting RPD was > 110%. These differences were attributed to the observed matrix interference, and the laboratory's difficulty in complying with the quality control requirements for these analyses. These questionable results were addressed by the supplemental sampling and analysis presented above.

Analytical results for the building materials samples were compared to regulatory limits established by USEPA under the Toxic Substances Control Act (TSCA). These limits included the regulated limit of 50 parts per million (ppm) and the potentially-regulated limit of 1 ppm. All laboratory reporting limits were low enough to allow direct comparison to these limits, with the exceptions noted above.

EIONEIS

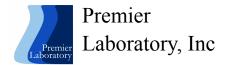
GENERIC QUALITY ASSURANCE PROJECT PLAN FOR PROJECTS IN CONNECTICUT, MASSACHUSETTS AND RHODE ISLAND MODIFIED TIER I COMPLETENESS CHECKLIST

		YES	NO
1. SAMPLING AND FIELD MEASUREMENTS:			DN/A
Field measurement calibration records			
Groundwater field measurements (if applicable)			
Soil sampling field measurements (if applicable)		Ц	
Sediment sampling field measurements (if applicable)			
Surface water sampling field measurements (if applicable)			
Low-flow sampling field measurements (if applicable)			
Documentation of field activities		X	
Sample numbering and labeling		X	
Chain-of-Custody records		125	
Trip blanks			DNA
Duplicate samples		\mathbb{X}	
Equipment blanks			AIND
Split samples (if any)			
2. LABORATORY MEASUREMENTS: Trip blanks Instrument blanks Laboratory control samples Duplicates samples Equipment blanks			
Matrix spike/matrix spike duplicates		X	
Analysis type Chain-of-Custody records		DX.	
Surrogate recoveries		X	
Sample Project Narratives		X	
Split samples (if any)			AIN
Split samples (ii any)			
TC	TAL: _1_		
PE	RCENT COMP	PLETE:	160%

GENERIC QUALITY ASSURANCE PROJECT PLAN FOR PROJECTS IN CONNECTICUT, MASSACHUSETTS AND RHODE ISLAND FUSS & O'NEILL MODIFIED TIER II DATA VALIDATION CHECKLIST

PERFORMED AND, WHERE APPLICABLE, WITHIN ACCEPTABLE LIMITS?

	YES	NO	COMMENTS
1. SAMPLING AND FIELD MEASUREMENTS:			
Field measurement calibration records			
$pH - \pm 0.3 pH$ units			NIA
S.C \pm 5% of calibration solution, within?			1
calibration range			
Temperature - ± 0.5 °C			
D.O $\pm 5\%$ of calibration solution			
Groundwater field measurements (if applicable)			
Water depth measured to within 0.01 ft.?			
Soil sampling field measurements (if applicable)			
OVM - ±2 ppm			
OVA - ± 2 ppm			
Sediment sampling field measurements (if applicable)			
Descriptive information recorded?			
Surface water sampling field measurements (if applicable)			
Water depth measured to within 0.01 ft.?			
Low-flow sampling field measurements (if applicable)			
S.C ± 10%			
pH - \pm 0.2 pH units			
Temperature - \pm 10%			
Turbidity - ± 5 NTU			
Documentation of field activities			
Site-specific information documented in field notebook?	R		
Field data sheets completed?	Dec.		
Sample numbering and labeling			1 and an appropriate
Sample numbering conforms to sample I.D. system			numbering system spacet
identified in QAPP?		M	numbering system specific to building materials
Chain-of-Custody records			
Chain-of-Custody forms completed?	X		



GENERIC QUALITY ASSURANCE PROJECT PLAN FOR PROJECTS IN CONNECTICUT, MASSACHUSETTS AND RHODE ISLAND FUSS & O'NEILL MODIFIED TIER II DATA VALIDATION CHECKLIST (Continued)

PERFORMED AND, WHERE APPLICABLE, WITHIN ACCEPTABLE LIMITS?

	<u>YES</u>	NO	COMMENTS
Trip blanks			
Trip blanks submitted, one per day?			NIA
Any compounds detected in trip blanks?			
Duplicate samples			
Field duplicates performed, 1/20 samples?	A		
Duplicates performed on 10% of samples screened			~
for explosives?			AIM
Is percent difference within 30% for all field parameters?			
Equipment blanks			
Equipment blanks submitted, one per sampling day?			
Any compounds detected in equipment blank?			
Split samples (if any)			
Split samples collected?			
Is percent difference within 30% for split samples?			V
2. LABORATORY MEASUREMENTS: Trip blanks			
Trip blanks submitted, one per day?			NIA
Any compounds detected in trip blanks?			
Instrument blanks**	X		
Laboratory control samples**	X		
Duplicates samples**	X		
Equipment blanks**			NIA
Matrix spike/matrix spike duplicates**			
Analysis type	X		
Chain-of-Custody records	X		
Surrogate recoveries**		X	several had 0% necevery
Sample Project Narratives	X		0
Split samples (if any)**			NIA
Most recent EPA WP-PE sample results**			V

F:\pad\ADEA&R\Basedocs\Report_Templates\QAPPs\Generic-QAPPs\CT-MA-RI\Rev-1\Appendicies\Appendix-I-Completeness-Checklist.doc

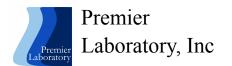
ANALYTICAL DATA REPORT

prepared for:

Fuss & O'Neill, Inc. 317 Iron Horse Way Suite 204 Providence, RI 02908 Attn: Pat Dowling

Report Number: E108E18 Project: 20100607.A20/ Former Middle School

Received Date: 08/19/2011 Report Date: 09/16/2011


Murasm

Premier Laboratory, Inc Authorized Signature

Certified and Compliant with: CT (PH-0465), EPA (CT00008), MA (M-CT008), ME (CT0050), NH (2020), NJ (CT007), NY (11549), PA (68-04413), RI (LAO00300), UCMR2 (CT00008), VT (VT11549)

> Report No: E108E18 Client: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

CASE NARRATIVE / METHOD CONFORMANCE SUMMARY

Premier Laboratory, Inc received 34 samples from Fuss & O'Neill on 08/19/2011. The samples were analyzed for the following list of analyses:

PCBs by 8082 with Soxhlet Extraction 3540 8082[3540]

Non-Conformances: Work Order:

None

Sample:

None

Analysis:

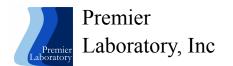
Sample 1, 914110818-PCB-01A, PCB's by 8082: The detection limits are elevated for the sample due to matrix interference. The requested detection limit of 1 mg/kg could not be achieved.

Sample 10, 914110818-PCB-04A, PCB's by 8082: The detection limits are elevated for the sample due to matrix interference.

Sample 13, 914110818-PCB-05A, PCB's by 8082: The detection limits are elevated for the sample due to matrix interference.

Sample 14, 914110818-PCB-05B, PCB's by 8082: The sample required a dilution which effectively diluted out the surrogate components.

Sample 15, 914110818-PCB-05C, PCB's by 8082: One surrogate spike was outside quality control limits for the sample due to matrix interference.


Sample 15, 914110818-PCB-05C, PCB's by 8082: The detection limits are elevated for the sample due to matrix interference.

Sample 18, 914110818-PCB-07A, PCB's by 8082: The detection limits are elevated for the sample due to matrix interference.

Sample 19, 914110818-PCB-07B, PCB's by 8082: The detection limits are elevated for the sample due to matrix interference.

Sample 2, 914110818-PCB-01B, PCB's by 8082: The detection limits are elevated for the sample due to matrix interference. The requested detection limit of 1 mg/kg could not be achieved.

Sample 20, 914110818-PCB-07C, PCB's by 8082: The detection limits are elevated for the sample due to matrix interference.

> Report No: E108E18 Client: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

CASE NARRATIVE / METHOD CONFORMANCE SUMMARY

Non-Conformances:

Analysis:

Sample 27, 914110818-PCB-10A, PCB's by 8082: The detection limits are elevated for the sample due to matrix interference.

Sample 27, 914110818-PCB-10A, PCB's by 8082: The sample required a dilution which effectively diluted out the surrogate components.

Sample 28, 914110818-PCB-10B, PCB's by 8082: The detection limits are elevated for the sample due to matrix interference.

Sample 28, 914110818-PCB-10B, PCB's by 8082: The sample required a dilution which effectively diluted out the surrogate components.

Sample 29, 914110818-PCB-10C, PCB's by 8082: The detection limits are elevated for the sample due to matrix interference.

Sample 29, 914110818-PCB-10C, PCB's by 8082: The sample required a dilution which effectively diluted out the surrogate components.

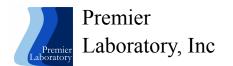
Sample 3, 914110818-PCB-01C, PCB's by 8082: The detection limits are elevated for the sample due to matrix interference. The requested detection limit of 1 mg/kg could not be achieved.

Sample 30, 914110818-PCB-11A, PCB's by 8082: The detection limits are elevated for the sample due to matrix interference.

Sample 30, 914110818-PCB-11A, PCB's by 8082: The sample required a dilution which effectively diluted out the surrogate components.

Sample 31, 914110818-PCB-11B, PCB's by 8082: The detection limits are elevated for the sample due to matrix interference.

Sample 31, 914110818-PCB-11B, PCB's by 8082: The sample required a dilution which effectively diluted out the surrogate components.


Sample 32, 914110818-PCB-11C, PCB's by 8082: The detection limits are elevated for the sample due to matrix interference.

Sample 32, 914110818-PCB-11C, PCB's by 8082: The sample required a dilution which effectively diluted out the surrogate components.

Sample 34, 914110818-PCB-13, PCB's by 8082: The detection limits are elevated for the sample due to matrix interference.

Sample 34, 914110818-PCB-13, PCB's by 8082: The sample required a dilution which effectively diluted out the surrogate components.

Sample 4, 914110818-PCB-02A, PCB's by 8082: One surrogate spike was outside quality control limits for the sample due to matrix interference.

> Report No: E108E18 Client: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

CASE NARRATIVE / METHOD CONFORMANCE SUMMARY

Non-Conformances:

Analysis:

Sample 5, 914110818-PCB-02B, PCB's by 8082: One surrogate spike was outside quality control limits for the sample due to matrix interference.

Sample 6, 914110818-PCB-02C, PCB's by 8082: One surrogate spike was outside quality control limits for the sample due to matrix interference.

Report No: E108E18 Sample No: 1 Sample Description: 914110818-PCB-01A

Date Collected: 08/12/2011 09:00 Date Received: 08/19/2011 15:46 Date Extracted: 08/22/2011 11:30 By: DPR Date Analyzed: 09/08/2011 11:59 By: MRB Preparation Method: 3540 Analytical Method: 8082 Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

70%

10%-142%

Matrix: Other Percent Moisture: N/A Sample Weight/Volume: 2.00 Dilution Factor: 1 Extract Volume: 2 Lab Data File: 4090807.D QC Batch#: 88322

CAS No.	Parameter	Result	DL	Units
37324-23-5	Aroclor 1262	ND	5000	ug/kg
11100-14-4	Aroclor 1268	ND	5000	ug/kg
12674-11-2	Aroclor 1016	ND	5000	ug/kg
11104-28-2	Aroclor 1221	ND	5000	ug/kg
11141-16-5	Aroclor 1232	ND	5000	ug/kg
53469-21-9	Aroclor 1242	ND	5000	ug/kg
12672-29-6	Aroclor 1248	ND	5000	ug/kg
11097-69-1	Aroclor 1254	ND	5000	ug/kg
11096-82-5	Aroclor 1260	ND	5000	ug/kg
Sample QC				
Surrogate		Recovery	QC Limits	
Tetrachloro-m-xyle	ene	80%	10%-103%	

Decachlorobiphenyl

Page 5 of 38

Report No: E108E18 Sample No: 2 Sample Description: 914110818-PCB-01B

Date Collected: 08/12/2011 09:05 Date Received: 08/19/2011 15:46 Date Extracted: 08/22/2011 11:30 By: DPR Date Analyzed: 09/08/2011 12:26 By: MRB Preparation Method: 3540 Analytical Method: 8082

Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Other Percent Moisture: N/A Sample Weight/Volume: 2.00 Dilution Factor: 1 Extract Volume: 2 Lab Data File: 4090808.D QC Batch#: 88322

CAS No.	Parameter	Result	DL	Units	
37324-23-5	Aroclor 1262	ND	5000	ug/kg	
11100-14-4	Aroclor 1268	ND	5000	ug/kg	
12674-11-2	Aroclor 1016	ND	5000	ug/kg	
11104-28-2	Aroclor 1221	ND	5000	ug/kg	
11141-16-5	Aroclor 1232	ND	5000	ug/kg	
53469-21-9	Aroclor 1242	ND	5000	ug/kg	
12672-29-6	Aroclor 1248	ND	5000	ug/kg	
11097-69-1	Aroclor 1254	ND	5000	ug/kg	
11096-82-5	Aroclor 1260	ND	5000	ug/kg	
Sample QC					
Surrogate		Recovery	QC Limits		
Tetrachloro-m-xyle	ene	60%	10%-103%		
Decachlorobiphenyl		61%	10%-142%		

Report No: E108E18 Sample No: 3 Sample Description: 914110818-PCB-01C

Date Collected: 08/12/2011 09:10 Date Received: 08/19/2011 15:46 Date Extracted: 08/22/2011 11:30 By: DPR Date Analyzed: 09/08/2011 12:52 By: MRB Preparation Method: 3540 Analytical Method: 8082 Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

69%

10%-142%

Matrix: Other Percent Moisture: N/A Sample Weight/Volume: 2.00 Dilution Factor: 1 Extract Volume: 2 Lab Data File: 4090809.D QC Batch#: 88322

CAS No.	Parameter	Result	DL	Units
37324-23-5	Aroclor 1262	ND	5000	ug/kg
11100-14-4	Aroclor 1268	ND	5000	ug/kg
12674-11-2	Aroclor 1016	ND	5000	ug/kg
11104-28-2	Aroclor 1221	ND	5000	ug/kg
11141-16-5	Aroclor 1232	ND	5000	ug/kg
53469-21-9	Aroclor 1242	ND	5000	ug/kg
12672-29-6	Aroclor 1248	ND	5000	ug/kg
11097-69-1	Aroclor 1254	ND	5000	ug/kg
11096-82-5	Aroclor 1260	ND	5000	ug/kg
Sample QC				
Surrogate		Recovery	QC Limits	
Tetrachloro-m-xyle	ene	75%	10%-103%	

Decachlorobiphenyl

Report No: E108E18 Sample No: 4 Sample Description: 914110818-PCB-02A

Date Collected: 08/12/2011 09:15 Date Received: 08/19/2011 15:46 Date Extracted: 08/22/2011 11:30 By: DPR Date Analyzed: 09/08/2011 13:19 By: MRB Preparation Method: 3540 Analytical Method: 8082 Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

49%

Matrix: Other Percent Moisture: N/A Sample Weight/Volume: 2.00 Dilution Factor: 1 Extract Volume: 2 Lab Data File: 4090810.D QC Batch#: 88322

CAS No.	Parameter	Result	DL	Units
37324-23-5	Aroclor 1262	ND	200	ug/kg
11100-14-4	Aroclor 1268	ND	200	ug/kg
12674-11-2	Aroclor 1016	ND	200	ug/kg
11104-28-2	Aroclor 1221	ND	200	ug/kg
11141-16-5	Aroclor 1232	ND	200	ug/kg
53469-21-9	Aroclor 1242	ND	200	ug/kg
12672-29-6	Aroclor 1248	ND	200	ug/kg
11097-69-1	Aroclor 1254	ND	200	ug/kg
11096-82-5	Aroclor 1260	ND	200	ug/kg
Sample QC				
Surrogate		Recovery	QC Limits	
Tetrachloro-m-xyle	ene	0.00%	10%-103%	, D

Tetrachloro-m-xylene Decachlorobiphenyl 10%-103% 10%-142%

Report No: E108E18 Sample No: 5 Sample Description: 914110818-PCB-02B

Date Collected: 08/12/2011 09:20 Date Received: 08/19/2011 15:46 Date Extracted: 08/22/2011 11:30 By: DPR Date Analyzed: 09/08/2011 13:45 By: MRB Preparation Method: 3540 Analytical Method: 8082 Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

38%

Matrix: Other Percent Moisture: N/A Sample Weight/Volume: 2.00 Dilution Factor: 1 Extract Volume: 2 Lab Data File: 4090811.D QC Batch#: 88322

CAS No.	Parameter	Result	DL	Units
37324-23-5	Aroclor 1262	ND	200	ug/kg
11100-14-4	Aroclor 1268	ND	200	ug/kg
12674-11-2	Aroclor 1016	ND	200	ug/kg
11104-28-2	Aroclor 1221	ND	200	ug/kg
11141-16-5	Aroclor 1232	ND	200	ug/kg
53469-21-9	Aroclor 1242	ND	200	ug/kg
12672-29-6	Aroclor 1248	ND	200	ug/kg
11097-69-1	Aroclor 1254	ND	200	ug/kg
11096-82-5	Aroclor 1260	ND	200	ug/kg
Sample QC				
Surrogate		Recovery	QC Limits	
Tetrachloro-m-xyle	ene	0.00%	10%-103%	

Decachlorobiphenyl

10%-142%

Report No: E108E18 Sample No: 6 Sample Description: 914110818-PCB-02C

Date Collected: 08/12/2011 09:25 Date Received: 08/19/2011 15:46 Date Extracted: 08/22/2011 11:30 By: DPR Date Analyzed: 09/08/2011 14:11 By: MRB Preparation Method: 3540 Analytical Method: 8082 Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

59%

Matrix: Other Percent Moisture: N/A Sample Weight/Volume: 2.00 Dilution Factor: 1 Extract Volume: 2 Lab Data File: 4090812.D QC Batch#: 88322

CAS No.	Parameter	Result	DL	Units
37324-23-5	Aroclor 1262	ND	200	ug/kg
11100-14-4	Aroclor 1268	ND	200	ug/kg
12674-11-2	Aroclor 1016	ND	200	ug/kg
11104-28-2	Aroclor 1221	ND	200	ug/kg
11141-16-5	Aroclor 1232	ND	200	ug/kg
53469-21-9	Aroclor 1242	ND	200	ug/kg
12672-29-6	Aroclor 1248	ND	200	ug/kg
11097-69-1	Aroclor 1254	ND	200	ug/kg
11096-82-5	Aroclor 1260	ND	200	ug/kg
Sample QC				
Surrogate		Recovery	QC Limits	
Tetrachloro-m-xyle	ene	0.00%	10%-103%	

Decachlorobiphenyl

10%-142%

Report No: E108E18 Sample No: 7 Sample Description: 914110818-PCB-03A

Date Collected: 08/12/2011 09:27 Date Received: 08/19/2011 15:46 Date Extracted: 08/22/2011 11:30 By: DPR Date Analyzed: 09/08/2011 14:38 By: MRB Preparation Method: 3540 Analytical Method: 8082 Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

59%

10%-142%

Matrix: Other Percent Moisture: N/A Sample Weight/Volume: 2.00 Dilution Factor: 1 Extract Volume: 2 Lab Data File: 4090813.D QC Batch#: 88322

CAS No.	Parameter	Result	DL	Units
37324-23-5	Aroclor 1262	ND	200	ug/kg
11100-14-4	Aroclor 1268	ND	200	ug/kg
12674-11-2	Aroclor 1016	ND	200	ug/kg
11104-28-2	Aroclor 1221	ND	200	ug/kg
11141-16-5	Aroclor 1232	ND	200	ug/kg
53469-21-9	Aroclor 1242	ND	200	ug/kg
12672-29-6	Aroclor 1248	ND	200	ug/kg
11097-69-1	Aroclor 1254	ND	200	ug/kg
11096-82-5	Aroclor 1260	ND	200	ug/kg
Sample QC				
Surrogate		Recovery	QC Limits	
Tetrachloro-m-xyle	ene	54%	10%-103%	

Decachlorobiphenyl

Report No: E108E18 Sample No: 8 Sample Description: 914110818-PCB-03B

Date Collected: 08/12/2011 09:30 Date Received: 08/19/2011 15:46 Date Extracted: 08/23/2011 11:30 By: DPR Date Analyzed: 09/08/2011 15:04 By: MRB Preparation Method: 3540 Analytical Method: 8082 Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

72%

10%-142%

Matrix: Other Percent Moisture: N/A Sample Weight/Volume: 2.00 Dilution Factor: 1 Extract Volume: 2 Lab Data File: 4090814.D QC Batch#: 88323

CAS No.	Parameter	Result	DL	Units
37324-23-5	Aroclor 1262	ND	200	ug/kg
11100-14-4	Aroclor 1268	ND	200	ug/kg
12674-11-2	Aroclor 1016	ND	200	ug/kg
11104-28-2	Aroclor 1221	ND	200	ug/kg
11141-16-5	Aroclor 1232	ND	200	ug/kg
53469-21-9	Aroclor 1242	ND	200	ug/kg
12672-29-6	Aroclor 1248	ND	200	ug/kg
11097-69-1	Aroclor 1254	ND	200	ug/kg
11096-82-5	Aroclor 1260	ND	200	ug/kg
Sample QC				
Surrogate		Recovery	QC Limits	
Tetrachloro-m-xyle	ene	90%	10%-103%	, D

Tetrachloro-m-xylene Decachlorobiphenyl

Report No: E108E18 Sample No: 9 Sample Description: 914110818-PCB-03C

Date Collected: 08/12/2011 09:35 Date Received: 08/19/2011 15:46 Date Extracted: 08/23/2011 11:30 By: DPR Date Analyzed: 09/08/2011 15:31 By: MRB Preparation Method: 3540 Analytical Method: 8082 Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Other Percent Moisture: N/A Sample Weight/Volume: 2.00 Dilution Factor: 1 Extract Volume: 2 Lab Data File: 4090815.D QC Batch#: 88323

CAS No.	Parameter	Result	DL	Units
37324-23-5	Aroclor 1262	ND	200	ug/kg
11100-14-4	Aroclor 1268	ND	200	ug/kg
12674-11-2	Aroclor 1016	ND	200	ug/kg
11104-28-2	Aroclor 1221	ND	200	ug/kg
11141-16-5	Aroclor 1232	ND	200	ug/kg
53469-21-9	Aroclor 1242	ND	200	ug/kg
12672-29-6	Aroclor 1248	ND	200	ug/kg
11097-69-1	Aroclor 1254	ND	200	ug/kg
11096-82-5	Aroclor 1260	ND	200	ug/kg
Sample QC				
Surrogate		Recovery	QC Limits	
T-(100/ 1020/	

Tetrachloro-m-xylene	66%	10%-103%
Decachlorobiphenyl	71%	10%-142%

Report No: E108E18 Sample No: 10 Sample Description: 914110818-PCB-04A

Date Collected: 08/12/2011 09:45 Date Received: 08/19/2011 15:46 Date Extracted: 08/25/2011 11:00 By: AJM Date Analyzed: 09/09/2011 11:23 By: MRB Preparation Method: 3540 Analytical Method: 8082 Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

12%

10%-142%

Matrix: Other Percent Moisture: N/A Sample Weight/Volume: 1.00 Dilution Factor: 1 Extract Volume: 5 Lab Data File: 4090907.D QC Batch#: 88381

CAS No.	Parameter	Result	DL	Units
37324-23-5	Aroclor 1262	ND	1000	ug/kg
11100-14-4	Aroclor 1268	ND	1000	ug/kg
12674-11-2	Aroclor 1016	ND	1000	ug/kg
11104-28-2	Aroclor 1221	ND	1000	ug/kg
11141-16-5	Aroclor 1232	ND	1000	ug/kg
53469-21-9	Aroclor 1242	ND	1000	ug/kg
12672-29-6	Aroclor 1248	ND	1000	ug/kg
11097-69-1	Aroclor 1254	ND	1000	ug/kg
11096-82-5	Aroclor 1260	ND	1000	ug/kg
Sample QC				
Surrogate		Recovery	QC Limits	
Tetrachloro-m-xyle	ene	29%	10%-103%	

Decachlorobiphenyl

Report No: E108E18 Sample No: 11 Sample Description: 914110818-PCB-04B

Date Collected: 08/12/2011 09:50 Date Received: 08/19/2011 15:46 Date Extracted: 08/25/2011 11:00 By: AJM Date Analyzed: 09/09/2011 11:49 By: MRB Preparation Method: 3540 Analytical Method: 8082

Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Other Percent Moisture: N/A Sample Weight/Volume: 1.00 Dilution Factor: 1 Extract Volume: 5 Lab Data File: 4090908.D QC Batch#: 88381

CAS No.	Parameter	Result	DL	Units
37324-23-5	Aroclor 1262	ND	1000	ug/kg
11100-14-4	Aroclor 1268	ND	1000	ug/kg
12674-11-2	Aroclor 1016	ND	1000	ug/kg
11104-28-2	Aroclor 1221	ND	1000	ug/kg
11141-16-5	Aroclor 1232	ND	1000	ug/kg
53469-21-9	Aroclor 1242	ND	1000	ug/kg
12672-29-6	Aroclor 1248	ND	1000	ug/kg
11097-69-1	Aroclor 1254	ND	1000	ug/kg
11096-82-5	Aroclor 1260	ND	1000	ug/kg
Sample QC				
Surrogate		Recovery	QC Limits	
Tetrachloro-m-xyle	Tetrachloro-m-xylene 30% 10%-103		10%-103%	
Decachlorobiphenyl		10%	10%-142%	

Page 15 of 38

Report No: E108E18 Sample No: 12 Sample Description: 914110818-PCB-04C

Date Collected: 08/12/2011 09:57 Date Received: 08/19/2011 15:46 Date Extracted: 08/25/2011 11:00 By: AJM Date Analyzed: 09/09/2011 13:48 By: MRB Preparation Method: 3540 Analytical Method: 8082 Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

10%

10%-142%

Matrix: Other Percent Moisture: N/A Sample Weight/Volume: 1.00 Dilution Factor: 1 Extract Volume: 5 Lab Data File: 4090909.D QC Batch#: 88381

CAS No.	Parameter	Result	DL	Units
37324-23-5	Aroclor 1262	ND	1000	ug/kg
11100-14-4	Aroclor 1268	ND	1000	ug/kg
12674-11-2	Aroclor 1016	ND	1000	ug/kg
11104-28-2	Aroclor 1221	ND	1000	ug/kg
11141-16-5	Aroclor 1232	ND	1000	ug/kg
53469-21-9	Aroclor 1242	ND	1000	ug/kg
12672-29-6	Aroclor 1248	ND	1000	ug/kg
11097-69-1	Aroclor 1254	ND	1000	ug/kg
11096-82-5	Aroclor 1260	ND	1000	ug/kg
Sample QC				
Surrogate		Recovery	QC Limits	
Tetrachloro-m-xyle	ene	29%	10%-103%	

Decachlorobiphenyl

Report No: E108E18 Sample No: 13 Sample Description: 914110818-PCB-05A

Date Collected: 08/12/2011 10:15 Date Received: 08/19/2011 15:46 Date Extracted: 08/25/2011 11:00 By: AJM Date Analyzed: 09/12/2011 09:46 By: MRB Preparation Method: 3540 Analytical Method: 8082 Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Other Percent Moisture: N/A Sample Weight/Volume: 1.00 Dilution Factor: 2 Extract Volume: 5 Lab Data File: 4090910.D, 4091203.D QC Batch#: 88381

CAS No.	Parameter	Result	DL	Units
37324-23-5	Aroclor 1262	ND	10000	ug/kg
11100-14-4	Aroclor 1268	ND	10000	ug/kg
12674-11-2	Aroclor 1016	ND	10000	ug/kg
11104-28-2	Aroclor 1221	ND	10000	ug/kg
11141-16-5	Aroclor 1232	ND	10000	ug/kg
53469-21-9	Aroclor 1242	ND	10000	ug/kg
12672-29-6	Aroclor 1248	ND	10000	ug/kg
11097-69-1	Aroclor 1254	ND	10000	ug/kg
11096-82-5	Aroclor 1260	ND	10000	ug/kg
Sample QC				
Surrogate		Recovery	QC Limits	
Tetrachloro-m-xylene		33% 10%-103%		
Decachlorobiphenyl		10%	10%-142%	

Report No: E108E18 Sample No: 14 Sample Description: 914110818-PCB-05B

Date Collected: 08/12/2011 10:30 Date Received: 08/19/2011 15:46 Date Extracted: 08/23/2011 11:30 By: DPR Date Analyzed: 09/09/2011 15:10 By: MRB Preparation Method: 3540 Analytical Method: 8082 Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Other Percent Moisture: N/A Sample Weight/Volume: 2.00 Dilution Factor: 10 Extract Volume: 2 Lab Data File: 4090911.D QC Batch#: 88323

CAS No.	Parameter	Result	DL	Units
37324-23-5	Aroclor 1262	ND	10000	ug/kg
11100-14-4	Aroclor 1268	ND	10000	ug/kg
12674-11-2	Aroclor 1016	ND	10000	ug/kg
11104-28-2	Aroclor 1221	ND	10000	ug/kg
11141-16-5	Aroclor 1232	ND	10000	ug/kg
53469-21-9	Aroclor 1242	ND	10000	ug/kg
12672-29-6	Aroclor 1248	ND	10000	ug/kg
11097-69-1	Aroclor 1254	ND	10000	ug/kg
11096-82-5	Aroclor 1260	ND	10000	ug/kg
Sample QC				
Surrogate		Recovery	QC Limits	
Tetrachloro-m-xylene		0%	10%-103%	
Decachlorobiphenyl		0%	10%-142%	

Report No: E108E18 Sample No: 15 Sample Description: 914110818-PCB-05C

Date Collected: 08/12/2011 10:40 Date Received: 08/19/2011 15:46 Date Extracted: 08/24/2011 11:30 By: DPR Date Analyzed: 09/12/2011 10:17 By: MRB Preparation Method: 3540 Analytical Method: 8082 Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

5.4%

10%-142%

Matrix: Other Percent Moisture: N/A Sample Weight/Volume: 2.00 Dilution Factor: 1 Extract Volume: 10 Lab Data File: 4091204.D QC Batch#: 88407

CAS No.	Parameter	Result	DL	Units
37324-23-5	Aroclor 1262	ND	5000	ug/kg
11100-14-4	Aroclor 1268	ND	5000	ug/kg
12674-11-2	Aroclor 1016	ND	5000	ug/kg
11104-28-2	Aroclor 1221	ND	5000	ug/kg
11141-16-5	Aroclor 1232	ND	5000	ug/kg
53469-21-9	Aroclor 1242	ND	5000	ug/kg
12672-29-6	Aroclor 1248	ND	5000	ug/kg
11097-69-1	Aroclor 1254	ND	5000	ug/kg
11096-82-5	Aroclor 1260	ND	5000	ug/kg
Sample QC				
Surrogate		Recovery	QC Limits	
Tetrachloro-m-xylene		22%	10%-103%	

Report No: E108E18 Sample No: 16 Sample Description: 914110818-PCB-06A

Date Collected: 08/12/2011 13:00 Date Received: 08/19/2011 15:46 Date Extracted: 08/24/2011 11:30 By: DPR Date Analyzed: 09/12/2011 10:47 By: MRB Preparation Method: 3540 Analytical Method: 8082 Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

27%

Matrix: Other Percent Moisture: N/A Sample Weight/Volume: 2.00 Dilution Factor: 1 Extract Volume: 2 Lab Data File: 4091205.D QC Batch#: 88407

CAS No.	Parameter	Result	DL	Units
37324-23-5	Aroclor 1262	ND	200	ug/kg
11100-14-4	Aroclor 1268	ND	200	ug/kg
12674-11-2	Aroclor 1016	ND	200	ug/kg
11104-28-2	Aroclor 1221	ND	200	ug/kg
11141-16-5	Aroclor 1232	ND	200	ug/kg
53469-21-9	Aroclor 1242	ND	200	ug/kg
12672-29-6	Aroclor 1248	ND	200	ug/kg
11097-69-1	Aroclor 1254	ND	200	ug/kg
11096-82-5	Aroclor 1260	ND	200	ug/kg
Sample QC				
Surrogate		Recovery	QC Limits	
Tetrachloro-m-xylene		78%	10%-103%	, D

Tetrachloro-m-xylene Decachlorobiphenyl 10%-103% 10%-142%

Report No: E108E18 Sample No: 17 Sample Description: 914110818-PCB-06B

Date Collected: 08/12/2011 13:30 Date Received: 08/19/2011 15:46 Date Extracted: 08/24/2011 11:30 By: DPR Date Analyzed: 09/12/2011 11:13 By: MRB Preparation Method: 3540 Analytical Method: 8082 Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

30%

10%-142%

Matrix: Other Percent Moisture: N/A Sample Weight/Volume: 2.00 Dilution Factor: 1 Extract Volume: 2 Lab Data File: 4091206.D QC Batch#: 88407

CAS No.	Parameter	Result	DL	Units
37324-23-5	Aroclor 1262	ND	200	ug/kg
11100-14-4	Aroclor 1268	ND	200	ug/kg
12674-11-2	Aroclor 1016	ND	200	ug/kg
11104-28-2	Aroclor 1221	ND	200	ug/kg
11141-16-5	Aroclor 1232	ND	200	ug/kg
53469-21-9	Aroclor 1242	ND	200	ug/kg
12672-29-6	Aroclor 1248	ND	200	ug/kg
11097-69-1	Aroclor 1254	ND	200	ug/kg
11096-82-5	Aroclor 1260	ND	200	ug/kg
Sample QC				
Surrogate		Recovery	QC Limits	
Tetrachloro-m-xylene		86%	10%-103%	

Tetrachloro-m-xylene Decachlorobiphenyl

Report No: E108E18 Sample No: 18 Sample Description: 914110818-PCB-07A

Date Collected: 08/18/2011 12:00 Date Received: 08/19/2011 15:46 Date Extracted: 08/24/2011 11:30 By: DPR Date Analyzed: 09/12/2011 11:39 By: MRB Preparation Method: 3540 Analytical Method: 8082 Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

30%

10%-142%

Matrix: Other Percent Moisture: N/A Sample Weight/Volume: 2.00 Dilution Factor: 1 Extract Volume: 2 Lab Data File: 4091207.D QC Batch#: 88407

CAS No.	Parameter	Result	DL	Units
37324-23-5	Aroclor 1262	ND	5000	ug/kg
11100-14-4	Aroclor 1268	ND	5000	ug/kg
12674-11-2	Aroclor 1016	ND	5000	ug/kg
11104-28-2	Aroclor 1221	ND	5000	ug/kg
11141-16-5	Aroclor 1232	ND	5000	ug/kg
53469-21-9	Aroclor 1242	ND	5000	ug/kg
12672-29-6	Aroclor 1248	ND	5000	ug/kg
11097-69-1	Aroclor 1254	ND	5000	ug/kg
11096-82-5	Aroclor 1260	ND	5000	ug/kg
Sample QC				
Surrogate		Recovery	QC Limits	
Tetrachloro-m-xylene		74%	10%-103%	

Report No: E108E18 Sample No: 19 Sample Description: 914110818-PCB-07B

Date Collected: 08/18/2011 12:07 Date Received: 08/19/2011 15:46 Date Extracted: 08/24/2011 11:30 By: DPR Date Analyzed: 09/12/2011 12:06 By: MRB Preparation Method: 3540 Analytical Method: 8082 Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

36%

10%-142%

Matrix: Other Percent Moisture: N/A Sample Weight/Volume: 2.00 Dilution Factor: 1 Extract Volume: 2 Lab Data File: 4091208.D QC Batch#: 88407

CAS No.	Parameter	Result	DL	Units
37324-23-5	Aroclor 1262	ND	5000	ug/kg
11100-14-4	Aroclor 1268	ND	5000	ug/kg
12674-11-2	Aroclor 1016	ND	5000	ug/kg
11104-28-2	Aroclor 1221	ND	5000	ug/kg
11141-16-5	Aroclor 1232	ND	5000	ug/kg
53469-21-9	Aroclor 1242	ND	5000	ug/kg
12672-29-6	Aroclor 1248	ND	5000	ug/kg
11097-69-1	Aroclor 1254	ND	5000	ug/kg
11096-82-5	Aroclor 1260	ND	5000	ug/kg
Sample QC				
Surrogate		Recovery	QC Limits	
Tetrachloro-m-xylene		66%	10%-103%	

Report No: E108E18 Sample No: 20 Sample Description: 914110818-PCB-07C

Date Collected: 08/18/2011 12:10 Date Received: 08/19/2011 15:46 Date Extracted: 08/24/2011 11:30 By: DPR Date Analyzed: 09/12/2011 12:32 By: MRB Preparation Method: 3540 Analytical Method: 8082 Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

19%

10%-142%

Matrix: Other Percent Moisture: N/A Sample Weight/Volume: 2.00 Dilution Factor: 1 Extract Volume: 2 Lab Data File: 4091209.D QC Batch#: 88407

CAS No.	Parameter	Result	DL	Units
37324-23-5	Aroclor 1262	ND	5000	ug/kg
11100-14-4	Aroclor 1268	ND	5000	ug/kg
12674-11-2	Aroclor 1016	ND	5000	ug/kg
11104-28-2	Aroclor 1221	ND	5000	ug/kg
11141-16-5	Aroclor 1232	ND	5000	ug/kg
53469-21-9	Aroclor 1242	ND	5000	ug/kg
12672-29-6	Aroclor 1248	ND	5000	ug/kg
11097-69-1	Aroclor 1254	ND	5000	ug/kg
11096-82-5	Aroclor 1260	ND	5000	ug/kg
Sample QC				
Surrogate		Recovery	QC Limits	
Tetrachloro-m-xylene		76%	10%-103%	

Report No: E108E18 Sample No: 21 Sample Description: 914110818-PCB-08A

Date Collected: 08/18/2011 12:30 Date Received: 08/19/2011 15:46 Date Extracted: 08/24/2011 11:30 By: DPR Date Analyzed: 09/12/2011 12:59 By: MRB Preparation Method: 3540 Analytical Method: 8082

Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Other Percent Moisture: N/A Sample Weight/Volume: 2.00 Dilution Factor: 1 Extract Volume: 2 Lab Data File: 4091210.D QC Batch#: 88407

CAS No.	Parameter	Result	DL	Units
37324-23-5	Aroclor 1262	ND	1000	ug/kg
11100-14-4	Aroclor 1268	ND	1000	ug/kg
12674-11-2	Aroclor 1016	ND	1000	ug/kg
11104-28-2	Aroclor 1221	ND	1000	ug/kg
11141-16-5	Aroclor 1232	ND	1000	ug/kg
53469-21-9	Aroclor 1242	ND	1000	ug/kg
12672-29-6	Aroclor 1248	ND	1000	ug/kg
11097-69-1	Aroclor 1254	ND	1000	ug/kg
11096-82-5	Aroclor 1260	ND	1000	ug/kg
Sample QC				
Surrogate		Recovery	QC Limits	
Tetrachloro-m-xylene		50%	10%-103%	
Decachlorobiphenyl		33%	10%-142%	

Report No: E108E18 Sample No: 22 Sample Description: 914110818-PCB-08B

Date Collected: 08/18/2011 12:35 Date Received: 08/19/2011 15:46 Date Extracted: 08/25/2011 11:00 By: AJM Date Analyzed: 09/12/2011 14:00 By: MRB Preparation Method: 3540 Analytical Method: 8082 Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

31%

10%-142%

Matrix: Other Percent Moisture: N/A Sample Weight/Volume: 2.00 Dilution Factor: 1 Extract Volume: 2 Lab Data File: 4091212.D QC Batch#: 88381

CAS No.	Parameter	Result	DL	Units
37324-23-5	Aroclor 1262	ND	200	ug/kg
11100-14-4	Aroclor 1268	ND	200	ug/kg
12674-11-2	Aroclor 1016	ND	200	ug/kg
11104-28-2	Aroclor 1221	ND	200	ug/kg
11141-16-5	Aroclor 1232	ND	200	ug/kg
53469-21-9	Aroclor 1242	ND	200	ug/kg
12672-29-6	Aroclor 1248	ND	200	ug/kg
11097-69-1	Aroclor 1254	ND	200	ug/kg
11096-82-5	Aroclor 1260	ND	200	ug/kg
Sample QC				
Surrogate		Recovery	QC Limits	
Tetrachloro-m-xylene		58%	10%-103%	

Report No: E108E18 Sample No: 23 Sample Description: 914110818-PCB-08C

Date Collected: 08/18/2011 12:40 Date Received: 08/19/2011 15:46 Date Extracted: 08/25/2011 11:00 By: AJM Date Analyzed: 09/12/2011 14:26 By: MRB Preparation Method: 3540 Analytical Method: 8082 Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

30%

Matrix: Other Percent Moisture: N/A Sample Weight/Volume: 2.00 Dilution Factor: 1 Extract Volume: 2 Lab Data File: 4091213.D QC Batch#: 88381

CAS No.	Parameter	Result	DL	Units
37324-23-5	Aroclor 1262	ND	200	ug/kg
11100-14-4	Aroclor 1268	ND	200	ug/kg
12674-11-2	Aroclor 1016	ND	200	ug/kg
11104-28-2	Aroclor 1221	ND	200	ug/kg
11141-16-5	Aroclor 1232	ND	200	ug/kg
53469-21-9	Aroclor 1242	ND	200	ug/kg
12672-29-6	Aroclor 1248	ND	200	ug/kg
11097-69-1	Aroclor 1254	ND	200	ug/kg
11096-82-5	Aroclor 1260	ND	200	ug/kg
Sample QC				
Surrogate		Recovery	QC Limits	
Tetrachloro-m-xylene		72%	10%-103%	

Tetrachloro-m-xylene Decachlorobiphenyl

10%-142%

Report No: E108E18 Sample No: 24 Sample Description: 914110818-PCB-09A

Date Collected: 08/18/2011 12:50 Date Received: 08/19/2011 15:46 Date Extracted: 08/25/2011 11:00 By: AJM Date Analyzed: 09/12/2011 14:53 By: MRB Preparation Method: 3540 Analytical Method: 8082 Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Other Percent Moisture: N/A Sample Weight/Volume: 2.00 Dilution Factor: 1 Extract Volume: 2 Lab Data File: 4091214.D QC Batch#: 88381

CAS No.	Parameter	Result	DL	Units
37324-23-5	Aroclor 1262	ND	1000	ug/kg
11100-14-4	Aroclor 1268	ND	1000	ug/kg
12674-11-2	Aroclor 1016	ND	1000	ug/kg
11104-28-2	Aroclor 1221	ND	1000	ug/kg
11141-16-5	Aroclor 1232	ND	1000	ug/kg
53469-21-9	Aroclor 1242	ND	1000	ug/kg
12672-29-6	Aroclor 1248	ND	1000	ug/kg
11097-69-1	Aroclor 1254	ND	1000	ug/kg
11096-82-5	Aroclor 1260	ND	1000	ug/kg
Sample QC				
Surrogate		Recovery	QC Limits	
Tetrachloro-m-xylene		69%	10%-103%	
Decachlorobiphenyl		22%	10%-142%	

Report No: E108E18 Sample No: 25 Sample Description: 914110818-PCB-09B

Date Collected: 08/18/2011 12:58 Date Received: 08/19/2011 15:46 Date Extracted: 08/29/2011 13:00 By: NSO Date Analyzed: 09/13/2011 11:56 By: MRB Preparation Method: 3540 Analytical Method: 8082 Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Other Percent Moisture: N/A Sample Weight/Volume: 2.00 Dilution Factor: 1 Extract Volume: 2 Lab Data File: 4091306.D, 4091408.D QC Batch#: 88465

54%

10%-142%

CAS No.	Parameter	Result	DL	Units
37324-23-5	Aroclor 1262	ND	200	ug/kg
11100-14-4	Aroclor 1268	ND	200	ug/kg
12674-11-2	Aroclor 1016	ND	200	ug/kg
11104-28-2	Aroclor 1221	ND	200	ug/kg
11141-16-5	Aroclor 1232	ND	200	ug/kg
53469-21-9	Aroclor 1242	ND	200	ug/kg
12672-29-6	Aroclor 1248	4200	200	ug/kg
11097-69-1	Aroclor 1254	ND	200	ug/kg
11096-82-5	Aroclor 1260	ND	200	ug/kg
Sample QC				
Surrogate		Recovery	QC Limits	
Tetrachloro-m-xylene		37%	10%-103%	

Report No: E108E18 Sample No: 26 Sample Description: 914110818-PCB-09C

Date Collected: 08/18/2011 13:10 Date Received: 08/19/2011 15:46 Date Extracted: 08/29/2011 13:00 By: NSO Date Analyzed: 09/13/2011 12:22 By: MRB Preparation Method: 3540 Analytical Method: 8082 Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

27%

10%-142%

Matrix: Other Percent Moisture: N/A Sample Weight/Volume: 2.02 Dilution Factor: 1 Extract Volume: 2 Lab Data File: 4091307.D QC Batch#: 88465

CAS No.	Parameter	Result	DL	Units
37324-23-5	Aroclor 1262	ND	200	ug/kg
11100-14-4	Aroclor 1268	ND	200	ug/kg
12674-11-2	Aroclor 1016	ND	200	ug/kg
11104-28-2	Aroclor 1221	ND	200	ug/kg
11141-16-5	Aroclor 1232	ND	200	ug/kg
53469-21-9	Aroclor 1242	ND	200	ug/kg
12672-29-6	Aroclor 1248	3500	200	ug/kg
11097-69-1	Aroclor 1254	ND	200	ug/kg
11096-82-5	Aroclor 1260	ND	200	ug/kg
Sample QC				
Surrogate		Recovery	QC Limits	
Tetrachloro-m-xylene		54%	10%-103%)

Report No: E108E18 Sample No: 27 Sample Description: 914110818-PCB-10A

Date Collected: 08/18/2011 13:20 Date Received: 08/19/2011 15:46 Date Extracted: 08/29/2011 13:00 By: NSO Date Analyzed: 09/15/2011 10:54 By: MRB Preparation Method: 3540 Analytical Method: 8082 Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

0%

10%-142%

Matrix: Other Percent Moisture: N/A Sample Weight/Volume: 2.09 Dilution Factor: 20 Extract Volume: 2 Lab Data File: 4091503.D QC Batch#: 88465

CAS No.	Parameter	Result	DL	Units		
37324-23-5	Aroclor 1262	ND	3800	ug/kg		
11100-14-4	Aroclor 1268	ND	3800	ug/kg		
12674-11-2	Aroclor 1016	ND	3800	ug/kg		
11104-28-2	Aroclor 1221	ND	3800	ug/kg		
11141-16-5	Aroclor 1232	ND	3800	ug/kg		
53469-21-9	Aroclor 1242	ND	3800	ug/kg		
12672-29-6	Aroclor 1248	ND	3800	ug/kg		
11097-69-1	Aroclor 1254	ND	3800	ug/kg		
11096-82-5	Aroclor 1260	ND	3800	ug/kg		
Sample QC						
Surrogate		Recovery	QC Limits			
Tetrachloro-m-xylene		0.00%	10%-103%			

Report No: E108E18 Sample No: 28 Sample Description: 914110818-PCB-10B

Date Collected: 08/18/2011 13:25 Date Received: 08/19/2011 15:46 Date Extracted: 08/29/2011 13:00 By: NSO Date Analyzed: 09/15/2011 11:40 By: MRB Preparation Method: 3540 Analytical Method: 8082

Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Other Percent Moisture: N/A Sample Weight/Volume: 2.12 Dilution Factor: 10 Extract Volume: 2 Lab Data File: 4091504.D QC Batch#: 88465

CAS No.	Parameter	Result	DL	Units			
37324-23-5	Aroclor 1262	ND	1900	ug/kg			
11100-14-4	Aroclor 1268	ND	1900	ug/kg			
12674-11-2	Aroclor 1016	ND	1900	ug/kg			
11104-28-2	Aroclor 1221	ND	1900	ug/kg			
11141-16-5	Aroclor 1232	ND	1900	ug/kg			
53469-21-9	Aroclor 1242	ND	1900	ug/kg			
12672-29-6	Aroclor 1248	ND	1900	ug/kg			
11097-69-1	Aroclor 1254	ND	1900	ug/kg			
11096-82-5	Aroclor 1260	ND	1900	ug/kg			
Sample QC							
Surrogate		Recovery	QC Limits				
Tetrachloro-m-xylene		0.00%	0% 10%-103%				
Decachlorobiphen	yl	0%	10%-142%				

Report No: E108E18 Sample No: 29 Sample Description: 914110818-PCB-10C

Date Collected: 08/18/2011 13:30 Date Received: 08/19/2011 15:46 Date Extracted: 08/29/2011 13:00 By: NSO Date Analyzed: 09/15/2011 12:06 By: MRB Preparation Method: 3540 Analytical Method: 8082 Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

0%

Matrix: Other Percent Moisture: N/A Sample Weight/Volume: 2.05 Dilution Factor: 20 Extract Volume: 2 Lab Data File: 4091505.D QC Batch#: 88465

CAS No.	Parameter	Result	DL	Units
37324-23-5	Aroclor 1262	ND	9800	ug/kg
11100-14-4	Aroclor 1268	ND	9800	ug/kg
12674-11-2	Aroclor 1016	ND	9800	ug/kg
11104-28-2	Aroclor 1221	ND	9800	ug/kg
11141-16-5	Aroclor 1232	ND	9800	ug/kg
53469-21-9	Aroclor 1242	ND	9800	ug/kg
12672-29-6	Aroclor 1248	ND	9800	ug/kg
11097-69-1	Aroclor 1254	ND	9800	ug/kg
11096-82-5	Aroclor 1260	ND	9800	ug/kg
Sample QC				
Surrogate		Recovery	QC Limits	
Tetrachloro-m-xylene		0.00%	10%-103%	

Decachlorobiphenyl

10%-142%

Report No: E108E18 Sample No: 30 Sample Description: 914110818-PCB-11A

Date Collected: 08/18/2011 14:00 Date Received: 08/19/2011 15:46 Date Extracted: 08/29/2011 13:00 By: NSO Date Analyzed: 09/15/2011 12:33 By: MRB Preparation Method: 3540 Analytical Method: 8082 Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Other Percent Moisture: N/A Sample Weight/Volume: 2.16 Dilution Factor: 10 Extract Volume: 2 Lab Data File: 4091506.D QC Batch#: 88465

CAS No.	Parameter	Result	DL	Units			
37324-23-5	Aroclor 1262	ND	4600	ug/kg			
11100-14-4	Aroclor 1268	ND	4600	ug/kg			
12674-11-2	Aroclor 1016	ND	4600	ug/kg			
11104-28-2	Aroclor 1221	ND	4600	ug/kg			
11141-16-5	Aroclor 1232	ND	4600	ug/kg			
53469-21-9	Aroclor 1242	ND	4600	ug/kg			
12672-29-6	Aroclor 1248	ND	4600	ug/kg			
11097-69-1	Aroclor 1254	ND	4600	ug/kg			
11096-82-5	Aroclor 1260	ND	4600	ug/kg			
Sample QC							
Surrogate		Recovery	QC Limits				
Tetrachloro-m-xyle	ene	0.00%	00% 10%-103%				
Decachlorobipheny	/l	0.00%	10%-142%				

Report No: E108E18 Sample No: 31 Sample Description: 914110818-PCB-11B

Date Collected: 08/18/2011 14:20 Date Received: 08/19/2011 15:46 Date Extracted: 08/29/2011 13:00 By: NSO Date Analyzed: 09/15/2011 13:26 By: MRB Preparation Method: 3540 Analytical Method: 8082

Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Other Percent Moisture: N/A Sample Weight/Volume: 2.12 Dilution Factor: 20 Extract Volume: 2 Lab Data File: 4091508.D QC Batch#: 88465

CAS No.	Parameter	Result	DL	Units			
37324-23-5	Aroclor 1262	ND	3800	ug/kg			
11100-14-4	Aroclor 1268	ND	3800	ug/kg			
12674-11-2	Aroclor 1016	ND	3800	ug/kg			
11104-28-2	Aroclor 1221	ND	3800	ug/kg			
11141-16-5	Aroclor 1232	ND	3800	ug/kg			
53469-21-9	Aroclor 1242	ND	3800	ug/kg			
12672-29-6	Aroclor 1248	ND	3800	ug/kg			
11097-69-1	Aroclor 1254	ND	3800	ug/kg			
11096-82-5	Aroclor 1260	ND	3800	ug/kg			
Sample QC							
Surrogate		Recovery	QC Limits				
Tetrachloro-m-xyle	ene	0%	10%-103%				
Decachlorobiphenyl		0%	10%-142%				

Report No: E108E18 Sample No: 32 Sample Description: 914110818-PCB-11C

Date Collected: 08/18/2011 14:35 Date Received: 08/19/2011 15:46 Date Extracted: 08/30/2011 10:30 By: DPR Date Analyzed: 09/15/2011 13:52 By: MRB Preparation Method: 3540 Analytical Method: 8082

Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Other Percent Moisture: N/A Sample Weight/Volume: 2.00 Dilution Factor: 20 Extract Volume: 2 Lab Data File: 4091509.D QC Batch#: 88482

CAS No.	Parameter	Result	DL	Units			
37324-23-5	Aroclor 1262	ND	10000	ug/kg			
11100-14-4	Aroclor 1268	ND	10000	ug/kg			
12674-11-2	Aroclor 1016	ND	10000	ug/kg			
11104-28-2	Aroclor 1221	ND	10000	ug/kg			
11141-16-5	Aroclor 1232	ND	10000	ug/kg			
53469-21-9	Aroclor 1242	ND	10000	ug/kg			
12672-29-6	Aroclor 1248	ND	10000	ug/kg			
11097-69-1	Aroclor 1254	ND	10000	ug/kg			
11096-82-5	Aroclor 1260	ND	10000	ug/kg			
Sample QC							
Surrogate		Recovery	QC Limits				
Tetrachloro-m-xyle	ene	0.00%	10%-103%				
Decachlorobiphenyl		0%	10%-142%				

Report No: E108E18 Sample No: 33 Sample Description: 914110818-PCB-12

Date Collected: 08/18/2011 15:30 Date Received: 08/19/2011 15:46 Date Extracted: 08/30/2011 10:30 By: DPR Date Analyzed: 09/14/2011 13:51 By: MRB Preparation Method: 3540 Analytical Method: 8082 Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

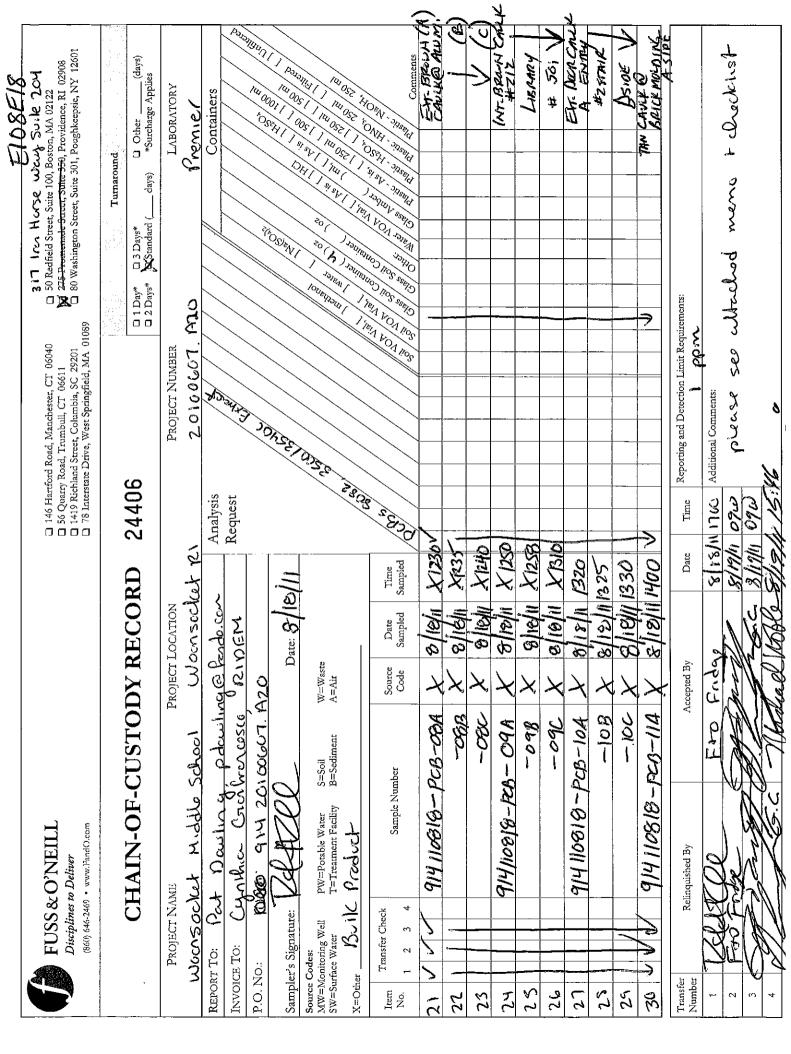
Matrix: Other Percent Moisture: N/A Sample Weight/Volume: 2.00 Dilution Factor: 1 Extract Volume: 2 Lab Data File: 4091408.D QC Batch#: 88482

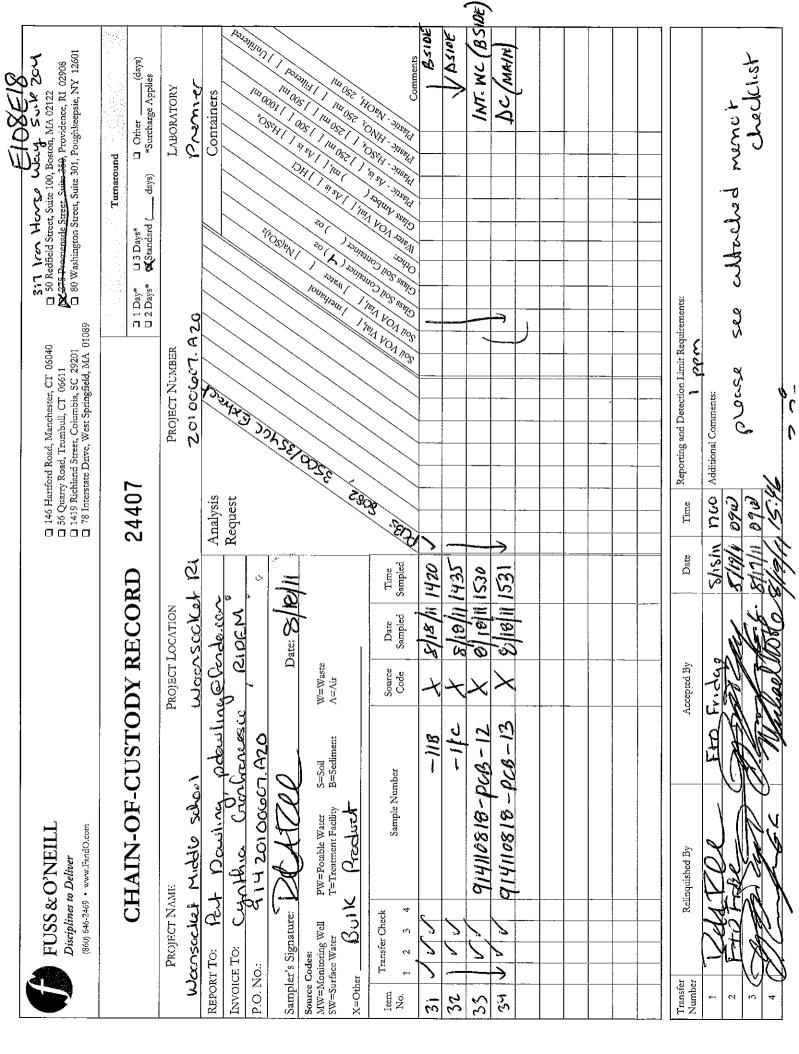
CAS No.	Parameter	Result	DL	Units
37324-23-5	Aroclor 1262	ND	200	ug/kg
11100-14-4	Aroclor 1268	ND	200	ug/kg
12674-11-2	Aroclor 1016	ND	200	ug/kg
11104-28-2	Aroclor 1221	ND	200	ug/kg
11141-16-5	Aroclor 1232	ND	200	ug/kg
53469-21-9	Aroclor 1242	ND	200	ug/kg
12672-29-6	Aroclor 1248	ND	200	ug/kg
11097-69-1	Aroclor 1254	ND	200	ug/kg
11096-82-5	Aroclor 1260	ND	200	ug/kg
Sample QC				
Surrogate		Recovery	QC Limits	

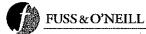
Surrogate	Recovery	QC Limits	
Tetrachloro-m-xylene Decachlorobiphenyl	78% 107%	10%-103% 10%-142%	

Report No: E108E18 Sample No: 34 Sample Description: 914110818-PCB-13

Date Collected: 08/18/2011 15:31 Date Received: 08/19/2011 15:46 Date Extracted: 08/30/2011 10:30 By: DPR Date Analyzed: 09/15/2011 14:19 By: MRB Preparation Method: 3540 Analytical Method: 8082


Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

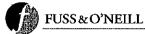

Matrix: Other Percent Moisture: N/A Sample Weight/Volume: 2.00 Dilution Factor: 50 Extract Volume: 2 Lab Data File: 4091510.D QC Batch#: 88482


CAS No.	Parameter	Result	DL	Units			
37324-23-5	Aroclor 1262	ND	10000	ug/kg			
11100-14-4	Aroclor 1268	ND	10000	ug/kg			
12674-11-2	Aroclor 1016	ND	10000	ug/kg			
11104-28-2	Aroclor 1221	ND	10000	ug/kg			
11141-16-5	Aroclor 1232	ND	10000	ug/kg			
53469-21-9	Aroclor 1242	ND	10000	ug/kg			
12672-29-6	Aroclor 1248	ND	10000	ug/kg			
11097-69-1	Aroclor 1254	ND	10000	ug/kg			
11096-82-5	Aroclor 1260	ND	10000	ug/kg			
Sample QC							
Surrogate		Recovery	QC Limits				
Tetrachloro-m-xyle	ene	0.00%	10%-103%				
Decachlorobiphenyl		0%	10%-142%				

317 1 row Horse Willy Suile 264 50 Redfield Street, Suite 100, Boston, MA 02122 275 Promende Street, Suite 301, Poughkeepsie, NY 12601 280 Washington Street, Suite 301, Poughkeepsie, NY 12601	Turmaround Cuther (days) days) *Surcharge Applies	LABORATORY Premiel	Containers	100 100 100 100 100 100 100 100 100 100	1 2 2 0 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A DE	OLD GYM Poiry Froop		OLDEYM		>	OUD GYM MARTCEH CONC		BLACK MATTIC		menco t checklist		
	D 1 Days B Standard (PROJECT NUMBER				10/0)	Reporting and Detection Limit Requirements: ppm	see attached	0	3.20
 146 Hartford Road, Manchester, CT 06040 56 Quarry Road, Trumbull, CT 06611 1419 Richland Street, Columbia, SC 29201 78 Interstate Drive, West Springfield, MA 01089 	ORD 24404	ket RI	Cen Analysis Request	11/al	7303	Time Sampled	/ 000 h	110905 1	110910 V 110910 V		11 0925	10927 V	1 0430		Date Time Reporting an	8/12/11 1700 Additional Comments. 3/17/11 0900 P CC CSP	C-5/1/1 090	and the contractor
	CHAIN-OF-CUSTODY RECO	Middle Sheril Warsod	A francesce		S=Soil W=Waste B=Sediment A=Air	Sample Number Code Sampled	914110618-PCB-014 X B/12/	λ	PR-52 V 8/12/	-028 X 8/12/	-oze X Blill	-034 X	-63B X Stati	-04A X 8/12	Accepted By	Fro Frider	C Marinal 100	·A· A· ·······························
FUSS & O'NEILL Disciplines to Deliver (860) 646-2469 • www.FandO.com	CHAIN-OF	PROJECT NAME WECNSOCICE Middle	<u>_</u>	Signature:	Source Codes: MW=Monitoring Well PW=Potable Water SW=Surface Water T=Treatment Facility X=Other Butth Propurt	Transfer Check 2 3 4) J N g/4/10618	2	3 1 011110018-		9	ELA-BIBOILITY	2 2	00 V V 914110810-20	Transfer Number	1 TUNTOL	3 Canadra and and	

ucuester, CT 00040 C 22 5 Promende Straar, Suite 356 , Providence, RI 02908 Juliumbia, SC 29201 D 80 Washington Street, Suite 301, Poughkeepsie, NY 12601 est Springfield, MA 01089	Image: Days* Days* Days* Days*	OJECT NUMBER LABORATORY		1 W	$\left\ \begin{bmatrix} x_{1}x_{1}x_{1}x_{1}x_{1}x_{2}x_{1}x_{2}x_{1}x_{2}x_{1}x_{2}x_{2}x_{2}x_{2}x_{2}x_{2}x_{2}x_{2$		CP 114 - BURK	Uniter Freder	CR 100 MASTIC		NEWGYM Park		Reporting and Detection Limit Requirements:			ý
 146 Hartford Road, Manchester, CT 06040 56 Quarry Road, Trumbull, CT 06611 1419 Richland Street, Columbia, SC 29201 78 Interstate Drive, West Springfield, MA 01089 	0 24	2	Anal	ASE DESE	ne iled eSt			2	Q.	0		2	Date Time Reporting at	8/18/11 1700 Additional Comments: 6/17/49 0713 P. Cocce 8/19/11 050	194 1546	N N
	DY RECORI	PROJECT LOCATION	RIDI	Date: S/IS/I W=Waste A=Air	Source Date Time Code Sampled Sampled	X Statu age	Illalla X	X Blight	X 8/12/11 1040 X 8/12/11 1300	X e a	X 8/16/11/200 X 8/16/11/207	X Blien	Accepted By	Kridgo 8 2 Eridgo 8	lal Monte 8	`
FUDDO & UNEILL Disciplines to Deliver (861) 646-2469 • www.FandO.com	CHAIN-OF-CUSTODY RECO	MARE 1. A. Michelic Selacal	Deutine Die Credu	PW=Potable Water S=Soil T=Treatment Facility B=Sediment		-04B	914 1108 18 - PCB-05A		-05C	-068	914/10818-PCB-07A	260-	Relinquished By	male Fra	The Cold Muy	•
FU33 (Discipline (861) 646-24	C	PROJECT NAME	REPORT TO: R.J. INVOICE TO: C.J.	Sampler's Signature: Source Codes: MW=Monitoring Well SW=Surface Water	A=Other Item No. 1 2 3 4		13	2	15 16		1	20 J V V	Transfer Number	- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	4	7

ETOSETS


INITIAL DATE: JULY 2007 REVISION DATE: JULY 2007 REVISION: 0.0

GENERIC QUALITY ASSURANCE PROJECT PLAN FOR PROJECT IN RHODE ISLAND LABORATORY MODIFIED TIER II DATA VALIDATION CHECKLIST ORGANIC COMPOUNDS

PERFORMED AND, WHERE APPLICABLE, WITHIN ACCEPTABLE LIMTS?**

			<u>YES</u>	<u>NO</u>	COMMENTS
1.		SDG Project Narratives	X		
2.		Traffic Report	Ď		LA-
3.		Volatiles Data			1
	a.	Sample Data			
		Target Compound List (TCL) Results		\Box .	
		Reconstructed total ion chromatograms (RIC) for each same	ple 🗆		
		For each sample:			
		Raw spectra and background-subtracted mass spectra of			1
		target compounds identified			
		Mass spectra of all reported TICs with three best library			
		matches			
		Percent solids calculations		\Box .	
	b.	Standards Data (all instruments) Initial Calibration Data RICs and Quan Reports for all Standards Continuing Calibration RICs and Quan Reports for all Standards Internal Standard Area Summary			
	C.	Raw QC Data			
		Blank Data			
		Matrix Spike Data			····· /,
		Matrix Spike Duplicate Data			¥
4.	a.	Semivolatiles Data QC Summary Surrogate Percent Recovery Summary MS/MSD Summary	₩.		MA
		Method Blank Summary	V		-AA-
		Tuning and Mass Calibration	· ~		nA-
		o			

F:\pad\A1DEA&R\Basedocs\Report_Templates\QAPPs\Generic QAPP_RI\Final Generic QAPP\Appendices Generic QAPP\E - Completeness Checklist.doc

INITIAL DATE: JULY 2007 REVISION DATE: JULY 2007 REVISION: 0.0

GENERIC QUALITY ASSURANCE PROJECT PLAN FOR PROJECT IN RHODE ISLAND LABORATORY MODIFIED TIER II DATA VALIDATION CHECKLIST ORGANIC COMPOUNDS (Continued)

PERFORMED AND, WHERE APPLICABLE, WITHIN ACCEPTABLE LIMTS?**

		<u>YES</u>	<u>NO</u>	<u>COMMENTS</u>
b	Sample Data TCL Results	R		
	Tentatively Identified Compounds			MA
	Reconstructed total ion chromatograms (RIC) for each Sample			
	For each sample: Raw spectra and background-subtracted mass			
	spectra of TCL compounds		\Box .	
	Mass spectra of TICs with 3 best library matches			
	GPC chromatograms (if GPC performed)			V
c.				
	Initial Calibration Data	R	\Box .	
	RICs and Quan Reports for all Standards	<u>x</u> x x x	Π.	
	Continuing Calibration	₩.	Π.	
	RICs and Quan Reports for all Standards		Ο.	
	Internal Standard Areas Summary		Π.	
	Internal Standard Areas Summary			MHY
d				nA
	Decafluorotripbenylphosphine (DFTPP)			nA
	Blank Data	X		
	Matrix Spike Data			<u> </u>
	Matrix Spike Duplicate Data			NH
5.	Miscellaneous Data Original preparation and analysis forms or copies of prepara and analysis log book pages	tion		
	Internal sample & sample extract transfer chain-of custody	Ľ,	ш.	
	records			1A
	Screening Records			XA
	All instrument output, including strip charts from screening	Ø.		
	activities (describe or list)	κ,	— .	

F:\pad\ADEA&R\Basedocs\Report_Templates\QAPPs\Generic QAPP_R1\Final Generic QAPP\Appendices Generic QAPP\E-Completeness Checklist.doc

6.

INITIAL DATE: JULY 2007 REVISION DATE: JULY 2007 REVISION: 0.0

GENERIC QUALITY ASSURANCE PROJECT PLAN FOR PROJECT IN RHODE ISLAND LABORATORY MODIFIED TIER II DATA VALIDATION CHECKLIST ORGANIC COMPOUNDS (Continued)

PERFORMED AND, WHERE APPLICABLE, WITHIN ACCEPTABLE LIMTS?**

		<u>YES</u>	<u>NO</u>	<u>COMMENTS</u>
	1-of-Custody Records le Log-in Sheet (Lab & DC1)	K¢ □		
	Illaneous Shipping/Receiving Records (describe or list)			
7.				
<i>1</i> .	Internal Lab Sample Transfer Records and Tracking Sheets (describe or list)			
8.	Other Records (describe or list)			
9.	Comments:			

** See laboratory Quality Assurance Plan for limits.

MOX Completed by: (Lab) (Printed Name/Title) (Signature)

I certify that the above information is true and accurate. I further certify that all laboratory results associated with the above analyses will be made available for review for seven (7) years following certification of this document.

Certified (by (Printed Name/Title (Lab) (Signature

Modified Tier II Data Validation Narrative

Project: 20100607.A20 Site Investigation/Targeted Brownfields Assessment Former Woonsocket Middle School

ESS Laboratory Project Number:	1206255
Date Samples Received at Laboratory:	June 14, 2012
Date of Review:	November 5, 2012

Sixteen building materials samples, including two duplicate samples, were collected and submitted to ESS Laboratory (ESS) for analysis of polychlorinated biphenyls (PCBs) by United States Environmental Protection Agency (USEPA) Method 8082, with extraction via Soxhlet Method 3540.

A non-dedicated chisel was utilized to sample some of the PCB bulk material samples collected in June 2012, necessitating the collection and analysis of one equipment blank. The chisel was decontaminated with hexane following collection of each sample, in accordance with Fuss & O'Neill Standard Operating Procedures. At the end of the sampling event, a wipe sample was then collected from the chisel as an equipment blank. No PCBs were detected in the equipment blank at concentrations exceeding laboratory reporting limits. Samples were analyzed within the method-specific holding times.

The case narrative included in the analytical report documented non-conformances associated with recovery of surrogate compounds utilized during the analyses. Recovery of one or more surrogates was outside the laboratory-specified quality control range for five samples. For three of these samples, surrogate recoveries were above quality control range, suggesting potential high bias for the corresponding analytical data. PCBs were detected in two of these three samples at concentrations exceeding laboratory reporting limits. However, any potential high bias did not affect the usability of the data because PCBs were detected in the affected samples and additional samples of similar material at concentrations within the regulatory range discussed below. For the remaining two samples, surrogate recoveries were below quality control range, suggesting potential low bias for the corresponding analytical data. No PCBs were reportedly detected in these samples at concentrations exceeding laboratory reporting limits. Therefore, potential low bias is not anticipated to affect the usability of the data. No other non-conformances were noted in this analytical report.

As noted previously, two duplicate samples were collected and analyzed as part of this sample group. PCBs were not detected at concentrations above laboratory reporting limits in either the primary or the duplicate sample for one of the pairings (Samples # 914120611-05B and -06); therefore the relative percent difference (RPD) was not calculated. For the second primary/duplicate pair (Samples # 914120611-01B and -02) the calculated RPD was 20%, which was within an acceptable range.

Analytical results for the building materials samples were compared to regulatory limits established by USEPA under the Toxic Substances Control Act (TSCA). These limits included the regulated limit of 50 parts per million (ppm) and the potentially-regulated limit of 1 ppm. All laboratory reporting limits were low enough to allow direct comparison to these limits.

FUSS&O'NEILL

14

INITIAL DATE: OCTOBER 2011 **REVISION DATE: FEBRUARY 2012 REVISION: 1.0**

1206255

GENERIC QUALITY ASSURANCE PROJECT PLAN FOR PROJECTS IN CONNECTICUT, MASSACHUSETTS AND RHODE ISLAND MODIFIED TIER I COMPLETENESS CHECKLIST

	<u>YES</u>	NO
1. SAMPLING AND FIELD MEASUREMENTS:		
Field measurement calibration records		DNIA
Groundwater field measurements (if applicable)		
Soil sampling field measurements (if applicable)		
Sediment sampling field measurements (if applicable)		
Surface water sampling field measurements (if applicable)		
Low-flow sampling field measurements (if applicable)		
Documentation of field activities	X	
Sample numbering and labeling	X	
Chain-of-Custody records	DX1	
Trip blanks		DNIA
Duplicate samples	V	
Equipment blanks	区	
Split samples (if any)		0 NTA
2. LABORATORY MEASUREMENTS:		
Trip blanks		AIN D
Instrument blanks	isk.	
Laboratory control samples	DX.	
Duplicates samples	ÌK.	
Equipment blanks	DK.	
Matrix spike/matrix spike duplicates		AIN D
Analysis type	R	
Chain-of-Custody records	X	
Surrogate recoveries	- 24	
Sample Project Narratives	VX	
Split samples (if any)		ONIA
TOTAL: 13		

PERCENT COMPLETE: 100 %

INITIAL DATE: OCTOBER 2011 REVISION DATE: FEBRUARY 2012 REVISION: 1.0

GENERIC QUALITY ASSURANCE PROJECT PLAN FOR PROJECTS IN CONNECTICUT, MASSACHUSETTS AND RHODE ISLAND FUSS & O'NEILL MODIFIED TIER II DATA VALIDATION CHECKLIST

PERFORMED AND, WHERE APPLICABLE, WITHIN ACCEPTABLE LIMITS?

	YES	NO	COMMENTS
1. SAMPLING AND FIELD MEASUREMENTS:			
Field measurement calibration records			- /15
pH - \pm 0.3 pH units			NA
S.C \pm 5% of calibration solution, within?			1
calibration range			
Temperature - ± 0.5 °C			
D.O \pm 5% of calibration solution			
Groundwater field measurements (if applicable)		000000	
Water depth measured to within 0.01 ft.?			
Soil sampling field measurements (if applicable)			
OVM - ± 2 ppm			
OVA - ± 2 ppm			
Sediment sampling field measurements (if applicable)			
Descriptive information recorded?			
Surface water sampling field measurements (if applicable)			
Water depth measured to within 0.01 ft.?			
Low-flow sampling field measurements (if applicable)			
S.C ± 10%			
pH - \pm 0.2 pH units			
Temperature - \pm 10%			
Turbidity - ± 5 NTU			L L
Documentation of field activities			
Site-specific information documented in field notebook?	X		
Field data sheets completed?	X		
Sample numbering and labeling	-		
Sample numbering conforms to sample I.D. system			
identified in QAPP?	X		
Chain-of-Custody records			
Chain-of-Custody forms completed?	X		

FUSS&O'NEILL

INITIAL DATE: OCTOBER 2011 REVISION DATE: FEBRUARY 2012 REVISION: 1.0

GENERIC QUALITY ASSURANCE PROJECT PLAN FOR PROJECTS IN CONNECTICUT, MASSACHUSETTS AND RHODE ISLAND FUSS & O'NEILL MODIFIED TIER II DATA VALIDATION CHECKLIST (Continued)

PERFORMED AND, WHERE APPLICABLE, WITHIN ACCEPTABLE LIMITS?

Trip blanks N/A Trip blanks submitted, one per day? Image: N/A Any compounds detected in trip blanks? Image: N/A Duplicate samples Image: N/A Field duplicates performed, 1/20 samples? Image: N/A Duplicates performed on 10% of samples screened Image: N/A for explosives? Image: N/A Is percent difference within 30% for all field parameters? Image: N/A	
Any compounds detected in trip blanks?	
Duplicate samples Field duplicates performed, 1/20 samples? Image: Comparison of the sample screened scr	
Field duplicates performed, 1/20 samples? Image: Complex system Duplicates performed on 10% of samples screened Image: Complex screened for explosives? Image: Complex screened Is percent difference within 30% for all field parameters? Image: Complex screened	
Duplicates performed on 10% of samples screened for explosives? Image: Comparison of the samples screened Is percent difference within 30% for all field parameters? Image: Comparison of the samples screened	
for explosives? Is percent difference within 30% for all field parameters? Image: Constraint of the second seco	
Is percent difference within 30% for all field parameters?	
Equipment blanks	
Equipment blanks submitted, one per sampling day?	
Any compounds detected in equipment blank?	
Split samples (if any) Split samples collected?	
Split samples collected? Is percent difference within 30% for split samples?	
Is percent difference within 50% for split samples:	
2. LABORATORY MEASUREMENTS:	
Trip blanks	
Trip blanks submitted, one per day?	
Any compounds detected in trip blanks? \Box \Box $_$ $_$	
Instrument blanks ^{**}	
Laboratory control samples**	
Duplicates samples**	
Equipment blanks ^{**}	
Matrix spike/matrix spike duplicates**	
Analysis type 🛛 🖾	
Chain-of-Custody records	
Surrogate recoveries**	es
Sample Project Narratives	
Split samples (if any)**	
Most recent EPA WP-PE sample results**	

 $\label{eq:product} F: \end{tabular} ADEA&R \end{tabular} Basedocs \end{tabular} Rev-1 \end{tabular} Appendix-1-Completeness-Checklist.doc \end{tabular} Appendix-1-Completen$

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Pat Dowling Fuss & O'Neill, Inc. 317 Iron Horse Way, Suite 204 Providence, RI 02908

RE: Former Woonsocket Middle School (20100607.A20) ESS Laboratory Work Order Number: 1206255

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

ESS Laboratory certifies that the test results meet the requirements of NELAC and A2LA, except where noted within this project narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Fuss & O'Neill, Inc. Client Project ID: Former Woonsocket Middle School

ESS Laboratory Work Order: 1206255

SAMPLE RECEIPT

The following samples were received on June 14, 2012 for the analyses specified on the enclosed Chain of Custody Record.

Lab Number	SampleName	Matrix	Analysis
1206255-01	914120611-01A	Solid	8082
1206255-02	914120611-01B	Solid	8082
1206255-03	914120611-01C	Solid	8082
1206255-04	914120611-02	Solid	8082
1206255-05	914120611-03a	Solid	8082
1206255-06	914120611-03b	Solid	8082
1206255-07	914120611-04a	Solid	8082
1206255-08	914120611-04b	Solid	8082
1206255-09	914120611-05a	Solid	8082
1206255-10	914120611-05b	Solid	8082
1206255-11	914120611-06	Solid	8082
1206255-12	914120611-07a	Solid	8082
1206255-13	914120611-07b	Solid	8082
1206255-14	914120611-08a	Solid	8082
1206255-15	914120611-08b	Solid	8082
1206255-16	914120611-09	Wipe	8082

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Fuss & O'Neill, Inc. Client Project ID: Former Woonsocket Middle School

ESS Laboratory Work Order: 1206255

PROJECT NARRATIVE

8082 Polychlorinated Biphenyls (PCB)

Surrogate recovery(ies) outside of criteria due to matrix (UCM/coelution/matrix is present) (SM).
Decachlorobiphenyl (25% @ 30-150%), Tetrachloro-m-xylene (22% @ 30-150%)
Surrogate recovery(ies) outside of criteria due to matrix (UCM/coelution/matrix is present) (SM).
Decachlorobiphenyl (27% @ 30-150%), Tetrachloro-m-xylene (21% @ 30-150%)
Surrogate recovery(ies) outside of criteria due to matrix (UCM/coelution/matrix is present) (SM).
Tetrachloro-m-xylene (276% @ 30-150%)
Surrogate recovery(ies) outside of criteria due to matrix (UCM/coelution/matrix is present) (SM).
Tetrachloro-m-xylene (327% @ 30-150%)
Surrogate recovery(ies) outside of criteria due to matrix (UCM/coelution/matrix is present) (SM).
Tetrachloro-m-xylene (243% @ 30-150%)

No other observations noted.

End of Project Narrative.

DATA USABILITY LINKS

Definitions of Quality Control Parameters Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Fuss & O'Neill, Inc. Client Project ID: Former Woonsocket Middle School Client Sample ID: 914120611-01A Date Sampled: 06/11/12 11:30 Percent Solids: N/A Initial Volume: 10 Final Volume: 10 Extraction Method: 3540

ESS Laboratory Work Order: 1206255 ESS Laboratory Sample ID: 1206255-01 Sample Matrix: Solid Units: mg/kg wet Analyst: TAJ Prepared: 6/15/12 17:00

8082 Polychlorinated Biphenyls (PCB)

<u>Analyte</u> Aroclor 1016	<u>Results (MRL)</u> ND (0.100)			<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 06/18/12 12:10	<u>Sequence</u>	<u>Batch</u> CF21526
Aroclor 1221	ND (0.100)				1	06/18/12 12:10		CF21526
Aroclor 1232	ND (0.100)				1	06/18/12 12:10		CF21526
Aroclor 1242	ND (0.100)				1	06/18/12 12:10		CF21526
Aroclor 1248	ND (0.100)				1	06/18/12 12:10		CF21526
Aroclor 1254	ND (0.100)				1	06/18/12 12:10		CF21526
Aroclor 1260	ND (0.100)				1	06/18/12 12:10		CF21526
Aroclor 1262	ND (0.100)				1	06/18/12 12:10		CF21526
Aroclor 1268	ND (0.100)				1	06/18/12 12:10		CF21526
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		63 %		30-150				

Surrogate: Decachlorobiphenyl	63 %	30-150
Surrogate: Decachlorobiphenyl [2C]	68 %	30-150
Surrogate: Tetrachloro-m-xylene	76 %	30-150
Surrogate: Tetrachloro-m-xylene [2C]	86 %	30-150

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Fuss & O'Neill, Inc. Client Project ID: Former Woonsocket Middle School Client Sample ID: 914120611-01B Date Sampled: 06/11/12 10:30 Percent Solids: N/A Initial Volume: 10 Final Volume: 10 Extraction Method: 3540

Surrogate: Tetrachloro-m-xylene

Surrogate: Tetrachloro-m-xylene [2C]

ESS Laboratory Work Order: 1206255 ESS Laboratory Sample ID: 1206255-02 Sample Matrix: Solid Units: mg/kg wet Analyst: TAJ Prepared: 6/15/12 17:00

8082 Polychlorinated Biphenyls (PCB)

<u>Analyte</u> Aroclor 1016	<u>Results (MRI</u> ND (0.100)	<u>.)</u>		<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 06/18/12 12:28	<u>Sequence</u>	<u>Batch</u> CF21526
Aroclor 1221	ND (0.100)				1	06/18/12 12:28		CF21526
Aroclor 1232	ND (0.100)				1	06/18/12 12:28		CF21526
Aroclor 1242	0.257 (0.100)				1	06/18/12 12:28		CF21526
Aroclor 1248	ND (0.100)				1	06/18/12 12:28		CF21526
Aroclor 1254	0.118 (0.100)				1	06/18/12 12:28		CF21526
Aroclor 1260	ND (0.100)				1	06/18/12 12:28		CF21526
Aroclor 1262	ND (0.100)				1	06/18/12 12:28		CF21526
Aroclor 1268	ND (0.100)				1	06/18/12 12:28		CF21526
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		55 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		60 %		30-150				

30-150

30-150

65 %

70 %

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Fuss & O'Neill, Inc. Client Project ID: Former Woonsocket Middle School Client Sample ID: 914120611-01C Date Sampled: 06/11/12 09:45 Percent Solids: N/A Initial Volume: 10 Final Volume: 10 Extraction Method: 3540

ESS Laboratory Work Order: 1206255 ESS Laboratory Sample ID: 1206255-03 Sample Matrix: Solid Units: mg/kg wet Analyst: TAJ Prepared: 6/15/12 17:00

<u>Analyte</u> Aroclor 1016	<u>Results (MRL)</u> ND (0.100)		<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 06/18/12 12:47	<u>Sequence</u>	<u>Batch</u> CF21526
Aroclor 1221	ND (0.100)			1	06/18/12 12:47		CF21526
Aroclor 1232	ND (0.100)			1	06/18/12 12:47		CF21526
Aroclor 1242	1.35 (0.100)			1	06/18/12 12:47		CF21526
Aroclor 1248	ND (0.100)			1	06/18/12 12:47		CF21526
Aroclor 1254	0.446 (0.100)			1	06/18/12 12:47		CF21526
Aroclor 1260	ND (0.100)			1	06/18/12 12:47		CF21526
Aroclor 1262	ND (0.100)			1	06/18/12 12:47		CF21526
Aroclor 1268	ND (0.100)			1	06/18/12 12:47		CF21526
	%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl	74 %		30-150				

Surrogate: Decachlorobiphenyl	74 %	30-150
Surrogate: Decachlorobiphenyl [2C]	83 %	30-150
Surrogate: Tetrachloro-m-xylene	69 %	30-150
Surrogate: Tetrachloro-m-xylene [2C]	83 %	30-150

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Fuss & O'Neill, Inc. Client Project ID: Former Woonsocket Middle School Client Sample ID: 914120611-02 Date Sampled: 06/11/12 10:40 Percent Solids: N/A Initial Volume: 10.1 Final Volume: 10 Extraction Method: 3540

Surrogate: Tetrachloro-m-xylene [2C]

ESS Laboratory Work Order: 1206255 ESS Laboratory Sample ID: 1206255-04 Sample Matrix: Solid Units: mg/kg wet Analyst: TAJ Prepared: 6/15/12 17:00

8082 Polychlorinated Biphenyls (PCB)

<u>Analyte</u> Aroclor 1016	<u>Results (MRL</u> ND (0.0990))		<u>Limit</u>	<u>DF</u>	Analyzed 06/18/12 13:06	<u>Sequence</u>	<u>Batch</u> CF21526
Aroclor 1221	ND (0.0990)				1	06/18/12 13:06		CF21526
Aroclor 1232	ND (0.0990)				1	06/18/12 13:06		CF21526
Aroclor 1242	0.293 (0.0990)				1	06/18/12 13:06		CF21526
Aroclor 1248	ND (0.0990)				1	06/18/12 13:06		CF21526
Aroclor 1254	0.167 (0.0990)				1	06/18/12 13:06		CF21526
Aroclor 1260	ND (0.0990)				1	06/18/12 13:06		CF21526
Aroclor 1262	ND (0.0990)				1	06/18/12 13:06		CF21526
Aroclor 1268	ND (0.0990)				1	06/18/12 13:06		CF21526
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		57 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		65 %		30-150				
Surrogate: Tetrachloro-m-xylene		63 %		30-150				

68 %

30-150

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Fuss & O'Neill, Inc. Client Project ID: Former Woonsocket Middle School Client Sample ID: 914120611-03a Date Sampled: 06/11/12 11:00 Percent Solids: N/A Initial Volume: 2.65 Final Volume: 10 Extraction Method: 3540

ESS Laboratory Work Order: 1206255 ESS Laboratory Sample ID: 1206255-05 Sample Matrix: Solid Units: mg/kg wet Analyst: TAJ Prepared: 6/22/12 16:00

Analyte	Results (MRL	<u>)</u>		<u>Limit</u>	DF	Analyzed	<u>Sequence</u>	Batch
Aroclor 1016	ND (0.377)				1	06/25/12 14:04		CF22119
Aroclor 1221	ND (0.377)				1	06/25/12 14:04		CF22119
Aroclor 1232	ND (0.377)				1	06/25/12 14:04		CF22119
Aroclor 1242	ND (0.377)				1	06/25/12 14:04		CF22119
Aroclor 1248	ND (0.377)				1	06/25/12 14:04		CF22119
Aroclor 1254	ND (0.377)				1	06/25/12 14:04		CF22119
Aroclor 1260	ND (0.377)				1	06/25/12 14:04		CF22119
Aroclor 1262	ND (0.377)				1	06/25/12 14:04		CF22119
Aroclor 1268	ND (0.377)				1	06/25/12 14:04		CF22119
		%Recovery	Qualifier	Limits				
Commenter Desertionshiphers d			614					

Surrogate: Decachlorobiphenyl	25 %	SM	30-150
Surrogate: Decachlorobiphenyl [2C]	33 %		30-150
Surrogate: Tetrachloro-m-xylene	22 %	SM	30-150
Surrogate: Tetrachloro-m-xylene [2C]	32 %		30-150

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Fuss & O'Neill, Inc. Client Project ID: Former Woonsocket Middle School Client Sample ID: 914120611-03b Date Sampled: 06/11/12 11:10 Percent Solids: N/A Initial Volume: 2.5 Final Volume: 10 Extraction Method: 3540

ESS Laboratory Work Order: 1206255 ESS Laboratory Sample ID: 1206255-06 Sample Matrix: Solid Units: mg/kg wet Analyst: TAJ Prepared: 6/22/12 16:00

Analyte	<u>Results (MRL)</u>	<u>Limit</u>	<u>DF</u>	Analyzed	<u>Sequence</u>	<u>Batch</u>
Aroclor 1016	ND (0.400)		1	06/25/12 14:23		CF22119
Aroclor 1221	ND (0.400)		1	06/25/12 14:23		CF22119
Aroclor 1232	ND (0.400)		1	06/25/12 14:23		CF22119
Aroclor 1242	ND (0.400)		1	06/25/12 14:23		CF22119
Aroclor 1248	ND (0.400)		1	06/25/12 14:23		CF22119
Aroclor 1254	ND (0.400)		1	06/25/12 14:23		CF22119
Aroclor 1260	ND (0.400)		1	06/25/12 14:23		CF22119
Aroclor 1262	ND (0.400)		1	06/25/12 14:23		CF22119
Aroclor 1268	ND (0.400)		1	06/25/12 14:23		CF22119
	%Recovery Qualifier	Limits				

Surrogate: Decachlorobiphenyl	27 %	SM	30-150
Surrogate: Decachlorobiphenyl [2C]	33 %		30-150
Surrogate: Tetrachloro-m-xylene	21 %	SM	30-150
Surrogate: Tetrachloro-m-xylene [2C]	33 %		30-150

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Fuss & O'Neill, Inc. Client Project ID: Former Woonsocket Middle School Client Sample ID: 914120611-04a Date Sampled: 06/11/12 11:20 Percent Solids: N/A Initial Volume: 5 Final Volume: 10 Extraction Method: 3540

ESS Laboratory Work Order: 1206255 ESS Laboratory Sample ID: 1206255-07 Sample Matrix: Solid Units: mg/kg wet Analyst: TAJ Prepared: 6/15/12 17:00

Analyte	Results (MRL)			Limit	$\frac{\mathbf{DF}}{\mathbf{I}}$	Analyzed	<u>Sequence</u>	Batch
Aroclor 1016	ND (0.200)				1	06/18/12 14:02		CF21526
Aroclor 1221	ND (0.200)				1	06/18/12 14:02		CF21526
Aroclor 1232	ND (0.200)				1	06/18/12 14:02		CF21526
Aroclor 1242	3.61 (0.200)				1	06/18/12 14:02		CF21526
Aroclor 1248	ND (0.200)				1	06/18/12 14:02		CF21526
Aroclor 1254	1.60 (0.200)				1	06/18/12 14:02		CF21526
Aroclor 1260	ND (0.200)				1	06/18/12 14:02		CF21526
Aroclor 1262	ND (0.200)				1	06/18/12 14:02		CF21526
Aroclor 1268	ND (0.200)				1	06/18/12 14:02		CF21526
	%Re	ecovery	Qualifier	Limits				

Surrogate: Decachlorobiphenyl	35 %	30-150
Surrogate: Decachlorobiphenyl [2C]	42 %	30-150
Surrogate: Tetrachloro-m-xylene	61 %	30-150
Surrogate: Tetrachloro-m-xylene [2C]	57 %	30-150

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Fuss & O'Neill, Inc. Client Project ID: Former Woonsocket Middle School Client Sample ID: 914120611-04b Date Sampled: 06/11/12 11:25 Percent Solids: N/A Initial Volume: 5 Final Volume: 10 Extraction Method: 3540

ESS Laboratory Work Order: 1206255 ESS Laboratory Sample ID: 1206255-08 Sample Matrix: Solid Units: mg/kg wet Analyst: TAJ Prepared: 6/15/12 17:00

<u>Analyte</u> Aroclor 1016	<u>Results (MRL)</u> ND (0.200)			<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 06/18/12 14:21	<u>Sequence</u>	Batch CF21526
Aroclor 1221	ND (0.200)				1	06/18/12 14:21		CF21526
Aroclor 1232	ND (0.200)				1	06/18/12 14:21		CF21526
Aroclor 1242	2.27 (0.200)				1	06/18/12 14:21		CF21526
Aroclor 1248	ND (0.200)				1	06/18/12 14:21		CF21526
Aroclor 1254	1.03 (0.200)				1	06/18/12 14:21		CF21526
Aroclor 1260	ND (0.200)				1	06/18/12 14:21		CF21526
Aroclor 1262	ND (0.200)				1	06/18/12 14:21		CF21526
Aroclor 1268	ND (0.200)				1	06/18/12 14:21		CF21526
	%	6Recovery	Qualifier	Limits				

Surrogate: Decachlorobiphenyl	38 %	30-150
Surrogate: Decachlorobiphenyl [2C]	45 %	30-150
Surrogate: Tetrachloro-m-xylene	71 %	30-150
Surrogate: Tetrachloro-m-xylene [2C]	77 %	30-150

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Fuss & O'Neill, Inc. Client Project ID: Former Woonsocket Middle School Client Sample ID: 914120611-05a Date Sampled: 06/11/12 11:45 Percent Solids: N/A Initial Volume: 2.04 Final Volume: 10 Extraction Method: 3540

ESS Laboratory Work Order: 1206255 ESS Laboratory Sample ID: 1206255-09 Sample Matrix: Solid Units: mg/kg wet Analyst: TAJ Prepared: 6/22/12 16:00

Analyte	Results (MRL	<u>.)</u>		<u>Limit</u>	<u>DF</u>	Analyzed	<u>Sequence</u>	Batch
Aroclor 1016	ND (0.490)				1	06/25/12 14:42		CF22119
Aroclor 1221	ND (0.490)				1	06/25/12 14:42		CF22119
Aroclor 1232	ND (0.490)				1	06/25/12 14:42		CF22119
Aroclor 1242	ND (0.490)				1	06/25/12 14:42		CF22119
Aroclor 1248	ND (0.490)				1	06/25/12 14:42		CF22119
Aroclor 1254	ND (0.490)				1	06/25/12 14:42		CF22119
Aroclor 1260	ND (0.490)				1	06/25/12 14:42		CF22119
Aroclor 1262	ND (0.490)				1	06/25/12 14:42		CF22119
Aroclor 1268	ND (0.490)				1	06/25/12 14:42		CF22119
		%Recovery	Qualifier	Limits				

Surrogate: Decachlorobiphenyl	42 %	30-150
Surrogate: Decachlorobiphenyl [2C]	65 %	30-150
Surrogate: Tetrachloro-m-xylene	110 %	30-150
Surrogate: Tetrachloro-m-xylene [2C]	61 %	30-150

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Fuss & O'Neill, Inc. Client Project ID: Former Woonsocket Middle School Client Sample ID: 914120611-05b Date Sampled: 06/11/12 12:00 Percent Solids: N/A Initial Volume: 2.02 Final Volume: 10 Extraction Method: 3540

ESS Laboratory Work Order: 1206255 ESS Laboratory Sample ID: 1206255-10 Sample Matrix: Solid Units: mg/kg wet Analyst: TAJ Prepared: 6/22/12 16:00

<u>Analyte</u>	Results (MRL)	Limit	<u>DF</u>	Analyzed	<u>Sequence</u>	Batch
Aroclor 1016	ND (0.495)		I	06/25/12 15:01		CF22119
Aroclor 1221	ND (0.495)		1	06/25/12 15:01		CF22119
Aroclor 1232	ND (0.495)		1	06/25/12 15:01		CF22119
Aroclor 1242	ND (0.495)		1	06/25/12 15:01		CF22119
Aroclor 1248	ND (0.495)		1	06/25/12 15:01		CF22119
Aroclor 1254	ND (0.495)		1	06/25/12 15:01		CF22119
Aroclor 1260	ND (0.495)		1	06/25/12 15:01		CF22119
Aroclor 1262	ND (0.495)		1	06/25/12 15:01		CF22119
Aroclor 1268	ND (0.495)		1	06/25/12 15:01		CF22119
	%Recovery	Qualifier Limits				

Surrogate: Decachlorobiphenyl	42.0/	20 150
5 , ,	43 %	30-150
Surrogate: Decachlorobiphenyl [2C]	68 %	30-150
Surrogate: Tetrachloro-m-xylene	61 %	30-150
Surrogate: Tetrachloro-m-xylene [2C]	80 %	30-150

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Fuss & O'Neill, Inc. Client Project ID: Former Woonsocket Middle School Client Sample ID: 914120611-06 Date Sampled: 06/11/12 12:15 Percent Solids: N/A Initial Volume: 2.02 Final Volume: 10 Extraction Method: 3540

ESS Laboratory Work Order: 1206255 ESS Laboratory Sample ID: 1206255-11 Sample Matrix: Solid Units: mg/kg wet Analyst: TAJ Prepared: 6/22/12 16:00

Analyte	Results (MRL)	<u>Limit</u> <u>DF</u>	<u>Analyzed</u> <u>Se</u>	quence <u>Batch</u>
Aroclor 1016	ND (0.495)	1	06/25/12 15:20	CF22119
Aroclor 1221	ND (0.495)	1	06/25/12 15:20	CF22119
Aroclor 1232	ND (0.495)	1	06/25/12 15:20	CF22119
Aroclor 1242	ND (0.495)	1	06/25/12 15:20	CF22119
Aroclor 1248	ND (0.495)	1	06/25/12 15:20	CF22119
Aroclor 1254	ND (0.495)	1	06/25/12 15:20	CF22119
Aroclor 1260	ND (0.495)	1	06/25/12 15:20	CF22119
Aroclor 1262	ND (0.495)	1	06/25/12 15:20	CF22119
Aroclor 1268	ND (0.495)	1	06/25/12 15:20	CF22119
	0/ Decover i	Qualifian Limita		

	%Recovery	Qualifier	Limits
Surrogate: Decachlorobiphenyl	44 %		30-150
Surrogate: Decachlorobiphenyl [2C]	69 %		30-150
Surrogate: Tetrachloro-m-xylene	276 %	SM	30-150
Surrogate: Tetrachloro-m-xylene [2C]	104 %		30-150

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Fuss & O'Neill, Inc. Client Project ID: Former Woonsocket Middle School Client Sample ID: 914120611-07a Date Sampled: 06/11/12 14:30 Percent Solids: N/A Initial Volume: 2.03 Final Volume: 10 Extraction Method: 3540

ESS Laboratory Work Order: 1206255 ESS Laboratory Sample ID: 1206255-12 Sample Matrix: Solid Units: mg/kg wet Analyst: TAJ Prepared: 6/22/12 16:00

<u>Analyte</u> Aroclor 1016	<u>Results (MRL)</u> ND (0.493)	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 06/25/12 17:12	<u>Sequence</u>	Batch CF22119
Aroclor 1221	ND (0.493)		1	06/25/12 17:12		CF22119
Aroclor 1232	ND (0.493)		1	06/25/12 17:12		CF22119
Aroclor 1242	2.06 (0.493)		1	06/25/12 17:12		CF22119
Aroclor 1248	ND (0.493)		1	06/25/12 17:12		CF22119
Aroclor 1254	ND (0.493)		1	06/25/12 17:12		CF22119
Aroclor 1260	ND (0.493)		1	06/25/12 17:12		CF22119
Aroclor 1262	ND (0.493)		1	06/25/12 17:12		CF22119
Aroclor 1268	ND (0.493)		1	06/25/12 17:12		CF22119
	%Recovery	Qualifier Limits				

	%Recovery	Quaimer	LIIIIIS
Surrogate: Decachlorobiphenyl	38 %		30-150
Surrogate: Decachlorobiphenyl [2C]	58 %		30-150
Surrogate: Tetrachloro-m-xylene	327 %	SM	30-150
Surrogate: Tetrachloro-m-xylene [2C]	77 %		30-150

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Fuss & O'Neill, Inc. Client Project ID: Former Woonsocket Middle School Client Sample ID: 914120611-07b Date Sampled: 06/11/12 15:00 Percent Solids: N/A Initial Volume: 2.08 Final Volume: 10 Extraction Method: 3540

ESS Laboratory Work Order: 1206255 ESS Laboratory Sample ID: 1206255-13 Sample Matrix: Solid Units: mg/kg wet Analyst: TAJ Prepared: 6/22/12 16:00

<u>Analyte</u> Aroclor 1016	<u>Results (MRL)</u> ND (0.481)	<u>Limit</u> <u>DF</u>	<u>Analyzed</u> 06/25/12 18:04	Sequence Batch CF22119
Aroclor 1221	ND (0.481)	1	06/25/12 18:04	CF22119
Aroclor 1232	ND (0.481)	1	06/25/12 18:04	CF22119
Aroclor 1242	ND (0.481)	1	06/25/12 18:04	CF22119
Aroclor 1248	3.82 (0.481)	1	06/25/12 18:04	CF22119
Aroclor 1254	ND (0.481)	1	06/25/12 18:04	CF22119
Aroclor 1260	ND (0.481)	1	06/25/12 18:04	CF22119
Aroclor 1262	ND (0.481)	1	06/25/12 18:04	CF22119
Aroclor 1268	ND (0.481)	1	06/25/12 18:04	CF22119
	%Recovery	Qualifier Limits		

	%Recovery	Quaimer	Liitiits
Surrogate: Decachlorobiphenyl	40 %		30-150
Surrogate: Decachlorobiphenyl [2C]	60 %		30-150
Surrogate: Tetrachloro-m-xylene	243 %	SM	30-150
Surrogate: Tetrachloro-m-xylene [2C]	70 %		30-150

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Fuss & O'Neill, Inc. Client Project ID: Former Woonsocket Middle School Client Sample ID: 914120611-08a Date Sampled: 06/11/12 13:30 Percent Solids: N/A Initial Volume: 10.5 Final Volume: 10 Extraction Method: 3540

Surrogate: Tetrachloro-m-xylene

Surrogate: Tetrachloro-m-xylene [2C]

ESS Laboratory Work Order: 1206255 ESS Laboratory Sample ID: 1206255-14 Sample Matrix: Solid Units: mg/kg wet Analyst: TAJ Prepared: 6/15/12 17:00

8082 Polychlorinated Biphenyls (PCB)

<u>Analyte</u> Aroclor 1016	<u>Results (MR</u> ND (0.0952)	<u>L)</u>		<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 06/18/12 16:21	<u>Sequence</u>	<u>Batch</u> CF21526
Aroclor 1221	ND (0.0952)				1	06/18/12 16:21		CF21526
Aroclor 1232	ND (0.0952)				1	06/18/12 16:21		CF21526
Aroclor 1242	ND (0.0952)				1	06/18/12 16:21		CF21526
Aroclor 1248	ND (0.0952)				1	06/18/12 16:21		CF21526
Aroclor 1254	ND (0.0952)				1	06/18/12 16:21		CF21526
Aroclor 1260	ND (0.0952)				1	06/18/12 16:21		CF21526
Aroclor 1262	ND (0.0952)				1	06/18/12 16:21		CF21526
Aroclor 1268	ND (0.0952)				1	06/18/12 16:21		CF21526
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		43 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		46 %		30-150				

30-150

30-150

94 %

81 %

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Fuss & O'Neill, Inc. Client Project ID: Former Woonsocket Middle School Client Sample ID: 914120611-08b Date Sampled: 06/11/12 13:45 Percent Solids: N/A Initial Volume: 10.4 Final Volume: 10 Extraction Method: 3540

Surrogate: Tetrachloro-m-xvlene

Surrogate: Tetrachloro-m-xylene [2C]

ESS Laboratory Work Order: 1206255 ESS Laboratory Sample ID: 1206255-15 Sample Matrix: Solid Units: mg/kg wet Analyst: TAJ Prepared: 6/15/12 17:00

8082 Polychlorinated Biphenyls (PCB)

Analyte	<u>Results (MR</u>	<u>L)</u>		<u>Limit</u>	<u>DF</u>	Analyzed	<u>Sequence</u>	Batch
Aroclor 1016	ND (0.0962)				1	06/18/12 16:38		CF21526
Aroclor 1221	ND (0.0962)				1	06/18/12 16:38		CF21526
Aroclor 1232	ND (0.0962)				1	06/18/12 16:38		CF21526
Aroclor 1242	ND (0.0962)				1	06/18/12 16:38		CF21526
Aroclor 1248	ND (0.0962)				1	06/18/12 16:38		CF21526
Aroclor 1254	ND (0.0962)				1	06/18/12 16:38		CF21526
Aroclor 1260	ND (0.0962)				1	06/18/12 16:38		CF21526
Aroclor 1262	ND (0.0962)				1	06/18/12 16:38		CF21526
Aroclor 1268	ND (0.0962)				1	06/18/12 16:38		CF21526
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		41 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		42 %		30-150				

30-150

30-150

59 %

79 %

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Fuss & O'Neill, Inc. Client Project ID: Former Woonsocket Middle School Client Sample ID: 914120611-09 Date Sampled: 06/11/12 15:30 Percent Solids: N/A Initial Volume: 1 Final Volume: 10 Extraction Method: 3540

ESS Laboratory Work Order: 1206255 ESS Laboratory Sample ID: 1206255-16 Sample Matrix: Wipe Units: ug/Wipe Analyst: TAJ Prepared: 6/15/12 17:00

Analyte Aroclor 1016	<u>Results (MRL)</u> ND (1.0)	<u>)</u>		<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 06/18/12 16:57	<u>Sequence</u>	<u>Batch</u> CF21527
Aroclor 1221	ND (1.0)				1	06/18/12 16:57		CF21527
Aroclor 1232	ND (1.0)				1	06/18/12 16:57		CF21527
Aroclor 1242	ND (1.0)				1	06/18/12 16:57		CF21527
Aroclor 1248	ND (1.0)				1	06/18/12 16:57		CF21527
Aroclor 1254	ND (1.0)				1	06/18/12 16:57		CF21527
Aroclor 1260	ND (1.0)				1	06/18/12 16:57		CF21527
Aroclor 1262	ND (1.0)				1	06/18/12 16:57		CF21527
Aroclor 1268	ND (1.0)				1	06/18/12 16:57		CF21527
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		48 %		30-150				

Surrogate: Decachlorobiphenyl	48 %	30-150
Surrogate: Decachlorobiphenyl [2C]	52 %	30-150
Surrogate: Tetrachloro-m-xylene	82 %	30-150
Surrogate: Tetrachloro-m-xylene [2C]	90 %	30-150

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Fuss & O'Neill, Inc.

Client Project ID: Former Woonsocket Middle School

ESS Laboratory Work Order: 1206255

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
		8082 Polyc	hlorinated B	iphenyls ((PCB)					
atch CF21526 - 3540										
Blank										
Aroclor 1016	ND	0.0500	mg/kg wet							
Aroclor 1221	ND	0.0500	mg/kg wet							
roclor 1232	ND	0.0500	mg/kg wet							
roclor 1242	ND	0.0500	mg/kg wet							
roclor 1248	ND	0.0500	mg/kg wet							
roclor 1254	ND	0.0500	mg/kg wet							
roclor 1260	ND	0.0500	mg/kg wet							
roclor 1262	ND	0.0500	mg/kg wet							
roclor 1268	ND	0.0500	mg/kg wet							
urrogate: Decachlorobiphenyl	0.0169		mg/kg wet	0.02500		67	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0182		mg/kg wet	0.02500		73	30-150			
Surrogate: Tetrachloro-m-xylene	0.0215		mg/kg wet	0.02500		86	30-150			
urrogate: Tetrachloro-m-xylene [2C]	0.0245		mg/kg wet	0.02500		98	30-150			
CS										
roclor 1016	0.516	0.0500	mg/kg wet	0.5000		103	40-140			
roclor 1260	0.442	0.0500	mg/kg wet	0.5000		88	40-140			
	0.1.12			0.0000			10 1 10			
Surrogate: Decachlorobiphenyl	0.0183		mg/kg wet	0.02500		73	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0200		mg/kg wet	0.02500		80	30-150			
Surrogate: Tetrachloro-m-xylene	0.0241		mg/kg wet	0.02500		96	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0262		mg/kg wet	0.02500		105	30-150			
CS Dup										
roclor 1016	0.502	0.0500	mg/kg wet	0.5000		100	40-140	3	50	
roclor 1260	0.426	0.0500	mg/kg wet	0.5000		85	40-140	4	50	
Surrogate: Decachlorobiphenyl	0.0175		mg/kg wet	0.02500		70	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0190		mg/kg wet	0.02500		76	30-150			
Surrogate: Tetrachloro-m-xylene	0.0236		mg/kg wet	0.02500		94	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0256		mg/kg wet	0.02500		103	30-150			
atch CF21527 - 3540										
lank										
roclor 1016	ND	1.0	ug/Wipe							
roclor 1221	ND	1.0	ug/Wipe							
roclor 1222	ND	1.0	ug/Wipe							
roclor 1242	ND	1.0	ug/Wipe							
roclor 1248	ND	1.0	ug/Wipe							
roclor 1254	ND	1.0	ug/Wipe							
roclor 1260	ND	1.0	ug/Wipe							
roclor 1260	ND	1.0	ug/Wipe							
roclor 1262	ND	1.0	ug/Wipe							
Surrogate: Decachlorobiphenyl	0.337		ug/Wipe	0.5000		67	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.365		ug/Wipe	0.5000		73	30-150			
105 Emanage A	ue Cranston DI 020	10 2211 7	al 101 161 71	Q1 E	v: 101 161	1186	http://www	ESSI aba	ratory com	
185 Frances Aven	ue, Cranston, RI 029	10-2211	el: 401-461-71	81 Fa	x: 401-461-	4480	http://www	.ESSLaboi	ratory.com	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Fuss & O'Neill, Inc.

Client Project ID: Former Woonsocket Middle School

ESS Laboratory Work Order: 1206255

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
		8082 Polyc	hlorinated B	iphenyls	(PCB)					
atch CF21527 - 3540										
Surrogate: Tetrachloro-m-xylene	0.430		ug/Wipe	0.5000		86	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.490		ug/Wipe	0.5000		98	30-150			
LCS										
Aroclor 1016	10.3	1.0	ug/Wipe	10.00		103	40-140			
Aroclor 1260	8.8	1.0	ug/Wipe	10.00		88	40-140			
	0.266		ug/Wipo	0 5000		73	30-150			
Surrogate: Decachlorobiphenyl	0.366		ug/Wipe	0.5000						
Surrogate: Decachlorobiphenyl [2C]	0.399		ug/Wipe	0.5000		<i>80</i>	30-150			
Surrogate: Tetrachloro-m-xylene	<i>0.482</i>		ug/Wipe	0.5000		96 105	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.525		ug/Wipe	0.5000		105	30-150			
LCS Dup										
Aroclor 1016	10.0	1.0	ug/Wipe	10.00		100	40-140	3	50	
Aroclor 1260	8.5	1.0	ug/Wipe	10.00		85	40-140	4	50	
Surrogate: Decachlorobiphenyl	0.351		ug/Wipe	0.5000		70	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.380		ug/Wipe	0.5000		76	30-150			
Surrogate: Tetrachloro-m-xylene	0.472		ug/Wipe	0.5000		94	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.513		ug/Wipe	0.5000		103	30-150			
Batch CF22119 - 3540										
Blank										
Aroclor 1016	ND	0.0500	mg/kg wet							
Aroclor 1221	ND	0.0500	mg/kg wet							
Aroclor 1232	ND	0.0500	mg/kg wet							
Aroclor 1242	ND	0.0500	mg/kg wet							
Aroclor 1248	ND	0.0500	mg/kg wet							
Aroclor 1254	ND	0.0500	mg/kg wet							
Aroclor 1260	ND	0.0500	mg/kg wet							
Aroclor 1262	ND	0.0500	mg/kg wet							
Aroclor 1268	ND	0.0500	mg/kg wet							
	0.0176		mg/kg wet	0.02500		70	30-150			
Surrogate: Decachlorobiphenyl	0.0266		mg/kg wet	0.02500		106	30-150 30-150			
Surrogate: Decachlorobiphenyl [2C] Surrogate: Tetrachloro-m-xylene	0.0194		mg/kg wet	0.02500		78	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0222		mg/kg wet	0.02500		89	<i>30-150</i>			
Aroclor 1016	0.513	0.0500	mg/kg wet	0.5000		103	40-140			
Aroclor 1260	0.504	0.0500	mg/kg wet	0.5000		101	40-140			
Surrogate: Decachlorobiphenyl	0.0182		mg/kg wet	0.02500		73	30-150			
Surrogate: Decachlorobiphenyl Surrogate: Decachlorobiphenyl [2C]	0.0275		mg/kg wet	0.02500		110	30-150			
Surrogate: DecachioroDiphenyi [2C] Surrogate: Tetrachloro-m-xylene	0.0228		mg/kg wet	0.02500		91	30-150			
Surrogate: Tetrachloro-m-xylene Surrogate: Tetrachloro-m-xylene [2C]	0.0252		mg/kg wet	0.02500		101	30-150			
LCS Dup			5, 5							
Aroclor 1016	0.501	0.0500	mg/kg wet	0.5000		100	40-140	2	50	
	0.301	0.0300	mg/kg wet	0.0000		100	-10-1-10	2	50	
Aroclor 1260	0.506	0.0500	mg/kg wet	0.5000		101	40-140	0.4	50	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

0.0240

Client Name: Fuss & O'Neill, Inc.

Surrogate: Tetrachloro-m-xylene [2C]

Client Project ID: Former Woonsocket Middle School

ESS Laboratory Work Order: 1206255

96

30-150

Quality Control Data

Analyte	Result	MRL Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
		8082 Polychlorinated	Biphenyls	(PCB)					
Batch CF22119 - 3540									
Surrogate: Decachlorobiphenyl	0.0183	mg/kg wet	0.02500		73	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0265	mg/kg wet	0.02500		106	30-150			
Surrogate: Tetrachloro-m-xylene	0.0210	mg/kg wet	0.02500		84	30-150			

mg/kg wet

0.02500

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Fuss & O'Neill, Inc. Client Project ID: Former Woonsocket Middle School

ESS Laboratory Work Order: 1206255

Notes and Definitions

U	Analyte included in the analysis, but not detected
SM	Surrogate recovery(ies) outside of criteria due to matrix (UCM/coelution/matrix is present) (SM).
ND	Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
MDL	Method Detection Limit
MRL	Method Reporting Limit
LOD	Limit of Detection
LOQ	Limit of Quantitation
DL	Detection Limit
I/V	Initial Volume
F/V	Final Volume
§	Subcontracted analysis; see attached report
1	Range result excludes concentrations of surrogates and/or internal standards eluting in that range.
2	Range result excludes concentrations of target analytes eluting in that range.
3	Range result excludes the concentration of the C9-C10 aromatic range.
Avg	Results reported as a mathematical average.
NR	No Recovery
[CALC]	Calculated Analyte
SUB	Subcontracted analysis; see attached report

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Fuss & O'Neill, Inc. Client Project ID: Former Woonsocket Middle School

ESS Laboratory Work Order: 1206255

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Department of Defense (DoD) Environmental Laboratory Accreditation Program (ELAP) A2LA Accredited: Testing Cert# 2864.01 http://www.a2la.org/scopepdf/2864-01.pdf

> Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/labs/waterlabs-instate.php

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories/pdf/OutofStateCommercialLaboratories.pdf

> Maine Potable and Non Potable Water: R10002 http://www.maine.gov/dep/blwq/topic/vessel/lab_list.pdf

> Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/labcert/labcert.aspx

New Hampshire (NELAP accredited) Potable and Non PotableWater, Solid and Hazardous Waste: 2424 http://www4.egov.nh.gov/des/nhelap/namesearch.asp

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

United States Department of Agriculture Soil Permit: S-54210

Maryland Potable Water: 301 http://www.mde.state.md.us/assets/document/WSP_labs-2009apr20.pdf

CHEMISTRY

A2LA Accredited: Testing Cert # 2864.01 Lead in Paint, Phthalates, Lead in Children's Metals Products (Including Jewelry) <u>http://www.A2LA.org/dirsearchnew/newsearch.cfm</u>

> CPSC ID# 1141 Lead Paint, Lead in Children's Metals Jewelry http://www.cpsc.gov/cgi-bin/labapplist.aspx

Sample and Cooler Receipt Checklist			SOP 10_					
Client: Fuss & O'Neill, Inc. Client Project ID:		ESS Project ID: <u>12060255</u> Date Project Due: <u>6/21/12</u>						
Client Project ID: Shipped/Delivered Via: <u>ESS Courier</u>		Days For Project: 4 Day						
Items to be checked upon receipt:		·						
1. Air Bill Manifest Present?	* No	10. Are the samples properly preserved?	Yes					
Air No.:		11. Proper sample containers used?	Yes					
2. Were Custody Seals Present?	No	12. Any air bubbles in the VOA vials?	N/A					
3. Were Custody Seals Intact?	N/A	13. Holding times exceeded?	No					
4. Is Radiation count < 100 CPM?	Yes	14. Sufficient sample volumes?	Yes					
5. Is a cooler present?	Yes	15. Any Subcontracting needed?	No					
Cooler Temp: 5.9		16. Are ESS labels on correct containers?	YesNo					
Iced With: Icepacks		17. Were samples received intact?	Ves No					
6. Was COC included with samples?	Yes	ESS Sample IDs:						
7. Was COC signed and dated by client?	Yes	Sub Lab:	<u> </u>					
8. Does the COC match the sample	Yes	Analysis:						
9. Is COC complete and correct?	Yes							
18 Was there need to call project manage	ier to disci	use status? If was place explain						

18. Was there need to call project manager to discuss status? If yes, please explain.

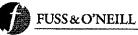
Who was called?:_____

By whom? _____

Sample Number	Properly Preserved	Container Type	# of Containers	Preservative
1	Yes	4 oz Soil Jar	1	NP
2	Yes	4 oz Soil Jar	1	NP
3	Yes	4 oz Soil Jar	1	NP
4	Yes	4 oz Soil Jar	1	NP
5	Yes	4 oz Soil Jar	1	NP
6	Yes	4 oz Soil Jar	1	NP
7	Yes	4 oz Soil Jar	1	NP
8	Yes	4 oz Soil Jar	1	NP
9	Yes	4 oz Soil Jar	1	NP
10	Yes	4 oz Soil Jar	1	NP
11	Yes	4 oz Soil Jar	1	NP
12	Yes	4 oz Soil Jar	1	NP
13	Yes	4 oz Soil Jar	1	NP
14	Yes	4 oz Soil Jar	1	NP
15	Yes	4 oz Soil Jar	1	NP
16	Yes	4 oz Soil Jar	1	NP
Completed By:	JK D	ate/Time: 💧	15/12 1012	l
Reviewed By:	UD D	ate/Time: 🖉 🚺	5712 1055	
		· · · · · · · · · · · · · · · · · · ·		

1

OP-IN Scent Contraction of the second of the	 L POURDES L POURDES D 146 Harford Road, Manchester, CT 06040 50 Redifield Street, Suite 100, Boston, MA 02122 56 Quarry Road, Trumbull, CT 06611 245 Promentate Street, Suite 100, Boston, MA 02122 1419 Richard Street, Columbia, SC 29201 280 Washington Street, Suite 301, Poughkeepsie, NY 12601 78 Interstate Drive, West Springfield, MA 01089 317 From HMC Uoup Scu 2004 	OF-CUSTODY RECORD 24492	PROJECT LOCATION PROJECT NUMBER	Ode Sting & ado . c. Analysis	resser REQUEST Request			y B=Sediment W=Waste Y = Buck MATERER (CHULK)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	X = b/n/n (130 V	XCMD	× 10/11/2 0945	-02 X 6/1/12 1040 V	1-03a Y 1	-03b Y 110 V	- 04a Y 1120	$\frac{1}{2} = 04b + 1 = 04b + 125 + 125 = 12$	- 05b Y V 1200 /	Accepted By Date Time Reporting and Detection Limit Requirements	1630	1000 - See menus (attactual)	1012 1031	_
FUSS & O'NEILL Disciplines to Deliver Bisciplines to Deliver (60) 646.2460 • vww.FaadO.com (80) 646.2460 • vww.FaadO.com PROJECT NAME Sample Numbe No. No. NO. NO. No. No. Pr	1	CHAIN-OF-CUSTODY RECO	Middle Schwal Woonson	Poda Stine	Cynthia hianfrancesco, REDEM	414 20100607 A20	R- ta Warten Destauced Pate: 6	y B=S			Xa	914120611-01C X 10/11/	2001-02 X 611	۱ بـ		\	•			Fur Billos		- Haller Dunde	NA TIOUR

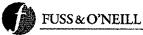

, s

Page 26 of 27

Page 20 01 2

										धुन्	, <u>آ</u>							
ACCA ton, MA 02122 Providence, RI 02908 Poughkeepsie, NY 12601 Wary Ewith 204	8	LABORATORY ESS	Containers	1000 1000 1000 1000 1000 1000 1000 100	10052 10	Comments	Dar Cault	Connel window		#5 Main dow (D+ (center) Cxter	#SMen Der (D-3)	chrisel wipe	•			(JEENED		
 50 Redfield Street, Suite 100, Boston, MA 02122 275 Tromenade Street, Suite 369, Providence, RI 02908 80 Washington Street, Suite 301, Poughkeepsie, NY 12601 317 Trun Hyrle, Uau Euite 2 	Turnaround 1 3 Days*			IN SCOT	1 51 5 V []] [] 20 - 10 U	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2									Caturo	VERTONAL EXTRACTED	kist (attuden)	N
1089	U 1 Day*	Project Number 200007-A20	Ser Ser			Soil LOA Vist	┝───┤					-			Reporting and Detection Limit Requirements:	~ວັລີຊີ	· Complete De checkist (attacher	COOLER TEMP 5.90
 146 Hartford Road, Manchester, CT 06040 56 Quarry Road, Trumbull, CT 06611 1419 Richland Street, Columbia, SC 29201 78 Interstate Drive, West Springfield, MA 0) 24783		Analysis Request	Leon L	۔ مو	- SE		>	2		>	8			Date Time Reporting and Det	11/12 1630 Additional C	1501	
SSENOE	DY RECORL	PROJECT LOCATION		allen Date: 6/11/12	silinent W=Waste Z = wipe San Bulk MATERER (CAUK)	Source Date Time Code Sampled Sampled	Y colutra 1215	Y 1 130	ر اح	<u>ک</u>	•	2 1530			Accepted By I	fridge (all	7- have be	in .un
LL con	CHAIN-OF-CUSTODY RECO	ECT NAME Drue Middle School	wing, folowing a tranfrances	Procession of the Durin Willight	car S=Soluty B=Soluty	Sample Number	914 120611 - 06	1 -07ª	960-	08a	V -08b	\$0-			~	and	Lan I	
FUSS & O'NEILL Disciplines to Deliver (860) 646-2469 • www.FandO.com	CHAIN	PROJECT NAME		gnature:	MW=Monitoring Well PW=Potable Water SW=Surface Water T=Treatment Facility X=Other Threatment Facility	Transfer Check 1 2 3 4	v v v 914	>	>	<u> </u>		<u>}</u>			Rclinquished By	Old Dr.	All and	Tuesday
			REPORT TO: INVOICE TO: P.O. NO.	Sampler's Sig	MW=Monitoring V SW=Surface Water X=Other	Item No.	1	ر	<u>ب</u>	, , ,	5	لر ×		Page	Transfer Number	- 7	3	

1 2 /

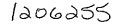

INITIAL DATE: OCTOBER 2011 REVISION DATE: FEBRUARY 2012 REVISION: 1.0

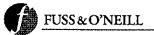
GENERIC QUALITY ASSURANCE PROJECT PLAN FOR PROJECTS IN CONNECTICUT, MASSACHUSETTS AND RHODE ISLAND LABORATORY MODIFIED TIER II DATA VALIDATION CHECKLIST ORGANIC COMPOUNDS

PERFORMED AND, WHERE APPLICABLE, WITHIN ACCEPTABLE LIMTS?**

			<u>YES</u>	<u>NO</u>	COMMENTS
1.		SDG Project Narratives	×	L	
2.		Traffic Report	Ń		BARCODE
3.		Volatiles Data			
	a.	Sample Data			,
		Target Compound List (TCL) Results	\Box	U,	<u>NA</u>
		Reconstructed total ion chromatograms (RIC) for each same	ple⊔	L.	
		For each sample: Raw spectra and background-subtracted mass spectra of			
		target compounds identified	Ц		
		Mass spectra of all reported TICs with three best library		L.	
		matches	L	U	
		Percent solids calculations	U U		
		recent solids calculations		υ.	
	Ь.	Standards Data (all instruments)			
		Initial Calibration Data		L .	
		RICs and Quan Reports for all Standards	L	U j	
		Continuing Calibration			
		RICs and Quan Reports for all Standards	L	U	
		Internal Standard Area Summary	Ц	U .	NA
	c.	Raw QC Data			
	с.	Blank Data			, da
		Matrix Spike Data		U .	<u> </u>
		Matrix Spike Duplicate Data		U.	V
		Matrix Spike Duplicate Data	Ц		NA
4.		Semivolatiles Data		•	
	a.	QC Summary			
		Surrogate Percent Recovery Summary	X	Ы	
		MS/MSD Summary	L L	۲	WA
					1 ⁻
		Method Blank Summary	X		
		Tuning and Mass Calibration		۲.	NA
				• • •	<u></u>

 $F: ad ADEA \& R Basedocs \ Report_Templates \ QAPPs \ Generic-QAPPs \ CT-MA-RI \ Rev-1 \ Appendix -I-Completeness-Checklist. doc \ Appendix -I-Completeness-Checklist. doc \ Appendix -I-Completeness-Checklist. doc \ Appendix -I-Completeness-Checklist. \ Append$


INITIAL DATE: OCTOBER 2011 REVISION DATE: FEBRUARY 2012 REVISION: 1.0


GENERIC QUALITY ASSURANCE PROJECT PLAN FOR PROJECTS IN CONNECTICUT, MASSACHUSETTS AND RHODE ISLAND LABORATORY MODIFIED TIER II DATA VALIDATION CHECKLIST ORGANIC COMPOUNDS (Continued)

PERFORMED AND, WHERE APPLICABLE, WITHIN ACCEPTABLE LIMTS?**

			<u>YES</u>	<u>NO</u>	COMMENTS
	b.	Sample Data			
		TCL Results	X	ĽI.	
		Tentatively Identified Compounds	Ц	M	NA
		Reconstructed total ion chromatograms (RIC) for each		•	1
		Sample	\Box	X.	N/A
		For each sample:			•
		Raw spectra and background-subtracted mass			1
		spectra of TCL compounds	Ľ	Ø.	N[A
		Mass spectra of TICs with 3 best library matches	\Box	М.	<u>N/A</u>
		GPC chromatograms (if GPC performed)	L	⊠ .	- Ala
	c.	Standards Data (all instruments)			
		Initial Calibration Data	М	Ш.	
		RICs and Quan Reports for all Standards		×.	Ala
		Continuing Calibration	Ж	LI .	
		RICs and Quan Reports for all Standards	\Box	X.	NA
		Internal Standard Areas Summary	U	Д [°]	NA
		Internal Standard Areas Summary	L	X.	NA
	d.	Raw QC Data			
		Decafluorotripbenylphosphine (DFTPP)		¥.	DA
		Blank Data	Ā	Г Ц	· • • • • • • • • • • • • • • • • • • •
		Matrix Spike Data		M .	NIA
		Matrix Spike Duplicate Data		×.	NIA
5.		Miscellaneous Data		~	
5.		Original preparation and analysis forms or copies of prepara	tion		
		and analysis log book pages	шол Щ	L	
		Internal sample & sample extract transfer chain-of custody	5	ч.	
		records	X	Ц	
		Screening Records		× ·	NA
		All instrument output, including strip charts from screening	<u> </u>	ц.	
		activities (describe or list)	~	J .	·

 $F: pad ADEA & R Basedoes \equal to the second the sec$

6.

INITIAL DATE: OCTOBER 2011 REVISION DATE: FEBRUARY 2012 REVISION: 1.0

GENERIC QUALITY ASSURANCE PROJECT PLAN FOR PROJECTS IN CONNECTICUT, MASSACHUSETTS AND RHODE ISLAND LABORATORY MODIFIED TIER II DATA VALIDATION CHECKLIST ORGANIC COMPOUNDS (Continued)

PERFORMED AND, WHERE APPLICABLE, WITHIN ACCEPTABLE LIMTS?**

		<u>YES</u>	<u>N0</u>	COMMENTS
Chain-	of-Custody Records	Ä	\sqcup	
Sample	e Log-in Sheet (Lab & DC1)	X	Ľ	
	aneous Shipping/Receiving Records (describe or list)			
7.	Internal Lab Sample Transfer Records and Tracking Sheets (describe or list) BARSODE	×		·····
8.	Other Records (describe or list)		K.	
9.	Comments:	-		

** See laboratory Quality Assurance Plan for limits.

DDDARI Completed by: (Lab) (Printed Name/Title) LAB DIRECTOR

I certify that the above information is true and accurate. I further certify that all laboratory results associated with the above analyses will be made available for review for seven (7) years following certification of this document.

Certified by: (Lab)	(Signature)	(Printed Name/Title)	7/17/12 Date
		HO DIRECTURE	

F:\pad\ADEA&R\Basedocs\Report_Templates\QAPPs\Generic-QAPPs\CT-MA-RI\Rev-1\Appendicies\Appendix-I-Completeness-Checklist.doc

Appendix H

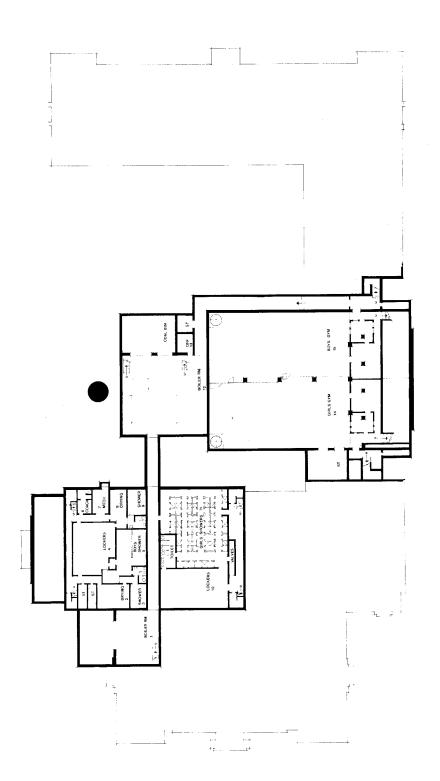
Hazardous Materials Abatement Cost Estimate

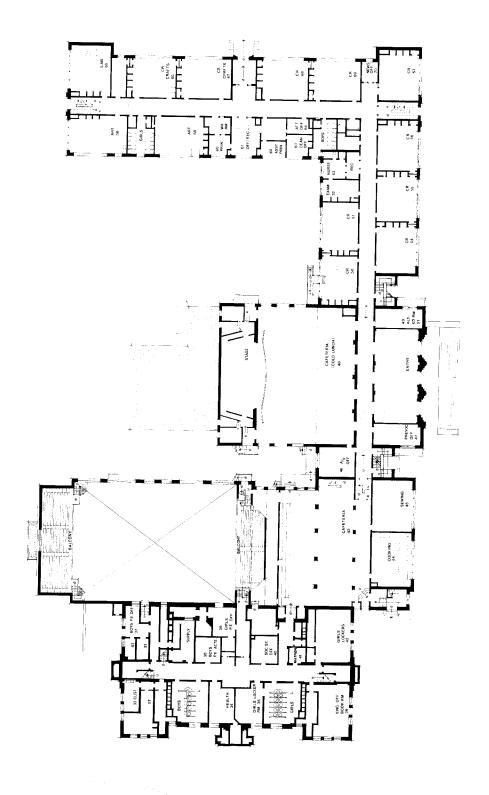
Hazardous Materials Abatement Cost Estimate

A hazardous materials abatement cost estimate is provided below. Unit costs are based on current industry rates and are inclusive of all contractor costs. They do not include costs for design, monitoring, sampling, and other consultant fees. This estimate only accounts for those materials tested and analyzed as part of this assessment. Previously unidentified, hidden, or otherwise untested materials are not accounted for in the table below, and therefore the potential abatement costs are not quantified. Any untested potential asbestos containing materials should be presumed to be asbestos until proven otherwise. Of particular note, the asbestos assessment documented herein did not include sampling or analysis of roofing system components.

Material	Estimated Quantity	Unit Cost	Total Cost
9x9 / 12x12 Floor Tile (All Layers) & Associated Mastics (Includes Removal of Plywood Underlayment & Flooring Layers)	150,000 SF	\$5/SF	\$750,000
AirCell, Pre-Formed Block Type Insulation & Associated Mudded Fittings (Includes Boiler Tunnels, Boiler Breeching, Classroom Risers, Mechanical Areas, Basement Wings)	10,000 SF	\$15/SF	\$150,000
Caulk at Brick Molding Concealed underneath Aluminum Window Frames	All Windows (Approx. 646 EA)	\$500/EA	\$323,000
Boiler Demolition: Includes Removal of All Interior Boiler Debris, Concealed Interior Friable Components, Interior Door Blocking, Firebrick, Millboard, Rib- Sealant Material, Boiler Foundation, and Associated Gaskets, etc.	4 EA (10′x22′x12′h / Boiler)	Lump Sum	\$50,000
Friable Insulation & Cement Overcoat at Top of Boilers	1,100 SF	\$20/SF	\$22,000
Asbestos Debris on Concrete Floor (Small Boiler Room)	500 SF	\$10/SF	\$5,000
Cement Fiber Board (Transite Panels)	1,550 SF	\$10/SF	\$15,500
Cement Fiber Board Associated with Classroom Chalkboards	10 EA	\$1,000/EA	\$10,000
Sink Undercoating Material at Classrooms	12 EA	\$175/EA	\$2,100
2" Brown Vinyl Baseboard & Associated Mastic at Classrooms	1,500 LF	\$3/LF	\$4,500

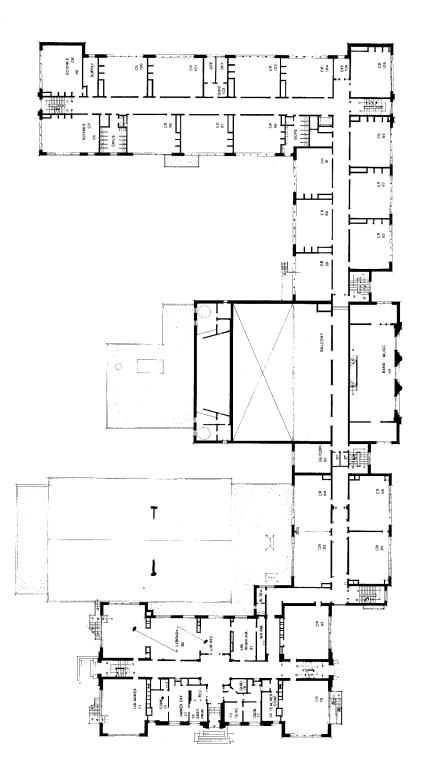
Table 12Estimated Cost for Hazardous Materials Abatement


Material	Estimated Quantity	Unit Cost	Total Cost	
4" Reddish-Brown Vinyl Baseboard & Associated Mastic	2,000 LF	\$3/LF	\$6,000	
6" (Thick) Black Vinyl Baseboard & Associated Mastic at Classrooms	700 LF	\$3/LF	\$2,100	
Yellow Mastic Associated with Ceramic Floor Tile at Girls Locker Room (Old Gym)	750 SF	\$5/SF	\$3,750	
Brown Glue Daubs Associated with Luan Wall Paneling at Offices	3,000 SF	\$7/SF	\$21,000	
Tan Glue Strips On Wood at Classrooms	2,000 SF	\$4/SF	\$8,000	
Window-Glazing Compound Associated with (Interior) Hallway Doors at Classroom Wings	10 EA	\$300/EA	\$3,000	
Allowance for cleaning and disposal of mold contaminated materials at limited locations			\$15,000	
OSHA Lead Compliance during renovation and demolition work		Lump Sum	\$25,000	
Potential Disposal of Lead Waste from demolition and disposal of removed components and surfaces			\$30,000	
Hg Disposal for Switche	Lump Sum	\$5,000		
Hg Lamps & PCB-Containing Lighting Ballasts (Assumed) – No Inventory Conducted Lump Sum		Lump Sum	\$25,000	
SUBTOTAL				
(~15%) CONTINGENCY				
TOTAL				


Appendix I

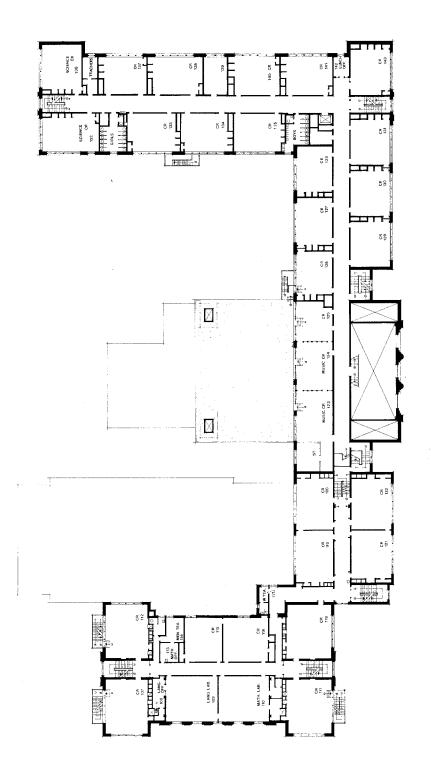
Facility Floor Plan

006-12-4

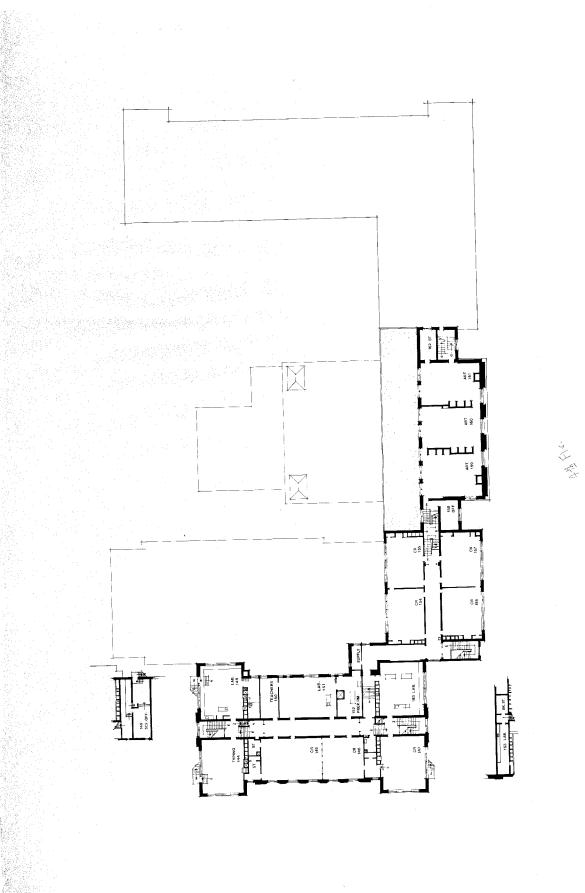


N. XS

201-11-東


Ċ,

 ${}^{\prime}_{I}(\underline{2}_{k}$


996-11 #

Celinary Gir.

् **९** \ 206-11小林

and fre.

11-0150 - 200

096-1L #

Appendix D

Soil Boring Logs

Location: S corner of site Datum: Description: Soil Boring Ground Elevation: 0.00' Contractor: Fuss & 0'Neill Date(s): 06/28/11 - 06/28/11 Coordinate X: 0.000 Drilling Method: Geoprobe Total Depth: 9.00' Coordinate Y: 0.000 Back Fill: Remarks: Field Instrument: PID #1 Attempted boring with solid point 6.0 feet NE and type: Native Material type: Native Material type: Native Material type: to to: fm: 0.20' fm: 0.20' fm: to: to: type: fm: to: to: fm: 0.00' fm: 0.20' fm: to: to: type: fm: to: to: type: fm: to: to: fm: to: fm: to: fm: to: fm: fm: to: fm: fm: to: fm: fm: fm: fm: fm: fm: fm: fm: fm: fm	-				iddle School cket, Rhode Isand	Site Id: SB-C Project Number: 20			FUSS & C Disciplines to ORSE WAY, SUITE 204, PR	Deliver	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Descri Date(s Total	iption: \$ s): 06/ Depth: rks: Fie Att	Soil Borir '28/11 · 9.00' eld Instru tempted	n g – 06 Imen borii	Grou 6 /28/11 Coor Coor nt: PID #1 ng with solid point 6.0	nd Elevation: 0.00' dinate X: 0.000 dinate Y: 0.000	Contractor: Fuss Drilling Method: (Back Fill: type: Asphalt type: Native Ma type: type:	ubbs & O'Neill Geoprobe	Driller: D. Levesc 'Neill Borehole Dia.: 2. robe fm: 0.00' to fm: 0.20' to fm: to		
$\begin{array}{c} 0.2-3.0^{\circ} \text{ SNV} (10^{\circ} \text{ S}/4), \\ 3.2-5.0^{\circ} \text{ Sond}, \ F-M \text{ and gravel; trace gravel; trace silt dark brown (10^{\circ} \text{ S}/4), \\ 3.2-5.0^{\circ} \text{ Sond}, \ F-M \text{ and gravel; light yellowish brown (2.5Y 6/3), dry. Loose.} \end{array}$	Elevation	Depth	Sample No.	Recovery		Materi			Log	Code	DIA
$ \begin{array}{c} & & & & & \\ & & & $	_	-			0.2-3.0': SAND, F; little drv.						0 ppm 0 ppm
$ \begin{array}{c} $	-	-	-08		Sand, F—M and gravel; I	ight yellowish brown (2.	5Y 6/3), dry. Loose.		· · · · · · · · · · · · · · · · · · ·	SW	0 ppm
	-	-			Refusal and end of bori	ng at 9.0 feet.					
	_	-									
	- -16- -	- 16 — -									
Checked By: SAH Page 1 of 1											

				dle School ket, Rhode Isand	Site Id: SB-C Project Number: 2		Dis	SS & O ciplines to 1	Deliver	
Descri Date(s Total	ion: SW iption: Sc s): 06/2 Depth: 3 rks: Field No	oil Borin 28/11 - 39.00'	n g - 06/ ment:	Grou ′28/11 Coor	m: nd Elevation: 0.00' dinate X: 0.000 dinate Y: 0.000	Logged By: S. Hu Contractor: Fuss Drilling Method: (Back Fill: type: Asphalt type: Native Ma type: type: type: type:	& O'Neill Boreh Geoprobe(2.25)/Geopro	: D. Lev ole Dia.: be Solic .00'	vesque : 1.50ir	n (1.5) 40'
Elevation	Depth	Sample No.	Recovery		Mater	ial Description		Graphic Log	USCS Code	QIA
-2 -4 -6 -8	2	/A :05 /A	0		d gravel; light yellowish ight yellowish brown (2.		Loose.		AS SW	0 ppm
-10- - 12- -	10 - _N - 12 -	/A		0–11': Sand, F–M and 1–12': SAND, F, light y 2–15': Sand, F–M and	gravel; light yellowish t ellowish brown (2.5Y 6/ gravel; light yellowish t	prown (2.5Y 6/3), dry. /3), dry. prown (2.5Y 6/3), dry.	Loose. Loose.		SP	0 ppm 0 ppm 0 ppm
-14 - - -16 - - -18 -	14 -N 16 - 18	/A	s	and, F—M and gravel; I	ight yellowish brown (2.	5Y 6/3), dry. Loose.		0 0		0 ppm

				liddle School Site Id: SB—02 Incket, Rhode Isand Project Number: 2010—0607 A20	FUSS & O'NEILL Disciplines to Deliver 317 IRON HORSE WAY, SUITE 204, PROVIDENCE, RI 02908
Elevation	Depth	Sample No.	Recovery	Material Description	Graphic Log USCS Code PID
- -20 -	- 20 - -	06		Sand, F—M and gravel; light yellowish brown (2.5Y 6/3), dry. Loose.	Control Contro
-22- - - 24-	22 - - 24 -	-			
-26-	26-	-		Refusal for sampler.	SW
- -28-	- 28 - -	-			
-30 - - -32 -	30 - - 32 -				
- -34 -	- 34 –	-			
-36- - -38-	36 - - 38 -	-			
-40-	- 40 –	-		End of boring at 39 feet.	
		•			Page 2 of 2

-					& O'NE lines to Delive	r	940
Descri Date(s Total	ption: \$ s): 06/ Depth:	13.00'	ng - 01	oom Datum: Logged By: S. Hubbs Driller: Ground Elevation: 0.00' Contractor: Fuss & O'Neill Boreho 6/28/11 Coordinate X: 0.000 Drilling Method: Geoprobe Coordinate Y: 0.000 Back Fill: Type: Concrete fm:	D. Leves ble Dia.: 2 0.00' 0.30'	que	30'
Elevation	Depth	Sample No.	Recovery	Material Description	Graphic Log	USCS Code	Old
-2 - -4 - -6 - -8 -	2 — - 4 —	N/A -03 N/A		0-0.3': CONCRETE. 0.3-0.8': SAND, F-M; little coal/coal ash; black (10YR 2/1), dry. Loose. (Fill). 0.8-5.0': Sand, F-M and gravel; light yellowish brown (2.5Y 6/3), dry. Loose. Sand, F-M and gravel; light yellowish brown (2.5Y 6/3), dry. Loose.		CR FI SW	0 ppm 0 ppm
-10- -12- -14- -16-	10 12 14 	-04		Sand, F-M and gravel; light yellowish brown (2.5Y 6/3), dry. Loose. Refusal and end of boring at 13 feet.			0 ppm
-18-	18-	SAH			Page 1		

				liddle School ocket, Rhode Isand	Site Id: SB-0 Project Number: 20		FUSS & C JI7 IRON HORSE WAY, SUITE 204, PR	Deliver	
Descri Date(s	Location: Center lot utility areaDatum:Logged By: S. HubbsDescription: Soil BoringGround Elevation: 0.00'Contractor: Fuss & O'NeiDate(s): 06/28/11 - 06/28/11Coordinate X: 0.000Drilling Method: GeoprobeTotal Depth: 14.50'Coordinate Y: 0.000Back Fill:							vesque .: 2.25i	
			umer	coor ht: PID #1	ainate 1: 0.000	Back Fill: type: Asphalt type: Native Materia type: type: type: type:	fm: 0.00' I fm: 0.20' fm: fm: fm:	to: 0 to: 1 to: to: to:	
Elevation	Depth	Sample No.	Recovery		Materi	al Description	Graphic Log	USCS Code	OIA
-2-	- 2-	N/A -02		0-0.2': ASPHALT. 0.2-1.0': SAND, F-M; lit Loose. (Fill). 1.0-5.0': Sand, M and ((2.5Y 6/3), dry. Loose.	tle coal/coal ash; trace gravel; little F sand; trac	concrete; black (10YR 2/1 æ silt; light yellowish brown), dry.	AS FI	0 ppm 0 ppm
-4	4							- - - - -	
-6-	6 —	N/A		Sand, F—M and gravel; I	ight yellowish brown (2.5	5Y 6/3). Loose.		· · · ·	0 ppm
-8-	- 8-							SW	
-10-	10 -	N/A		Sand, F—M and grav e l; I	ight yellowish brown (2.5	5Y 6/3). Loose.			0 ppm
-12- - -14-	12 - - 14 -								
-	-		/	BOULDER. Refusal and e	nd of boring at 14.5 fe	et.		BD	
-16-	16 -	-							
-18-	18-	-					Page 1		

				liddle School cket, Rhode Isand	Site Id: SB-0 Project Number: 20			USS & C Disciplines to 1 Y, SUITE 204, PRO	Deliver	
Location: Center parking lot SEDatum:Logged By: S. HubbsDescription: Soil BoringGround Elevation: 0.00'Contractor: Fuss & O'NeillDate(s): 06/28/11 - 06/28/11Coordinate X: 0.000Drilling Method: GeoprobeTotal Depth: 16.50'Coordinate Y: 0.000Back Fill:					& O'Neill Bore	Driller: D. Levesque Borehole Dia.: 2.25				
			umer	ot: PID #1	dinate Y: 0.000	Back Fill: type: Asphalt type: Native Mat type: type: type:			to: 0. to: 16 to: to: to:	
Elevation	Depth	Sample No.	Recovery		Materi	al Description		Graphic Log	USCS Code	DIA
-2-	- 2	N/A -01 N/A		0–0.2': ASPHALT. 0.2–5.0': Sand, F–M an	d gravel; dark brown (1)	DYR 3/3), dry. Loose.		0.000000000000000000000000000000000000	AS	0 ppm
-4 -	4	-						0 0 0 0		
- -6-	6-	N/A	/	Sand, F—M and gravel;	ight yellowish brown (2.5	ōY 6/3), dry. Loose.		0 0		0 ppm
-8-	8-	-						0.000000	SW	
-10-	10-	N/A	/	Sand, F and gravel; son Loose.	ne M sand; trace silt; lig	ght yellowish brown (2.5	Y 6/3), dry.	0 0 0		0 ppm
-12- - -14-	12 - - 14 -							0 0 0 0 0		
- -16-	- 16	N/A	/	Sand, F and gravel; son Loose.	ne M sand; trace silt; liq	ght yellowish brown (2.5	Y 6/3), dry.	0 0 0	BD	0 ppm
- -18-	- 18- ed By:			BOULDER. Refusal and e	nd of boring at 16.5 fe	et.		Page 1 a		

-				Middle School Site Id: SB-06 Project Number: 2010-0607 A20	FUS Disc	SS & C ciplines to JITE 204, PRC	Deliver		
							: D. Levesque ole Dia.: 2.25in		
			imer	ht: PID #1 type: Asphalt type: Native Material type: type: type: type:	fm: 0. fm: 0. fm: fm: fm:		to: 0 to: 8 to: to: to:		
Elevation	Depth	Sample No.	Recovery	Material Description		Graphic Log	USCS Code	DIA	
-2-		N/A -11, -12		0—0.8': ASPHALT. 0.8—5.0': Sand, M—C and gravel; trace F sand; light yellowish brown (2.5Y 6/3), mois	st.	0 0 0 0	AS	0 ppm	
-4	4	N/A		5.0-7.0': Sand, M-C and gravel; trace F sand; light yellowish brown (2.5Y 6/3), mois 7.0-8.0': SAND, M; trace gravel; light yellowish brown (2.5Y 6/3), moist.	st.	0 0 0 0	SW	0 ppm	
-6- - -8-	6 — - 8 —	-13	_	Refusal and end of boring at 8.0 feet.			SP	0 ppm	
- 10 -	- 10 — -								
-12- -	12								
-14-	14								
-16- - -18-	16 — - 18 —								
	ed By:	SAH			Pr	nge 1	 of 1		

				liddle School cket, Rhode Isand	Site Id: SB-0 Project Number: 20			J SS & C Disciplines to	Deliver	
Descri Date(s Total	ption: S s): 06/ Depth:	5.50'	ng - 0	6 /28/11 Coor Coor	m: nd Elevation: 0.00' dinate X: 0.000 dinate Y: 0.000	Logged By: S. Hu Contractor: Fuss Drilling Method: (Back Fill:	ubbs Drille & O'Neill Bore Geoprobe	r: D. Le hole Dia	vesque .: 2.25ir	n
Remar	Confirmed with boring 10 feet east refusal at 4.0 type: Native Material fm feet. type: fm type: fm					fm: iterial fm: fm: fm: fm:	0.00' 0.20'	to: 0. to: 5. to: to: to:		
Elevation	Depth	Sample No.	Recovery		Materia	al Description		Graphic Log	USCS Code	DIA
-2-	- 2-	N/A -09		0-0.2': ASPHALT. 0.2-5.0': Sand, F-M an	d gravel; light yellowish	brown (2.5Y 6/3), dry	. Loose.		AS	0 ppm
-4	- 4 —							0 0 0		
-6-	6-	-10		Sand, F—M and gravel; I Refusal and end of bori		iY 6/3), moist. Loose.		· · · · · · · · · · · · · · · · · · ·		0 ppm
-8-	8-									
-10-	10 -									
-12- - -14-	12 — - 14 —									
- -16-	- 16 —									
-18- Checke	- 18 ed By:	SAH						Page 1	of 1	

				iddle School cket, Rhode Isand	Site Id: SB-0 Project Number: 20			USS & C Disciplines to	Deliver	
Location: N corner of site Datum: Logged By: S. Hubbs Description: Soil Boring Ground Elevation: 0.00' Contractor: Fuss & O'Neill Date(s): 06/28/11 - 06/28/11 Coordinate X: 0.000 Drilling Method: Geoprobe Total Depth: 7.00' Coordinate Y: 0.000 Back Fill: Remarks: Field Instrument: PID #1 type: Asphalt type: Native Material type: type: type: type: type: type:					ibbs Dril & O'Neill Boi Geoprobe fm	ler: D. Le rehole Dia. : 0.00' : 0.20' :	vesque	n 20'		
Elevation	Depth	Sample No.	Recovery		Materi	al Description		Graphic Log	USCS Code	DIA
-2	2-	N/A -14		0–0.2': ASPHALT. 0.2–5.0': Sand, F–M an	d gravel; light yellowish	brown (2.5Y 6/3), dry.		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AS	0 ppm
-4- - -6- -	4 - 6 -	-15	Ζ	Sand, F—M and gravel; I		5Y 6/3), dry. Loose.		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 ppm
-8- - -10-	8- - 10-			Refusal and end of bori	ig ut 7.0 reet.					
-12-	- 12 –									
- 14 - -	14 - -									
-16- - - 18-	16- - 18-									
	ed By:							Page 1		

Appendix E

Laboratory Analytical Reports and Quality Control Certifications

Modified Tier II Data Validation Narrative

Project: 20100607.A20 Site Investigation/Targeted Brownfields Assessment Former Woonsocket Middle School

Premier Laboratory Project Number:	E106J35
Date Samples Received at Laboratory:	June 29, 2011
Date of Review:	November 7, 2012

Fifteen soil samples, including one duplicate sample, were collected and submitted to Premier Laboratory, Inc. (Premier) for the following analyses:

- Volatile organic compounds (VOC) by the United States Environmental Protection Agency (USEPA) Method 8260
- Semi-volatile organic compounds (SVOC) by USEPA Method 8270
- Polychlorinated biphenyls (PCBs) by USEPA Method 8082
- Total Petroleum Hydrocarbons (TPH) by USEPA Method 8100
- Sixteen Metals by USEPA Methods 6010B/7471A including arsenic, barium, cadmium, chromium, lead, selenium, silver, zinc, vanadium, thallium, nickel, manganese, copper, beryllium, antimony, and mercury

In addition, two laboratory-supplied trip blanks, including one methanol-preserved and one hydrochloric acid-preserved trip blank, were submitted for analysis of VOC by USEPA Method 8260. Dedicated sampling equipment was utilized, so equipment blanks and field blanks were not collected during these sampling activities.

No compounds were detected in the trip blanks at concentrations exceeding laboratory detection limits. Samples were received by the laboratory at 2.8 degrees Celsius, and all samples were analyzed within the method-specific holding times.

As documented in the case narrative included in the analytical report, the following nonconformances pertaining to performance of internal standards were identified:

- Internal standards associated with analysis of SVOC in two samples were below quality control limits, suggesting that SVOC results for these samples may be biased low.
- Internal standards associated with analysis of VOC in one sample were less than quality control limits, suggesting that VOC results for these samples may be biased low.

The performance issues associated with the internal standards summarized above were reportedly attributable to matrix interference. However, each of the two samples associated with the non-conformances related to SVOC analysis contained concentrations of multiple SVOC that were significantly less than the applicable regulatory criteria. Additionally, no VOC were detected at concentrations exceeding detection limits in the one sample affected by this nonconformance. For these reasons, the non-conformances related to performance of internal standards were not anticipated to affect the usability of the data, as conclusions regarding compliance or non-compliance of the affected samples with applicable regulatory criteria were able to be made, despite potential bias.

The following non-conformances pertaining to surrogate recoveries were also identified in the case narrative for this analytical report:

- Recoveries of surrogates utilized during analysis of SVOC in one sample were outside quality control range.
- Recoveries of surrogates utilized during analysis of VOC in one sample were outside quality control range.

The surrogate recovery issues summarized above were reportedly attributable to matrix interference and suggest that analytical data for the affected samples may be biased high or low. However, the associated with the non-conformances related to SVOC analysis contained concentrations of multiple SVOC that that were significantly less than the applicable regulatory criteria. Additionally, VOC were not detected at concentrations exceeding laboratory reporting limits in the one sample affected by this nonconformance. For these reasons, the non-conformances related to recovery of surrogate compounds were not anticipated to affect the usability of the data, as conclusions regarding compliance or non-compliance of the affected samples with applicable regulatory criteria were able to be made, despite potential bias.

Only metals and TPH were detected at concentrations exceeding laboratory detection limits in both the primary and duplicate sample. Relative percent differences (RPDs) calculated using data for the primary and duplicate samples were generally below 30% with the exception of those calculated using data for TPH. The RPD for TPH was 35%. No other analytes were detected at concentrations exceeding laboratory detection limits in both the primary and duplicate sample. Soil at the boring location where the primary and duplicate samples were collected was reported to contain medium to coarse sand and gravel. Therefore, the elevated RPDs (i.e. greater than 30%) are likely due to heterogeneous distribution of contaminants and soil types within the samples.

Analytical results for the soil samples were compared to the Method 1 Residential Direct Exposure Criteria (R-DEC) and GB Leachability Criteria promulgated by the Rhode Island Department of Environmental Management. The detection limits for the tested analytes were low enough to allow direct comparison to these criteria.

INITIAL DATE: OCTOBER 2011 REVISION DATE: FEBRUARY 2012 REVISION: 1.0

E106535

GENERIC QUALITY ASSURANCE PROJECT PLAN FOR PROJECTS IN CONNECTICUT, MASSACHUSETTS AND RHODE ISLAND MODIFIED TIER I COMPLETENESS CHECKLIST

	YES	NO
 SAMPLING AND FIELD MEASUREMENTS: 	. /	
Field measurement calibration records	200	
Groundwater field measurements (if applicable)		DNIA
Soil sampling field measurements (if applicable)	(XX	
Sediment sampling field measurements (if applicable)		ONIA
Surface water sampling field measurements (if applicable)		
Low-flow sampling field measurements (if applicable)		
Documentation of field activities	R	
Sample numbering and labeling	M	
Chain-of-Custody records	X	
Trip blanks	A	
Duplicate samples	NX.	
Equipment blanks		AIMO
Split samples (if any)		
2. LABORATORY MEASUREMENTS:		
Trip blanks	X	
Instrument blanks	Ø.	
Laboratory control samples	X	
Duplicates samples	DX-	
Equipment blanks		AIND
Matrix spike/matrix spike duplicates		
Analysis type	X	Π
Chain-of-Custody records	X	
Surrogate recoveries	×	
Sample Project Narratives	X	
Split samples (if any)		ONIA
TOTAL:	2	
		100 %
PERCENT COM	PLEIE:	%

FUSS&O'NEILL

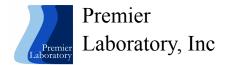
INITIAL DATE: OCTOBER 2011 REVISION DATE: FEBRUARY 2012 REVISION: 1.0

GENERIC QUALITY ASSURANCE PROJECT PLAN FOR PROJECTS IN CONNECTICUT, MASSACHUSETTS AND RHODE ISLAND FUSS & O'NEILL MODIFIED TIER II DATA VALIDATION CHECKLIST

PERFORMED AND, WHERE APPLICABLE, WITHIN ACCEPTABLE LIMITS?

	YES	NO	COMMENTS
1. SAMPLING AND FIELD MEASUREMENTS:			
Field measurement calibration records			
pH - \pm 0.3 pH units			NIA
S.C \pm 5% of calibration solution, within?		2000	ì
calibration range			
Temperature - ± 0.5 °C			
$D.O. + \pm 5\%$ of calibration solution			
Groundwater field measurements (if applicable)			
Water depth measured to within 0.01 ft.?			V
Soil sampling field measurements (if applicable)			
OVM - ± 2 ppm	X		
OVA - ± 2 ppm			NIA
Sediment sampling field measurements (if applicable))
Descriptive information recorded?			
Surface water sampling field measurements (if applicable)			
Water depth measured to within 0.01 ft.?			
Low-flow sampling field measurements (if applicable)			
S.C ± 10%			
$pH - \pm 0.2 pH$ units			
Temperature - \pm 10%			
Turbidity - ±5 NTU			
Documentation of field activities			
Site-specific information documented in field notebook?	VX.		
Field data sheets completed?	B.		
Sample numbering and labeling			
Sample numbering conforms to sample I.D. system			
identified in QAPP?	X		
Chain-of-Custody records	. /		
Chain-of-Custody forms completed?	X		

 $\label{eq:constraint} F: \label{eq:constraint} F: \label{eq:constraint} ADEA&R \label{eq:constraint} Basedocs \label{eq:constraint} Rev-1 \label{eq:constraint} Basedocs \label{eq:constraint} Rev-1 \label{eq:constraint} Rev-1 \label{eq:constraint} Basedocs \label{eq:constraint} Rev-1 \label{eq:constraint} Rev-1 \label{eq:constraint} Basedocs \label{eq:constraint} Rev-1 \label{eq$



INITIAL DATE: OCTOBER 2011 REVISION DATE: FEBRUARY 2012 REVISION: 1.0

GENERIC QUALITY ASSURANCE PROJECT PLAN FOR PROJECTS IN CONNECTICUT, MASSACHUSETTS AND RHODE ISLAND FUSS & O'NEILL MODIFIED TIER II DATA VALIDATION CHECKLIST (Continued)

PERFORMED AND, WHERE APPLICABLE, WITHIN ACCEPTABLE LIMITS?

	YES	NO	COMMENTS
Trip blanks			
Trip blanks submitted, one per day?	X		
Any compounds detected in trip blanks?		×.	
Duplicate samples			
Field duplicates performed, 1/20 samples? Duplicates performed on 10% of samples screened	X		
for explosives?			NIA
Is percent difference within 30% for all field parameters?	100		
Equipment blanks			
Equipment blanks submitted, one per sampling day?			NIA
Any compounds detected in equipment blank?			
Split samples (if any)			
Split samples collected?			
Is percent difference within 30% for split samples?			
2. LABORATORY MEASUREMENTS: Trip blanks			
Trip blanks submitted, one per day?	X		· · · · · · · · · · · · · · · · · · ·
Any compounds detected in trip blanks?		X	
Instrument blanks**	×		
Laboratory control samples**	X		
Duplicates samples**	×		
Equipment blanks**			AIU
Matrix spike/matrix spike duplicates**			7
Analysis type	X		
Chain-of-Custody records	ø.		
Surrogate recoveries**			see norahve
Sample Project Narratives	X		
Split samples (if any)**			NIA
Most recent EPA WP-PE sample results**			<u>J</u>

61 Louisa Viens Drive Dayville, CT 06241 Fax: 860-774-2689 Phone: 860-774-6814 Toll-Free: 800-334-0103

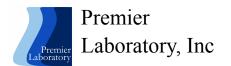
ANALYTICAL DATA REPORT

prepared for:

Fuss & O'Neill, Inc. 317 Iron Horse Way Suite 204 Providence, RI 02908 Attn: Pat Dowling

Report Number: E106J35 Project: 20100607.A20/ Former Middle School

Received Date: 06/29/2011 Report Date: 07/11/2011


Murasm

Premier Laboratory, Inc Authorized Signature

Certified and Compliant with: CT (PH-0465), EPA (CT00008), MA (M-CT008), ME (CT0050), NH (2020), NJ (CT007), NY (11549), PA (68-04413), RI (LAO00300), UCMR2 (CT00008), VT (VT11549)

61 Louisa Viens Drive Dayville, CT 06241 Fax: 860-774-2689 Phone: 860-774-6814 Toll-Free: 800-334-0103

> Report No: E106J35 Client: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

CASE NARRATIVE / METHOD CONFORMANCE SUMMARY

Premier Laboratory, Inc received 17 samples from Fuss & O'Neill on 06/29/2011. The samples were analyzed for the following list of analyses:

Mercury by 7471 in SW 7471[7471] Semivolatiles by 8270C for GW/SW 8270C[3500] Trace Metals by 6010B 6010B[3000] Volatiles by 8260B Methanol Preserved in SW 8260B[Methanol Preserved] PCB's by 8082 in GW/SW 8082[3500] TPH by 8100M (Itemized) 8100[8100] Volatiles by 8260B (GA/GW-1/S-1) 8260B

Non-Conformances: Work Order:

None

Sample:

None

Analysis:

Sample 10A, 841110628-10, Semivolatiles by SW-846 8270C: One internal standard was below quality control limits for the sample due to matrix interference.

Sample 10A, 841110628-10, Semivolatiles by SW-846 8270C: One surrogate spike was elevated outside quality control limits for the sample due to matrix interference.

Sample 7A, 841110628-07, Semivolatiles by SW-846 8270C: One internal standard was below quality control limits for the sample due to matrix interference.

Sample 8B, 841110628-08, Volatiles by 8260B (GA/GW-1/S-1): Two internal standard areas were below quality control limits for the sample due to matrix interference. The sample was re-analyzed and the internal standards were still below the limits.

Sample 8B, 841110628-08, Volatiles by 8260B (GA/GW-1/S-1): Two surrogate spikes were outside quality control limits for the sample, due to matrix interference. The sample was re-analyzed and the surrogates were still outside control limits.

Report No: E106J35 Date Received: 06/29/2011 16:10

Parameter	Result	DL	Units	Completed	By	Dilution
(1) 841110628-01						
Date Collected: 06/28/2011 09:15	Matrix: Solid					
Trace Metals by 6010B						
Arsenic	8.2	0.26	mg/kg	07/06/2011 09:33	NJB	
Barium	21	0.52	mg/kg	07/06/2011 09:33	NJB	
Cadmium	0.51	0.10	mg/kg	07/06/2011 09:33	NJB	
Chromium	11	0.10	mg/kg	07/06/2011 09:33	NJB	
Lead	6.9	0.10	mg/kg	07/06/2011 09:33	NJB	
Selenium	ND	0.26	mg/kg	07/06/2011 09:33	NJB	
Silver	ND	0.10	mg/kg	07/06/2011 09:33	NJB	
Zinc	21	0.10	mg/kg	07/06/2011 09:33	NJB	
Vanadium	11	0.10	mg/kg	07/06/2011 09:33	NJB	
Thallium	ND	0.26	mg/kg	07/06/2011 09:33	NJB	
Nickel	12	0.10	mg/kg	07/06/2011 09:33	NJB	
Manganese	240	0.10	mg/kg	07/06/2011 09:33	NJB	
Copper	11	0.10	mg/kg	07/06/2011 09:33	NJB	
Beryllium	0.22	0.052	mg/kg	07/06/2011 09:33	NJB	
Antimony	ND	0.16	mg/kg	07/06/2011 09:33	NJB	
Mercury by SW-846 7471 in SW	ND	0.021	mg/kg	07/05/2011 12:35	KL	
(2) 841110628-02						
Date Collected: 06/28/2011 10:15	Matrix: Solid					
Trace Metals by 6010B						
Arsenic	9.1	0.27	mg/kg	07/06/2011 09:35	NJB	
Barium	19	0.54	mg/kg	07/06/2011 09:35	NJB	
Cadmium	0.61	0.11	mg/kg	07/06/2011 09:35	NJB	
Chromium	13	0.11	mg/kg	07/06/2011 09:35	NJB	
Lead	56	0.11	mg/kg	07/06/2011 09:35	NJB	
Selenium	ND	0.27	mg/kg	07/06/2011 09:35	NJB	
Silver	ND	0.11	mg/kg	07/06/2011 09:35	NJB	
Zinc	22	0.11	mg/kg	07/06/2011 09:35	NJB	
Vanadium	13	0.11	mg/kg	07/06/2011 09:35	NJB	
Thallium	ND	0.27	mg/kg	07/06/2011 09:35	NJB	
Nickel	13	0.11	mg/kg	07/06/2011 09:35	NJB	
Manganese	220	0.11	mg/kg	07/06/2011 09:35	NJB	
Copper	9.3	0.11	mg/kg	07/06/2011 09:35	NJB	
Beryllium	0.25	0.054	mg/kg	07/06/2011 09:35	NJB	
Antimony	ND	0.16	mg/kg	07/06/2011 09:35	NJB	
Mercury by SW-846 7471 in SW	ND	0.10	mg/kg	07/05/2011 09:35		
Mercury by 5 W-0+0 / + / 1 III 5 W	ND	0.021	mg/ Kg	07/03/2011 12.33	КL	

Report No: E106J35 Date Received: 06/29/2011 16:10

Parameter	Result	DL	Units	Completed	By	Dilution
(3) 841110628-03						
Date Collected: 06/28/2011 11:50	Matrix: Solid					
Trace Metals by 6010B						
Arsenic	5.6	0.26	mg/kg	07/06/2011 10:31	NJB	
Barium	24	0.52	mg/kg	07/06/2011 10:31	NJB	
Cadmium	0.51	0.10	mg/kg	07/06/2011 10:31	NJB	
Chromium	9.4	0.10	mg/kg	07/06/2011 10:31	NJB	
Lead	3.8	0.10	mg/kg	07/06/2011 10:31	NJB	
Selenium	ND	0.26	mg/kg	07/06/2011 10:31	NJB	
Silver	ND	0.10	mg/kg	07/06/2011 10:31	NJB	
Zinc	18	0.10	mg/kg	07/06/2011 10:31	NJB	
Vanadium	10	0.10	mg/kg	07/06/2011 10:31	NJB	
Thallium	ND	0.26	mg/kg	07/06/2011 10:31	NJB	
Nickel	9.4	0.10	mg/kg	07/06/2011 10:31	NJB	
Manganese	180	0.10	mg/kg	07/06/2011 10:31	NJB	
Copper	8.2	0.10	mg/kg	07/06/2011 10:31	NJB	
Beryllium	0.24	0.052	mg/kg	07/06/2011 10:31	NJB	
Antimony	ND	0.16	mg/kg	07/06/2011 10:31	NJB	
Mercury by SW-846 7471 in SW	ND	0.021	mg/kg	07/05/2011 12:35	KL	
(4) 841110628-04						
Date Collected: 06/28/2011 12:00	Matrix: Solid					
Trace Metals by 6010B						
Arsenic	7.0	0.26	mg/kg	07/06/2011 10:41	NJB	
Barium	38	0.52	mg/kg	07/06/2011 10:41	NJB	
Cadmium	0.52	0.10	mg/kg	07/06/2011 10:41	NJB	
Chromium	14	0.10	mg/kg	07/06/2011 10:41	NJB	
Lead	3.0	0.10	mg/kg	07/06/2011 10:41	NJB	
Selenium	ND	0.26	mg/kg	07/06/2011 10:41	NJB	
Silver	ND	0.10	mg/kg	07/06/2011 10:41	NJB	
Zinc	22	0.10	mg/kg	07/06/2011 10:41	NJB	
Vanadium	14	0.10	mg/kg	07/06/2011 10:41	NJB	
Thallium	0.57	0.26	mg/kg	07/06/2011 10:41	NJB	
Nickel	13	0.10	mg/kg	07/06/2011 10:41	NJB	
Manganese	280	0.10	mg/kg	07/06/2011 10:41	NJB	
Copper	11	0.10	mg/kg	07/06/2011 10:41	NJB	
Beryllium	0.21	0.052	mg/kg	07/06/2011 10:41	NJB	
Antimony	ND	0.15	mg/kg	07/06/2011 10:41	NJB	
Mercury by SW-846 7471 in SW	ND	0.021	mg/kg	07/05/2011 12:35	KL	

Report No: E106J35 Date Received: 06/29/2011 16:10

Parameter	Result	DL	Units	Completed	By	Dilution
(5) 841110628-05						
Date Collected: 06/28/2011 12:20	Matrix: Solid					
Trace Metals by 6010B						
Arsenic	6.8	0.27	mg/kg	07/06/2011 10:43	NJB	
Barium	21	0.53	mg/kg	07/06/2011 10:43	NJB	
Cadmium	0.41	0.11	mg/kg	07/06/2011 10:43	NJB	
Chromium	6.5	0.11	mg/kg	07/06/2011 10:43	NJB	
Lead	4.7	0.11	mg/kg	07/06/2011 10:43	NJB	
Selenium	ND	0.27	mg/kg	07/06/2011 10:43	NJB	
Silver	ND	0.11	mg/kg	07/06/2011 10:43	NJB	
Zinc	54	0.11	mg/kg	07/06/2011 10:43	NJB	
Vanadium	8.7	0.11	mg/kg	07/06/2011 10:43	NJB	
Thallium	ND	0.27	mg/kg	07/06/2011 10:43	NJB	
Nickel	6.0	0.11	mg/kg	07/06/2011 10:43	NJB	
Manganese	120	0.11	mg/kg	07/06/2011 10:43	NJB	
Copper	7.6	0.11	mg/kg	07/06/2011 10:43	NJB	
Beryllium	0.24	0.053	mg/kg	07/06/2011 10:43	NJB	
Antimony	ND	0.16	mg/kg	07/06/2011 10:43	NJB	
Mercury by SW-846 7471 in SW	0.023	0.021	mg/kg	07/05/2011 12:35	KL	
(6) 841110628-06						
Date Collected: 06/28/2011 12:50	Matrix: Solid					
Trace Metals by 6010B						
Arsenic	2.4	0.26	mg/kg	07/06/2011 10:46	NJB	
Barium	33	0.52	mg/kg	07/06/2011 10:46	NJB	
Cadmium	0.32	0.10	mg/kg	07/06/2011 10:46	NJB	
Chromium	5.7	0.10	mg/kg	07/06/2011 10:46	NJB	
Lead	2.3	0.10	mg/kg	07/06/2011 10:46	NJB	
Selenium	ND	0.26	mg/kg	07/06/2011 10:46	NJB	
Silver	ND	0.10	mg/kg	07/06/2011 10:46	NJB	
Zinc	16	0.10	mg/kg	07/06/2011 10:46	NJB	
Vanadium	6.9	0.10	mg/kg	07/06/2011 10:46	NJB	
Thallium	ND	0.26	mg/kg	07/06/2011 10:46	NJB	
Nickel	5.3	0.10	mg/kg	07/06/2011 10:46	NJB	
Manganese	190	0.10	mg/kg	07/06/2011 10:46	NJB	
Copper	11	0.10	mg/kg	07/06/2011 10:46	NJB	
Beryllium	0.20	0.052	mg/kg	07/06/2011 10:46	NJB	
Antimony	ND	0.16	mg/kg	07/06/2011 10:46	NJB	
Mercury by SW-846 7471 in SW	ND	0.021	mg/kg	07/05/2011 12:35		

Report No: E106J35 Date Received: 06/29/2011 16:10

Parameter	Result	DL	Units	Completed	By	Dilution
(7) 841110628-07						
Date Collected: 06/28/2011 13:40	Matrix: Solid					
Trace Metals by 6010B						
Arsenic	3.1	0.28	mg/kg	07/06/2011 10:48	NJB	
Barium	24	0.55	mg/kg	07/06/2011 10:48	NJB	
Cadmium	0.39	0.11	mg/kg	07/06/2011 10:48	NJB	
Chromium	6.1	0.11	mg/kg	07/06/2011 10:48	NJB	
Lead	47	0.11	mg/kg	07/06/2011 10:48	NJB	
Selenium	ND	0.28	mg/kg	07/06/2011 10:48	NJB	
Silver	ND	0.11	mg/kg	07/06/2011 10:48	NJB	
Zinc	22	0.11	mg/kg	07/06/2011 10:48	NJB	
Vanadium	10	0.11	mg/kg	07/06/2011 10:48	NJB	
Thallium	ND	0.28	mg/kg	07/06/2011 10:48	NJB	
Nickel	4.3	0.11	mg/kg	07/06/2011 10:48	NJB	
Manganese	88	0.11	mg/kg	07/06/2011 10:48	NJB	
Copper	12	0.11	mg/kg	07/06/2011 10:48	NJB	
Beryllium	0.28	0.055	mg/kg	07/06/2011 10:48	NJB	
Antimony	ND	0.17	mg/kg	07/06/2011 10:48	NJB	
Mercury by SW-846 7471 in SW	0.044	0.022	mg/kg	07/05/2011 12:35	KL	
(8) 841110628-08						
Date Collected: 06/28/2011 13:50	Matrix: Solid					
Trace Metals by 6010B						
Arsenic	5.2	0.26	mg/kg	07/06/2011 10:50	NJB	
Barium	12	0.52	mg/kg	07/06/2011 10:50	NJB	
Cadmium	0.37	0.10	mg/kg	07/06/2011 10:50	NJB	
Chromium	6.7	0.10	mg/kg	07/06/2011 10:50	NJB	
Lead	2.3	0.10	mg/kg	07/06/2011 10:50	NJB	
Selenium	ND	0.26	mg/kg	07/06/2011 10:50	NJB	
Silver	ND	0.10	mg/kg	07/06/2011 10:50	NJB	
Zinc	15	0.10	mg/kg	07/06/2011 10:50	NJB	
Vanadium	6.7	0.10	mg/kg	07/06/2011 10:50	NJB	
Thallium	ND	0.26	mg/kg	07/06/2011 10:50	NJB	
Nickel	7.8	0.10	mg/kg	07/06/2011 10:50	NJB	
Manganese	190	0.10	mg/kg	07/06/2011 10:50	NJB	
Copper	6.0	0.10	mg/kg	07/06/2011 10:50	NJB	
Beryllium	0.19	0.052	mg/kg	07/06/2011 10:50	NJB	
Antimony	ND	0.16	mg/kg	07/06/2011 10:50	NJB	
Mercury by SW-846 7471 in SW	ND	0.021	mg/kg	07/05/2011 12:35		

Report No: E106J35 Date Received: 06/29/2011 16:10

Parameter	Result	DL	Units	Completed	By	Dilution
(9) 841110628-09						
Date Collected: 06/28/2011 14:20	Matrix: Solid					
Trace Metals by 6010B						
Arsenic	8.9	0.27	mg/kg	07/06/2011 11:00	NJB	
Barium	29	0.53	mg/kg	07/06/2011 11:00	NJB	
Cadmium	0.64	0.11	mg/kg	07/06/2011 11:00	NJB	
Chromium	12	0.11	mg/kg	07/06/2011 11:00	NJB	
Lead	8.8	0.11	mg/kg	07/06/2011 11:00	NJB	
Selenium	ND	0.27	mg/kg	07/06/2011 11:00	NJB	
Silver	ND	0.11	mg/kg	07/06/2011 11:00	NJB	
Zinc	20	0.11	mg/kg	07/06/2011 11:00	NJB	
Vanadium	13	0.11	mg/kg	07/06/2011 11:00	NJB	
Thallium	ND	0.27	mg/kg	07/06/2011 11:00	NJB	
Nickel	11	0.11	mg/kg	07/06/2011 11:00	NJB	
Manganese	200	0.11	mg/kg	07/06/2011 11:00	NJB	
Copper	9.5	0.11	mg/kg	07/06/2011 11:00	NJB	
Beryllium	0.28	0.053	mg/kg	07/06/2011 11:00	NJB	
Antimony	ND	0.16	mg/kg	07/06/2011 11:00	NJB	
Mercury by SW-846 7471 in SW	ND	0.021	mg/kg	07/05/2011 12:35	KL	
(10) 841110628-10						
Date Collected: 06/28/2011 14:30	Matrix: Solid					
Trace Metals by 6010B						
Arsenic	9.2	0.27	mg/kg	07/06/2011 11:03	NJB	
Barium	23	0.54	mg/kg	07/06/2011 11:03	NJB	
Cadmium	0.68	0.11	mg/kg	07/06/2011 11:03	NJB	
Chromium	15	0.11	mg/kg	07/06/2011 11:03	NJB	
Lead	6.8	0.11	mg/kg	07/06/2011 11:03	NJB	
Selenium	ND	0.27	mg/kg	07/06/2011 11:03	NJB	
Silver	ND	0.11	mg/kg	07/06/2011 11:03	NJB	
Zinc	23	0.11	mg/kg	07/06/2011 11:03	NJB	
Vanadium	14	0.11	mg/kg	07/06/2011 11:03	NJB	
Thallium	ND	0.27	mg/kg	07/06/2011 11:03	NJB	
Nickel	15	0.11	mg/kg	07/06/2011 11:03	NJB	
Manganese	290	0.11	mg/kg	07/06/2011 11:03	NJB	
Copper	11	0.11	mg/kg	07/06/2011 11:03	NJB	
Beryllium	0.25	0.054	mg/kg	07/06/2011 11:03	NJB	
Antimony	ND	0.16	mg/kg	07/06/2011 11:03	NJB	
Mercury by SW-846 7471 in SW	ND	0.022	mg/kg	07/05/2011 12:35		

Report No: E106J35 Date Received: 06/29/2011 16:10

Parameter	Result	DL	Units	Completed	By	Dilution
(11) 841110628-11						
Date Collected: 06/28/2011 14:50	Matrix: Solid					
Trace Metals by 6010B						
Arsenic	12	0.26	mg/kg	07/06/2011 11:05	NJB	
Barium	22	0.52	mg/kg	07/06/2011 11:05	NJB	
Cadmium	0.68	0.10	mg/kg	07/06/2011 11:05	NJB	
Chromium	13	0.10	mg/kg	07/06/2011 11:05	NJB	
Lead	7.4	0.10	mg/kg	07/06/2011 11:05	NJB	
Selenium	ND	0.26	mg/kg	07/06/2011 11:05	NJB	
Silver	ND	0.10	mg/kg	07/06/2011 11:05	NJB	
Zinc	28	0.10	mg/kg	07/06/2011 11:05	NJB	
Vanadium	12	0.10	mg/kg	07/06/2011 11:05	NJB	
Thallium	ND	0.26	mg/kg	07/06/2011 11:05	NJB	
Nickel	14	0.10	mg/kg	07/06/2011 11:05	NJB	
Manganese	270	0.10	mg/kg	07/06/2011 11:05	NJB	
Copper	11	0.10	mg/kg	07/06/2011 11:05	NJB	
Beryllium	0.23	0.052	mg/kg	07/06/2011 11:05	NJB	
Antimony	ND	0.16	mg/kg	07/06/2011 11:53	NJB	
Mercury by SW-846 7471 in SW	ND	0.021	mg/kg	07/05/2011 12:35	KL	
(12) 841110628-12						
Date Collected: 06/28/2011 15:00	Matrix: Solid					
Trace Metals by 6010B						
Arsenic	9.1	0.26	mg/kg	07/06/2011 11:08	NJB	
Barium	22	0.52	mg/kg	07/06/2011 11:08	NJB	
Cadmium	0.57	0.10	mg/kg	07/06/2011 11:08	NJB	
Chromium	11	0.10	mg/kg	07/06/2011 11:08	NJB	
Lead	6.7	0.10	mg/kg	07/06/2011 11:08	NJB	
Selenium	ND	0.26	mg/kg	07/06/2011 11:08	NJB	
Silver	ND	0.10	mg/kg	07/06/2011 11:08	NJB	
Zinc	25	0.10	mg/kg	07/06/2011 11:08	NJB	
Vanadium	10	0.10	mg/kg	07/06/2011 11:08	NJB	
Thallium	ND	0.26	mg/kg	07/06/2011 11:08	NJB	
Nickel	12	0.10	mg/kg	07/06/2011 11:08	NJB	
Manganese	220	0.10	mg/kg	07/06/2011 11:08	NJB	
Copper	11	0.10	mg/kg	07/06/2011 11:08	NJB	
Beryllium	0.24	0.052	mg/kg	07/06/2011 11:08	NJB	
Antimony	ND	0.16	mg/kg	07/06/2011 11:08	NJB	
Mercury by SW-846 7471 in SW	ND	0.021	mg/kg	07/05/2011 12:35	KL	

Report No: E106J35 Date Received: 06/29/2011 16:10

(13) 941110628-13 Pate Collected: 06/28/2011 15:05 Matrix: Solid Trace Metals by 6010B - <th>Parameter</th> <th>Result</th> <th>DL</th> <th>Units</th> <th>Completed</th> <th>By</th> <th>Dilution</th>	Parameter	Result	DL	Units	Completed	By	Dilution
Trace Metals by 6010B Arsenic 8.6 0.26 mg/kg 07/06/2011 11:10 NJB Barium 16 0.52 mg/kg 07/06/2011 11:10 NJB Cadmium 0.37 0.10 mg/kg 07/06/2011 11:10 NJB Chromium 6.1 0.10 mg/kg 07/06/2011 11:10 NJB Selenium ND 0.26 mg/kg 07/06/2011 11:10 NJB Selenium ND 0.26 mg/kg 07/06/2011 11:10 NJB Vanadium 6.9 0.10 mg/kg 07/06/2011 11:10 NJB Vanadium 6.9 0.10 mg/kg 07/06/2011 11:10 NJB Vanadium 0.26 mg/kg 07/06/2011 11:10 NJB Maganese 220 0.10 mg/kg 07/06/2011 11:10 NJB Antimony ND 0.16 mg/kg 07/06/2011 11:10 NJB	(13) 841110628-13						
Arsenic 8.6 0.26 mg/kg 07/06/2011 11:10 NJB Barium 16 0.52 mg/kg 07/06/2011 11:10 NJB Cadmium 0.37 0.10 mg/kg 07/06/2011 11:10 NJB Chromium 6.1 0.10 mg/kg 07/06/2011 11:10 NJB Lead 4.1 0.10 mg/kg 07/06/2011 11:10 NJB Selenium ND 0.26 mg/kg 07/06/2011 11:10 NJB Silver ND 0.10 mg/kg 07/06/2011 11:10 NJB Zine 6.9 0.10 mg/kg 07/06/2011 11:10 NJB Manganese 220 0.10 mg/kg 07/06/2011 11:10 NJB Marganese 220 0.10 mg/kg 07/06/2011 11:10 NJB Mercury by SW-846 7471 in SW ND 0.16 mg/kg 07/06/2011 11:10 NJB Trace	Date Collected: 06/28/2011 15:05	Matrix: Solid					
Barium 16 0.52 mg/kg 0.706/2011 11:10 NJB Cadmium 0.37 0.10 mg/kg 0.706/2011 11:10 NJB Chromium 6.1 0.10 mg/kg 0.706/2011 11:10 NJB Lead 4.1 0.10 mg/kg 0.706/2011 11:10 NJB Silver ND 0.10 mg/kg 0.706/2011 11:10 NJB Zinc 16 0.10 mg/kg 0.706/2011 11:10 NJB Vanadium 6.9 0.10 mg/kg 0.706/2011 11:10 NJB Vanadium 6.9 0.10 mg/kg 0.706/2011 11:10 NJB Marganese 220 0.10 mg/kg 0.706/2011 11:10 NJB Marganese 220 0.10 mg/kg 0.706/2011 11:10 NJB Antimony ND 0.18 0.52 mg/kg 0.706/2011 11:10 NJB Ar	Trace Metals by 6010B						
Cadmium 0.37 0.10 mg/kg 07/06/2011 11:10 NJB Chromium 6.1 0.10 mg/kg 07/06/2011 11:10 NJB Lead 4.1 0.10 mg/kg 07/06/2011 11:10 NJB Sclenium ND 0.26 mg/kg 07/06/2011 11:10 NJB Silver ND 0.10 mg/kg 07/06/2011 11:10 NJB Yanadium 6.9 0.10 mg/kg 07/06/2011 11:10 NJB Vanadium 6.9 0.10 mg/kg 07/06/2011 11:10 NJB Vanadium ND 0.26 mg/kg 07/06/2011 11:10 NJB Nickel 8.0 0.10 mg/kg 07/06/2011 11:10 NJB Marganesc 2.20 0.10 mg/kg 07/06/2011 11:10 NJB Marganesc 2.01 mg/kg 07/06/2011 11:10 NJB Marcury by SW-846 7471 in SW	Arsenic	8.6	0.26	mg/kg	07/06/2011 11:10	NJB	
Chromium 6.1 0.10 mg/kg 07/06/2011 11:10 NJB Lead 4.1 0.10 mg/kg 07/06/2011 11:10 NJB Selenium ND 0.26 mg/kg 07/06/2011 11:10 NJB Silver ND 0.10 mg/kg 07/06/2011 11:10 NJB Zinc 16 0.10 mg/kg 07/06/2011 11:10 NJB Vanadium 6.9 0.10 mg/kg 07/06/2011 11:10 NJB Vanadium 6.9 0.10 mg/kg 07/06/2011 11:10 NJB Manganese 220 0.10 mg/kg 07/06/2011 11:10 NJB Beryllium 0.18 0.052 mg/kg 07/06/2011 11:10 NJB Antimony ND 0.16 mg/kg 07/06/2011 11:10 NJB Arecine 3.8 0.27 mg/kg 07/06/2011 11:12 NJB Arsenie	Barium	16	0.52	mg/kg	07/06/2011 11:10	NJB	
Lead 4.1 0.10 mg/kg 07/06/2011 11:10 NJB Selenium ND 0.26 mg/kg 07/06/2011 11:10 NJB Silver ND 0.10 mg/kg 07/06/2011 11:10 NJB Zinc 16 0.10 mg/kg 07/06/2011 11:10 NJB Vanadium 6.9 0.10 mg/kg 07/06/2011 11:10 NJB Vanadium 6.9 0.10 mg/kg 07/06/2011 11:10 NJB Manganese 220 0.10 mg/kg 07/06/2011 11:10 NJB Manganese 220 0.10 mg/kg 07/06/2011 11:10 NJB Marganese 20 0.10 mg/kg 07/06/2011 11:10 NJB Mercury by SW-846 7471 in SW ND 0.021 mg/kg 07/06/2011 11:10 NJB Trace Metals by 6010B 3.8 0.27 mg/kg 07/06/2011 11:12	Cadmium	0.37	0.10	mg/kg	07/06/2011 11:10	NJB	
Selenium ND 0.26 mg/kg 07/06/2011 11:10 NJB Silver ND 0.10 mg/kg 07/06/2011 11:10 NJB Zine 16 0.10 mg/kg 07/06/2011 11:10 NJB Vanadium 6.9 0.10 mg/kg 07/06/2011 11:10 NJB Thallium ND 0.26 mg/kg 07/06/2011 11:10 NJB Nickel 8.0 0.10 mg/kg 07/06/2011 11:10 NJB Manganese 2.20 0.10 mg/kg 07/06/2011 11:10 NJB Gopper 5.5 0.10 mg/kg 07/06/2011 11:10 NJB Antimony ND 0.16 mg/kg 07/06/2011 11:10 NJB Antimony ND 0.21 mg/kg 07/06/2011 11:10 NJB Antimony ND 0.21 mg/kg 07/06/2011 11:12 NJB Arsenic	Chromium	6.1	0.10	mg/kg	07/06/2011 11:10	NJB	
Silver ND 0.10 mg/kg 07/06/2011 11:10 NJB Zinc 16 0.10 mg/kg 07/06/2011 11:10 NJB Vanadium 6.9 0.10 mg/kg 07/06/2011 11:10 NJB Thallium ND 0.26 mg/kg 07/06/2011 11:10 NJB Nickel 8.0 0.10 mg/kg 07/06/2011 11:10 NJB Manganese 220 0.10 mg/kg 07/06/2011 11:10 NJB Gopper 5.5 0.10 mg/kg 07/06/2011 11:10 NJB Artimony ND 0.16 mg/kg 07/06/2011 11:10 NJB Mercury by SW-846 7471 in SW ND 0.021 mg/kg 07/06/2011 11:12 NJB Trace Matrix: Solid Trace 11:10 NJB 11:10 NJB Chromium 0.34 0.11 mg/kg 07/06/2011 11:12 NJB C	Lead	4.1	0.10	mg/kg	07/06/2011 11:10	NJB	
Zinc 16 0.10 mg/kg 07/06/2011 11:10 NJB Vanadium 6.9 0.10 mg/kg 07/06/2011 11:10 NJB Thallium ND 0.26 mg/kg 07/06/2011 11:10 NJB Nickel 8.0 0.10 mg/kg 07/06/2011 11:10 NJB Manganese 220 0.10 mg/kg 07/06/2011 11:10 NJB Copper 5.5 0.10 mg/kg 07/06/2011 11:10 NJB Antimony ND 0.16 mg/kg 07/06/2011 11:10 NJB Mercury by SW-846 7471 in SW ND 0.021 mg/kg 07/05/2011 12:35 KL (14) 841110628-14 mg/kg 07/06/2011 11:12 NJB Date Collected: 06/28/2011 Matrix: Solid NB Chromium 28 0.53 mg/kg 07/06/2011 11:12 NJB	Selenium	ND	0.26	mg/kg	07/06/2011 11:10	NJB	
Vanadium 6.9 0.10 mg/kg 07/06/2011 11:10 NJB Thallium ND 0.26 mg/kg 07/06/2011 11:10 NJB Nickel 8.0 0.10 mg/kg 07/06/2011 11:10 NJB Manganese 220 0.10 mg/kg 07/06/2011 11:10 NJB Copper 5.5 0.10 mg/kg 07/06/2011 11:10 NJB Beryllium 0.18 0.052 mg/kg 07/06/2011 11:10 NJB Antimony ND 0.16 mg/kg 07/06/2011 11:10 NJB Mercury by SW-846 7471 in SW ND 0.021 mg/kg 07/06/2011 11:12 NJB Trace Metals by 6010B	Silver	ND	0.10	mg/kg	07/06/2011 11:10	NJB	
Thallium ND 0.26 mg/kg 07/06/2011 11:10 NJB Nickel 8.0 0.10 mg/kg 07/06/2011 11:10 NJB Manganese 220 0.10 mg/kg 07/06/2011 11:10 NJB Copper 5.5 0.10 mg/kg 07/06/2011 11:10 NJB Beryllium 0.18 0.052 mg/kg 07/06/2011 11:10 NJB Antimony ND 0.16 mg/kg 07/06/2011 11:10 NJB Mercury by SW-846 7471 in SW ND 0.021 mg/kg 07/06/2011 11:10 NJB Marecury by SW-846 7471 in SW ND 0.021 mg/kg 07/06/2011 11:10 NJB Marecury by SW-846 7471 in SW ND 0.021 mg/kg 07/06/2011 11:12 NJB Cate 010B 0.11 mg/kg 07/06/2011 11:12 NJB Cadmium 0.34 0.11 mg/kg	Zinc	16	0.10	mg/kg	07/06/2011 11:10	NJB	
Nickel 8.0 0.10 mg/kg 07/06/2011 11:10 NJB Manganese 220 0.10 mg/kg 07/06/2011 11:10 NJB Copper 5.5 0.10 mg/kg 07/06/2011 11:10 NJB Beryllium 0.18 0.052 mg/kg 07/06/2011 11:10 NJB Antimony ND 0.16 mg/kg 07/06/2011 11:10 NJB Mercury by SW-846 7471 in SW ND 0.021 mg/kg 07/06/2011 11:10 NJB Date Collected: 06/28/2011 Matrix: Solid Solid 11:12 NJB Arsenic 3.8 0.27 mg/kg 07/06/2011 11:12 NJB Cadmium 0.34 0.11 mg/kg 07/06/2011 11:12 NJB Cadmium 0.34 0.11 mg/kg 07/06/2011 11:12 NJB Selenium ND 0.27 mg/kg 07/06/2011 11:12 NJB<	Vanadium	6.9	0.10	mg/kg	07/06/2011 11:10	NJB	
Manganese 220 0.10 mg/kg 07/06/2011 11:10 NJB Copper 5.5 0.10 mg/kg 07/06/2011 11:10 NJB Beryllium 0.18 0.052 mg/kg 07/06/2011 11:10 NJB Antimony ND 0.16 mg/kg 07/06/2011 11:10 NJB Mercury by SW-846 7471 in SW ND 0.021 mg/kg 07/06/2011 11:12 NJB Matrix: Solid Trace Matrix: Solid State State State State Trace Metals by 6010B 3.8 0.27 mg/kg 07/06/2011 11:12 NJB Barium 28 0.53 mg/kg 07/06/2011 11:12 NJB Cadmium 0.34 0.11 mg/kg 07/06/2011 11:12 NJB Lead 14 0.11 mg/kg 07/06/2011 11:12 NJB Silver ND 0.11 mg/kg 07/06/2011 11:12 <	Thallium	ND	0.26	mg/kg	07/06/2011 11:10	NJB	
Coper 5.5 0.10 mg/kg 07/06/2011 11:10 NJB Beryllium 0.18 0.052 mg/kg 07/06/2011 11:10 NJB Antimony ND 0.16 mg/kg 07/06/2011 11:10 NJB Mercury by SW-846 7471 in SW ND 0.021 mg/kg 07/05/2011 12:35 KL (14) 841110628-14 Matrix: Solid Solid mg/kg 07/06/2011 11:12 NJB Date Collected: 06/28/2011 15:20 Matrix: Solid NB NB NB Trace Metals by 6010B	Nickel	8.0	0.10	mg/kg	07/06/2011 11:10	NJB	
Coper 5.5 0.10 mg/kg 07/06/2011 11:10 NJB Beryllium 0.18 0.052 mg/kg 07/06/2011 11:10 NJB Antimony ND 0.16 mg/kg 07/06/2011 11:10 NJB Mercury by SW-846 7471 in SW ND 0.021 mg/kg 07/05/2011 12:35 KL (14) 841110628-14 Matrix: Solid Solid mg/kg 07/06/2011 11:12 NJB Date Collected: 06/28/2011 15:20 Matrix: Solid ND 0.21 mg/kg 07/06/2011 11:12 NJB Barium 28 0.53 mg/kg 07/06/2011 11:12 NJB Cadmium 0.34 0.11 mg/kg 07/06/2011 11:12 NJB Chromium 4.1 0.11 mg/kg 07/06/2011 11:12 NJB Selenium ND 0.27 mg/kg 07/06/2011 11:12 NJB Zinc 19 0.11 mg/kg 0	Manganese	220	0.10	mg/kg	07/06/2011 11:10	NJB	
Beryllium 0.18 0.052 mg/kg 07/06/2011 11:10 NJB Antimony ND 0.16 mg/kg 07/06/2011 11:10 NJB Mercury by SW-846 7471 in SW ND 0.021 mg/kg 07/05/2011 12:35 KL (14) 841110628-14	-	5.5	0.10		07/06/2011 11:10	NJB	
Mercury by SW-846 7471 in SW ND 0.021 mg/kg 07/05/2011 12:35 KL (14) 841110628-14 Date Collected: 06/28/2011 15:20 Matrix: Solid Trace Metals by 6010B	Beryllium	0.18	0.052	mg/kg	07/06/2011 11:10	NJB	
OPENAL (14) 841110628-14 Date Collected: 06/28/2011 15:20 Matrix: Solid Trace Metals by 6010B Arsenic 3.8 0.27 mg/kg 07/06/2011 11:12 NJB Barium 28 0.53 mg/kg 07/06/2011 11:12 NJB Cadmium 0.34 0.11 mg/kg 07/06/2011 11:12 NJB Chromium 4.1 0.11 mg/kg 07/06/2011 11:12 NJB Lead 14 0.11 mg/kg 07/06/2011 11:12 NJB Selenium ND 0.27 mg/kg 07/06/2011 11:12 NJB Silver ND 0.11 mg/kg 07/06/2011 11:12 NJB Zinc 19 0.11 mg/kg 07/06/2011 11:12 NJB Vanadium 7.4 0.11 mg/kg 07/06/2011 11:12 NJB Nickel 3.0 0.11 mg/kg 07/06/2011 11:12 NJB Manganese 99 0.11 mg/kg 07/06/2011 11:12 NJB Manganese 99 0.11 mg/kg 07/06/2011 11:12 <	Antimony	ND	0.16	mg/kg	07/06/2011 11:10	NJB	
Date Collected: 06/28/2011 15:20 Matrix: Solid Trace Metals by 6010B Arsenic 3.8 0.27 mg/kg 07/06/2011 11:12 NJB Barium 28 0.53 mg/kg 07/06/2011 11:12 NJB Cadmium 0.34 0.11 mg/kg 07/06/2011 11:12 NJB Chromium 4.1 0.11 mg/kg 07/06/2011 11:12 NJB Lead 14 0.11 mg/kg 07/06/2011 11:12 NJB Selenium ND 0.27 mg/kg 07/06/2011 11:12 NJB Silver ND 0.11 mg/kg 07/06/2011 11:12 NJB Zinc 19 0.11 mg/kg 07/06/2011 11:12 NJB Mandium 7.4 0.11 mg/kg 07/06/2011 11:12 NJB Nickel 3.0 0.11 mg/kg 07/06/2011 11:12 NJB Manganese 99	Mercury by SW-846 7471 in SW	ND	0.021	mg/kg	07/05/2011 12:35	KL	
Date Collected: 06/28/2011 15:20 Matrix: Solid Trace Metals by 6010B Arsenic 3.8 0.27 mg/kg 07/06/2011 11:12 NJB Barium 28 0.53 mg/kg 07/06/2011 11:12 NJB Cadmium 0.34 0.11 mg/kg 07/06/2011 11:12 NJB Chromium 4.1 0.11 mg/kg 07/06/2011 11:12 NJB Lead 14 0.11 mg/kg 07/06/2011 11:12 NJB Selenium ND 0.27 mg/kg 07/06/2011 11:12 NJB Silver ND 0.11 mg/kg 07/06/2011 11:12 NJB Zinc 19 0.11 mg/kg 07/06/2011 11:12 NJB Mandium 7.4 0.11 mg/kg 07/06/2011 11:12 NJB Nickel 3.0 0.11 mg/kg 07/06/2011 11:12 NJB Manganese 99	(14) 841110628-14						
Arsenic3.80.27mg/kg07/06/201111:12NJBBarium280.53mg/kg07/06/201111:12NJBCadmium0.340.11mg/kg07/06/201111:12NJBChromium4.10.11mg/kg07/06/201111:12NJBLead140.11mg/kg07/06/201111:12NJBSeleniumND0.27mg/kg07/06/201111:12NJBSilverND0.11mg/kg07/06/201111:12NJBZinc190.11mg/kg07/06/201111:12NJBVanadium7.40.11mg/kg07/06/201111:12NJBNickel3.00.11mg/kg07/06/201111:12NJBManganese990.11mg/kg07/06/201111:12NJBCopper6.60.11mg/kg07/06/201111:12NJBBeryllium0.210.053mg/kg07/06/201111:12NJBAntimonyND0.16mg/kg07/06/201111:12NJB	Date Collected: 06/28/2011 15:20	Matrix: Solid					
Barium 28 0.53 mg/kg 07/06/2011 11:12 NJB Cadmium 0.34 0.11 mg/kg 07/06/2011 11:12 NJB Chromium 4.1 0.11 mg/kg 07/06/2011 11:12 NJB Lead 14 0.11 mg/kg 07/06/2011 11:12 NJB Selenium ND 0.27 mg/kg 07/06/2011 11:12 NJB Silver ND 0.11 mg/kg 07/06/2011 11:12 NJB Zinc 19 0.11 mg/kg 07/06/2011 11:12 NJB Vanadium 7.4 0.11 mg/kg 07/06/2011 11:12 NJB Thallium ND 0.27 mg/kg 07/06/2011 11:12 NJB Nickel 3.0 0.11 mg/kg 07/06/2011 11:12 NJB Manganese 99 0.11 mg/kg 07/06/2011 11:12 NJB Gopper 6.6 0.11 mg/kg 07/06/2011 11:12 NJB Beryllium	Trace Metals by 6010B						
Cadmium0.340.11mg/kg07/06/201111:12NJBChromium4.10.11mg/kg07/06/201111:12NJBLead140.11mg/kg07/06/201111:12NJBSeleniumND0.27mg/kg07/06/201111:12NJBSilverND0.11mg/kg07/06/201111:12NJBZinc190.11mg/kg07/06/201111:12NJBVanadium7.40.11mg/kg07/06/201111:12NJBThalliumND0.27mg/kg07/06/201111:12NJBNickel3.00.11mg/kg07/06/201111:12NJBManganese990.11mg/kg07/06/201111:12NJBBeryllium0.210.053mg/kg07/06/201111:12NJBAntimonyND0.16mg/kg07/06/201111:12NJB	Arsenic	3.8	0.27	mg/kg	07/06/2011 11:12	NJB	
Chromium4.10.11mg/kg07/06/201111:12NJBLead140.11mg/kg07/06/201111:12NJBSeleniumND0.27mg/kg07/06/201111:12NJBSilverND0.11mg/kg07/06/201111:12NJBZinc190.11mg/kg07/06/201111:12NJBVanadium7.40.11mg/kg07/06/201111:12NJBThalliumND0.27mg/kg07/06/201111:12NJBNickel3.00.11mg/kg07/06/201111:12NJBManganese990.11mg/kg07/06/201111:12NJBCopper6.60.11mg/kg07/06/201111:12NJBBeryllium0.210.053mg/kg07/06/201111:12NJBAntimonyND0.16mg/kg07/06/201111:12NJB	Barium	28	0.53	mg/kg	07/06/2011 11:12	NJB	
Lead140.11mg/kg07/06/201111:12NJBSeleniumND0.27mg/kg07/06/201111:12NJBSilverND0.11mg/kg07/06/201111:12NJBZinc190.11mg/kg07/06/201111:12NJBVanadium7.40.11mg/kg07/06/201111:12NJBThalliumND0.27mg/kg07/06/201111:12NJBNickel3.00.11mg/kg07/06/201111:12NJBManganese990.11mg/kg07/06/201111:12NJBCopper6.60.11mg/kg07/06/201111:12NJBBeryllium0.210.053mg/kg07/06/201111:12NJBAntimonyND0.16mg/kg07/06/201111:12NJB	Cadmium	0.34	0.11	mg/kg	07/06/2011 11:12	NJB	
SeleniumND0.27mg/kg07/06/201111:12NJBSilverND0.11mg/kg07/06/201111:12NJBZinc190.11mg/kg07/06/201111:12NJBVanadium7.40.11mg/kg07/06/201111:12NJBThalliumND0.27mg/kg07/06/201111:12NJBNickel3.00.11mg/kg07/06/201111:12NJBManganese990.11mg/kg07/06/201111:12NJBCopper6.60.11mg/kg07/06/201111:12NJBBeryllium0.210.053mg/kg07/06/201111:12NJBAntimonyND0.16mg/kg07/06/201111:12NJB	Chromium	4.1	0.11	mg/kg	07/06/2011 11:12	NJB	
SilverND0.11mg/kg07/06/201111:12NJBZinc190.11mg/kg07/06/201111:12NJBVanadium7.40.11mg/kg07/06/201111:12NJBThalliumND0.27mg/kg07/06/201111:12NJBNickel3.00.11mg/kg07/06/201111:12NJBManganese990.11mg/kg07/06/201111:12NJBCopper6.60.11mg/kg07/06/201111:12NJBBeryllium0.210.053mg/kg07/06/201111:12NJBAntimonyND0.16mg/kg07/06/201111:12NJB	Lead	14	0.11	mg/kg	07/06/2011 11:12	NJB	
Zinc190.11mg/kg07/06/201111:12NJBVanadium7.40.11mg/kg07/06/201111:12NJBThalliumND0.27mg/kg07/06/201111:12NJBNickel3.00.11mg/kg07/06/201111:12NJBManganese990.11mg/kg07/06/201111:12NJBCopper6.60.11mg/kg07/06/201111:12NJBBeryllium0.210.053mg/kg07/06/201111:12NJBAntimonyND0.16mg/kg07/06/201111:12NJB	Selenium	ND	0.27	mg/kg	07/06/2011 11:12	NJB	
Vanadium7.40.11mg/kg07/06/201111:12NJBThalliumND0.27mg/kg07/06/201111:12NJBNickel3.00.11mg/kg07/06/201111:12NJBManganese990.11mg/kg07/06/201111:12NJBCopper6.60.11mg/kg07/06/201111:12NJBBeryllium0.210.053mg/kg07/06/201111:12NJBAntimonyND0.16mg/kg07/06/201111:12NJB	Silver	ND	0.11	mg/kg	07/06/2011 11:12	NJB	
ThalliumND0.27mg/kg07/06/201111:12NJBNickel3.00.11mg/kg07/06/201111:12NJBManganese990.11mg/kg07/06/201111:12NJBCopper6.60.11mg/kg07/06/201111:12NJBBeryllium0.210.053mg/kg07/06/201111:12NJBAntimonyND0.16mg/kg07/06/201111:12NJB	Zinc	19	0.11		07/06/2011 11:12	NJB	
ThalliumND0.27mg/kg07/06/201111:12NJBNickel3.00.11mg/kg07/06/201111:12NJBManganese990.11mg/kg07/06/201111:12NJBCopper6.60.11mg/kg07/06/201111:12NJBBeryllium0.210.053mg/kg07/06/201111:12NJBAntimonyND0.16mg/kg07/06/201111:12NJB	Vanadium	7.4	0.11	mg/kg	07/06/2011 11:12	NJB	
Nickel3.00.11mg/kg07/06/201111:12NJBManganese990.11mg/kg07/06/201111:12NJBCopper6.60.11mg/kg07/06/201111:12NJBBeryllium0.210.053mg/kg07/06/201111:12NJBAntimonyND0.16mg/kg07/06/201111:12NJB	Thallium	ND	0.27	mg/kg	07/06/2011 11:12	NJB	
Manganese990.11mg/kg07/06/201111:12NJBCopper6.60.11mg/kg07/06/201111:12NJBBeryllium0.210.053mg/kg07/06/201111:12NJBAntimonyND0.16mg/kg07/06/201111:12NJB	Nickel	3.0	0.11		07/06/2011 11:12	NJB	
Copper6.60.11mg/kg07/06/201111:12NJBBeryllium0.210.053mg/kg07/06/201111:12NJBAntimonyND0.16mg/kg07/06/201111:12NJB		99					
Beryllium 0.21 0.053 mg/kg 07/06/2011 11:12 NJB Antimony ND 0.16 mg/kg 07/06/2011 11:12 NJB	-	6.6					
Antimony ND 0.16 mg/kg 07/06/2011 11:12 NJB							
	-						
	-						

Report No: E106J35 Date Received: 06/29/2011 16:10

Parameter	Result	DL	Units	Completed	By	Dilution
(15) 841110628-15 Date Collected: 06/28/2011 15:30	Matrix: Solid					
Trace Metals by 6010B						
Arsenic	5.7	0.26	mg/kg	07/06/2011 11:15	NJB	
Barium	24	0.53	mg/kg	07/06/2011 11:15	NJB	
Cadmium	0.45	0.10	mg/kg	07/06/2011 11:15	NJB	
Chromium	6.8	0.10	mg/kg	07/06/2011 11:15	NJB	
Lead	2.9	0.10	mg/kg	07/06/2011 11:15	NJB	
Selenium	ND	0.26	mg/kg	07/06/2011 11:15	NJB	
Silver	ND	0.10	mg/kg	07/06/2011 11:15	NJB	
Zinc	20	0.10	mg/kg	07/06/2011 11:15	NJB	
Vanadium	11	0.10	mg/kg	07/06/2011 11:15	NJB	
Thallium	ND	0.26	mg/kg	07/06/2011 11:15	NJB	
Nickel	8.5	0.10	mg/kg	07/06/2011 11:15	NJB	
Manganese	160	0.10	mg/kg	07/06/2011 11:15	NJB	
Copper	24	0.10	mg/kg	07/06/2011 11:15	NJB	
Beryllium	0.25	0.053	mg/kg	07/06/2011 11:15	NJB	
Antimony	ND	0.16	mg/kg	07/06/2011 11:15	NJB	
Mercury by SW-846 7471 in SW	ND	0.021	mg/kg	07/05/2011 12:35	KL	

Report No: E106J35 Sample No: 1 Sample Description: 841110628-01

Date Collected: 06/28/2011 09:15 Date Received: 06/29/2011 16:10 Date Extracted: 07/01/2011 11:00 By: AJM Date Analyzed: 07/05/2011 21:04 By: GMP Preparation Method: 3500 Analytical Method: 8270C Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 4.3 Sample Weight/Volume: 30.00 Dilution Factor: 1 Extract Volume: 1 Lab Data File: L32799.D QC Batch#: 86210

CAS No.	Parameter	Result	DL	Units
103-33-3	Azobenzene	ND	170	ug/kg
83-32-9	Acenaphthene	ND	170	ug/kg
208-96-8	Acenaphthylene	ND	170	ug/kg
62-53-3	Aniline	ND	350	ug/kg
120-12-7	Anthracene	ND	170	ug/kg
92-52-4	Biphenyl	ND	170	ug/kg
56-55-3	Benzo[a]anthracene	ND	170	ug/kg
50-32-8	Benzo[a]pyrene	ND	170	ug/kg
205-99-2	Benzo[b]fluoranthene	ND	170	ug/kg
191-24-2	Benzo[g,h,i]perylene	ND	170	ug/kg
207-08-9	Benzo[k]fluoranthene	ND	170	ug/kg
65-85-0	Benzoic acid	ND	870	ug/kg
100-51-6	Benzyl alcohol	ND	350	ug/kg
85-68-7	Benzyl butyl phthalate	ND	170	ug/kg
111-91-1	Bis(2-chloroethoxy)methane	ND	170	ug/kg
111-44-4	Bis(2-chloroethyl)ether	ND	170	ug/kg
108-60-1	Bis(2-chloroisopropyl)ether	ND	350	ug/kg
117-81-7	Bis(2-ethylhexyl)phthalate	ND	170	ug/kg
101-55-3	4-Bromophenyl phenyl ether	ND	170	ug/kg
59-50-7	4-Chloro-3-methylphenol	ND	170	ug/kg
106-47-8	4-Chloroaniline	ND	350	ug/kg
91-58-7	2-Chloronaphthalene	ND	170	ug/kg
95-57-8	2-Chlorophenol	ND	170	ug/kg
7005-72-3	4-Chlorophenyl phenyl ether	ND	170	ug/kg
218-01-9	Chrysene	ND	170	ug/kg
53-70-3	Dibenz[a,h]anthracene	ND	170	ug/kg
84-74-2	Di-n-butyl phthalate	ND	170	ug/kg
117-84-0	Di-n-octyl phthalate	ND	170	ug/kg
132-64-9	Dibenzofuran	ND	350	ug/kg
95-50-1	1,2-Dichlorobenzene	ND	170	ug/kg
541-73-1	1,3-Dichlorobenzene	ND	170	ug/kg
106-46-7	1,4-Dichlorobenzene	ND	170	ug/kg
91-94-1	3,3-Dichlorobenzidine	ND	170	ug/kg
120-83-2	2,4-Dichlorophenol	ND	170	ug/kg
84-66-2	Diethyl phthalate	ND	170	ug/kg
131-11-3	Dimethyl phthalate	ND	170	ug/kg
105-67-9	2,4-Dimethylphenol	ND	170	ug/kg
51-28-5	2,4-Dinitrophenol	ND	170	ug/kg
121-14-2	2,4-Dinitrotoluene	ND	170	ug/kg
606-20-2	2,6-Dinitrotoluene	ND	170	ug/kg

Report No: E106J35 Sample No: 1 Sample Description: 841110628-01

Date Collected: 06/28/2011 09:15 Date Received: 06/29/2011 16:10 Date Extracted: 07/01/2011 11:00 By: AJM Date Analyzed: 07/05/2011 21:04 By: GMP Preparation Method: 3500 Analytical Method: 8270C Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 4.3 Sample Weight/Volume: 30.00 Dilution Factor: 1 Extract Volume: 1 Lab Data File: L32799.D QC Batch#: 86210

CAS No.	Parameter	Result	DL	Units
206-44-0	Fluoranthene	ND	170	ug/kg
86-73-7	Fluorene	ND	170	ug/kg
118-74-1	Hexachlorobenzene	ND	170	ug/kg
87-68-3	Hexachlorobutadiene	ND	170	ug/kg
77-47-4	Hexachlorocyclopentadiene	ND	170	ug/kg
67-72-1	Hexachloroethane	ND	170	ug/kg
193-39-5	Indeno[1,2,3-cd]pyrene	ND	170	ug/kg
78-59-1	Isophorone	ND	170	ug/kg
534-52-1	2-Methyl-4,6-dinitrophenol	ND	170	ug/kg
91-57-6	2-Methylnaphthalene	ND	170	ug/kg
95-48-7	2-Methylphenol	ND	170	ug/kg
108-39-4	3- & 4-Methylphenols	ND	350	ug/kg
91-20-3	Naphthalene	ND	170	ug/kg
88-74-4	2-Nitroaniline	ND	350	ug/kg
99-09-2	3-Nitroaniline	ND	350	ug/kg
100-01-6	4-Nitroaniline	ND	350	ug/kg
98-95-3	Nitrobenzene	ND	170	ug/kg
88-75-5	2-Nitrophenol	ND	170	ug/kg
100-02-1	4-Nitrophenol	ND	170	ug/kg
621-64-7	N-Nitrosodi-n-propylamine	ND	170	ug/kg
62-75-9	N-Nitrosodimethylamine	ND	170	ug/kg
86-30-6	N-Nitrosodiphenylamine	ND	170	ug/kg
87-86-5	Pentachlorophenol	ND	170	ug/kg
85-01-8	Phenanthrene	ND	170	ug/kg
108-95-2	Phenol	ND	170	ug/kg
129-00-0	Pyrene	ND	170	ug/kg
120-82-1	1,2,4-Trichlorobenzene	ND	170	ug/kg
95-95-4	2,4,5-Trichlorophenol	ND	170	ug/kg
88-06-2	2,4,6-Trichlorophenol	ND	170	ug/kg
a 1.0a				

Sample QC
Surrogate

Surrogate	Recovery	QC Limits	
2,4,6-Tribromophenol	96%	18%-118%	
2-Fluorobiphenyl	61%	24%-101%	
2-Fluorophenol	61%	10%-94%	
4-Terphenyl-d14	96%	20%-133%	
Nitrobenzene-d5	61%	16%-98%	
Phenol-d6	64%	15%-102%	

Report No: E106J35 Sample No: 1 Sample Description: 841110628-01

Date Collected: 06/28/2011 09:15 Date Received: 06/29/2011 16:10 Date Extracted: 07/01/2011 12:00 By: AJM Date Analyzed: 07/06/2011 18:59 By: MRB Preparation Method: 8100 Analytical Method: 8100 Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 4.3 Sample Weight/Volume: 10.00 Dilution Factor: 1 Extract Volume: 1 Lab Data File: 6070619.D QC Batch#: 86212

CAS No. Parameter	Result	DL	Units
C6-C12 Light Petroleum Distillate C10-C28 Medium Petroleum Distillate C16-C36 Heavy Petroleum Distillate Total PHC	ND ND ND ND	21 21 21 21 21	mg/kg mg/kg mg/kg mg/kg

Report No: E106J35 Sample No: 1 Sample Description: 841110628-01

Date Collected: 06/28/2011 09:15 Date Received: 06/29/2011 16:10 Date Extracted: 06/30/2011 09:00 By: DPR Date Analyzed: 07/05/2011 12:59 By: MRB Preparation Method: 3500 Analytical Method: 8082 Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 4.3 Sample Weight/Volume: 30.00 Dilution Factor: 1 Extract Volume: 2 Lab Data File: 8070505.D QC Batch#: 86192

CAS No.	Parameter	Result	DL	Units
12674-11-2	Aroclor 1016	ND	14	ug/kg
11104-28-2	Aroclor 1221	ND	14	ug/kg
11141-16-5	Aroclor 1232	ND	14	ug/kg
53469-21-9	Aroclor 1242	ND	14	ug/kg
12672-29-6	Aroclor 1248	ND	14	ug/kg
11097-69-1	Aroclor 1254	ND	14	ug/kg
11096-82-5	Aroclor 1260	ND	14	ug/kg
Sample QC				
Surrogate		Recovery QC Limits		
Tetrachloro-m-xyle	ene	79% 10%-103%		0
Decachlorobiphen		86% 10%-142%		o

Report No: E106J35 Sample No: 1 Sample Description: 841110628-01

Date Collected: 06/28/2011 09:15 Date Received: 06/29/2011 16:10 Date Analyzed: 06/30/2011 11:46 By: AMH Analytical Method: 8260B Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 4.3 Dilution Factor: 1 Lab Data File: J45998.D QC Batch#: 86074

CAS No.	Parameter	Result	DL	Units
67-64-1	Acetone	ND	10	ug/kg
107-13-1	Acrylonitrile	ND	5.2	ug/kg
71-43-2	Benzene	ND	5.2	ug/kg
108-86-1	Bromobenzene	ND	5.2	ug/kg
74-97-5	Bromochloromethane	ND	5.2	ug/kg
75-27-4	Bromodichloromethane	ND	5.2	ug/kg
75-25-2	Bromoform	ND	5.2	ug/kg
74-83-9	Bromomethane	ND	5.2	ug/kg
78-93-3	2-Butanone (MEK)	ND	10	ug/kg
104-51-8	n-Butylbenzene	ND	5.2	ug/kg
135-98-8	sec-Butylbenzene	ND	5.2	ug/kg
98-06-6	tert-Butylbenzene	ND	5.2	ug/kg
75-15-0	Carbon disulfide	ND	5.2	ug/kg
56-23-5	Carbon tetrachloride	ND	5.2	ug/kg
108-90-7	Chlorobenzene	ND	5.2	ug/kg
75-00-3	Chloroethane	ND	5.2	ug/kg
67-66-3	Chloroform	ND	5.2	ug/kg
74-87-3	Chloromethane	ND	5.2	ug/kg
95-49-8	2-Chlorotoluene	ND	5.2	ug/kg
106-43-4	4-Chlorotoluene	ND	5.2	ug/kg
96-12-8	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.2	ug/kg
124-48-1	Dibromochloromethane	ND	5.2	ug/kg
106-93-4	1,2-Dibromoethane (EDB)	ND	5.2	ug/kg
74-95-3	Dibromomethane	ND	5.2	ug/kg
95-50-1	1,2-Dichlorobenzene	ND	5.2	ug/kg
541-73-1	1,3-Dichlorobenzene	ND	5.2	ug/kg
106-46-7	1,4-Dichlorobenzene	ND	5.2	ug/kg
75-71-8	Dichlorodifluoromethane	ND	5.2	ug/kg
75-34-3	1,1-Dichloroethane	ND	5.2	ug/kg
107-06-2	1,2-Dichloroethane	ND	5.2	ug/kg
75-35-4	1,1-Dichloroethene	ND	5.2	ug/kg
156-59-2	cis-1,2-Dichloroethene	ND	5.2	ug/kg
156-60-5	trans-1,2-Dichloroethene	ND	5.2	ug/kg
78-87-5	1,2-Dichloropropane	ND	5.2	ug/kg
142-28-9	1,3-Dichloropropane	ND	5.2	ug/kg
594-20-7	2,2-Dichloropropane	ND	5.2	ug/kg
563-58-6	1,1-Dichloropropene	ND	5.2	ug/kg
10061-01-5	cis-1,3-Dichloropropene	ND	5.2	ug/kg
10061-02-6	trans-1,3-Dichloropropene	ND	5.2	ug/kg
60-29-7	Diethyl ether	ND	5.2	ug/kg

Report No: E106J35 Sample No: 1 Sample Description: 841110628-01

Date Collected: 06/28/2011 09:15 Date Received: 06/29/2011 16:10 Date Analyzed: 06/30/2011 11:46 By: AMH Analytical Method: 8260B Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 4.3 Dilution Factor: 1 Lab Data File: J45998.D QC Batch#: 86074

CAS No.	Parameter	Result	DL	Units
123-91-1	1,4-Dioxane	ND	21	ug/kg
100-41-4	Ethylbenzene	ND	5.2	ug/kg
87-68-3	Hexachlorobutadiene	ND	5.2	ug/kg
591-78-6	2-Hexanone	ND	10	ug/kg
98-82-8	Isopropylbenzene	ND	5.2	ug/kg
99-87-6	4-Isopropyltoluene	ND	5.2	ug/kg
1634-04-4	Methyl tert-butyl ether (MTBE)	ND	5.2	ug/kg
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	10	ug/kg
75-09-2	Methylene chloride	ND	5.2	ug/kg
91-20-3	Naphthalene	ND	5.2	ug/kg
103-65-1	n-Propylbenzene	ND	5.2	ug/kg
100-42-5	Styrene	ND	5.2	ug/kg
109-99-9	Tetrahydrofuran	ND	5.2	ug/kg
110-57-6	trans-1,4-Dichloro-2-butene	ND	5.2	ug/kg
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.2	ug/kg
96-18-4	1,2,3-Trichloropropane	ND	5.2	ug/kg
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.2	ug/kg
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.2	ug/kg
127-18-4	Tetrachloroethene (PCE)	ND	5.2	ug/kg
108-88-3	Toluene	ND	5.2	ug/kg
87-61-6	1,2,3-Trichlorobenzene	ND	5.2	ug/kg
120-82-1	1,2,4-Trichlorobenzene	ND	5.2	ug/kg
71-55-6	1,1,1-Trichloroethane	ND	5.2	ug/kg
79-00-5	1,1,2-Trichloroethane	ND	5.2	ug/kg
79-01-6	Trichloroethene (TCE)	ND	5.2	ug/kg
75-69-4	Trichlorofluoromethane	ND	5.2	ug/kg
95-63-6	1,2,4-Trimethylbenzene	ND	5.2	ug/kg
108-67-8	1,3,5-Trimethylbenzene	ND	5.2	ug/kg
75-01-4	Vinyl chloride	ND	5.2	ug/kg
95-47-6	o-Xylene	ND	5.2	ug/kg
108-38-3	m,p-Xylenes	ND	10	ug/kg
~ . ~ ~				

Sample QC		
Surrogate	Recovery	QC Limits
1,2-Dichloroethane-d4	104%	82%-120%
Bromofluorobenzene	98%	70%-122%
Toluene-d8	98%	77%-126%

Report No: E106J35 Sample No: 2 Sample Description: 841110628-02

Date Collected: 06/28/2011 10:15 Date Received: 06/29/2011 16:10 Date Extracted: 07/01/2011 11:00 By: AJM Date Analyzed: 07/05/2011 19:38 By: GMP Preparation Method: 3500 Analytical Method: 8270C Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 6.8 Sample Weight/Volume: 30.00 Dilution Factor: 1 Extract Volume: 1 Lab Data File: L32796.D QC Batch#: 86210

CAS No.	Parameter	Result	DL	Units
103-33-3	Azobenzene	ND	180	ug/kg
83-32-9	Acenaphthene	ND	180	ug/kg
208-96-8	Acenaphthylene	ND	180	ug/kg
62-53-3	Aniline	ND	360	ug/kg
120-12-7	Anthracene	ND	180	ug/kg
92-52-4	Biphenyl	ND	180	ug/kg
56-55-3	Benzo[a]anthracene	ND	180	ug/kg
50-32-8	Benzo[a]pyrene	ND	180	ug/kg
205-99-2	Benzo[b]fluoranthene	ND	180	ug/kg
191-24-2	Benzo[g,h,i]perylene	ND	180	ug/kg
207-08-9	Benzo[k]fluoranthene	ND	180	ug/kg
65-85-0	Benzoic acid	ND	890	ug/kg
100-51-6	Benzyl alcohol	ND	360	ug/kg
85-68-7	Benzyl butyl phthalate	ND	180	ug/kg
111-91-1	Bis(2-chloroethoxy)methane	ND	180	ug/kg
111-44-4	Bis(2-chloroethyl)ether	ND	180	ug/kg
108-60-1	Bis(2-chloroisopropyl)ether	ND	360	ug/kg
117-81-7	Bis(2-ethylhexyl)phthalate	ND	180	ug/kg
101-55-3	4-Bromophenyl phenyl ether	ND	180	ug/kg
59-50-7	4-Chloro-3-methylphenol	ND	180	ug/kg
106-47-8	4-Chloroaniline	ND	360	ug/kg
91-58-7	2-Chloronaphthalene	ND	180	ug/kg
95-57-8	2-Chlorophenol	ND	180	ug/kg
7005-72-3	4-Chlorophenyl phenyl ether	ND	180	ug/kg
218-01-9	Chrysene	ND	180	ug/kg
53-70-3	Dibenz[a,h]anthracene	ND	180	ug/kg
84-74-2	Di-n-butyl phthalate	ND	180	ug/kg
117-84-0	Di-n-octyl phthalate	ND	180	ug/kg
132-64-9	Dibenzofuran	ND	360	ug/kg
95-50-1	1,2-Dichlorobenzene	ND	180	ug/kg
541-73-1	1,3-Dichlorobenzene	ND	180	ug/kg
106-46-7	1,4-Dichlorobenzene	ND	180	ug/kg
91-94-1	3,3-Dichlorobenzidine	ND	180	ug/kg
120-83-2	2,4-Dichlorophenol	ND	180	ug/kg
84-66-2	Diethyl phthalate	ND	180	ug/kg
131-11-3	Dimethyl phthalate	ND	180	ug/kg
105-67-9	2,4-Dimethylphenol	ND	180	ug/kg
51-28-5	2,4-Dinitrophenol	ND	180	ug/kg
121-14-2	2,4-Dinitrotoluene	ND	180	ug/kg
606-20-2	2,6-Dinitrotoluene	ND	180	ug/kg

Report No: E106J35 Sample No: 2 Sample Description: 841110628-02

Date Collected: 06/28/2011 10:15 Date Received: 06/29/2011 16:10 Date Extracted: 07/01/2011 11:00 By: AJM Date Analyzed: 07/05/2011 19:38 By: GMP Preparation Method: 3500 Analytical Method: 8270C Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 6.8 Sample Weight/Volume: 30.00 Dilution Factor: 1 Extract Volume: 1 Lab Data File: L32796.D QC Batch#: 86210

Recovery

74%

45% 38%

92% 42%

43%

QC Limits

18%-118% 24%-101%

10%-94% 20%-133%

16%-98% 15%-102%

CAS No.	Parameter	Result	DL	Units
206-44-0	Fluoranthene	ND	180	ug/kg
86-73-7	Fluorene	ND	180	ug/kg
118-74-1	Hexachlorobenzene	ND	180	ug/kg
87-68-3	Hexachlorobutadiene	ND	180	ug/kg
77-47-4	Hexachlorocyclopentadiene	ND	180	ug/kg
67-72-1	Hexachloroethane	ND	180	ug/kg
193-39-5	Indeno[1,2,3-cd]pyrene	ND	180	ug/kg
78-59-1	Isophorone	ND	180	ug/kg
534-52-1	2-Methyl-4,6-dinitrophenol	ND	180	ug/kg
91-57-6	2-Methylnaphthalene	ND	180	ug/kg
95-48-7	2-Methylphenol	ND	180	ug/kg
108-39-4	3- & 4-Methylphenols	ND	360	ug/kg
91-20-3	Naphthalene	ND	180	ug/kg
88-74-4	2-Nitroaniline	ND	360	ug/kg
99-09-2	3-Nitroaniline	ND	360	ug/kg
100-01-6	4-Nitroaniline	ND	360	ug/kg
98-95-3	Nitrobenzene	ND	180	ug/kg
88-75-5	2-Nitrophenol	ND	180	ug/kg
100-02-1	4-Nitrophenol	ND	180	ug/kg
621-64-7	N-Nitrosodi-n-propylamine	ND	180	ug/kg
62-75-9	N-Nitrosodimethylamine	ND	180	ug/kg
86-30-6	N-Nitrosodiphenylamine	ND	180	ug/kg
87-86-5	Pentachlorophenol	ND	180	ug/kg
85-01-8	Phenanthrene	ND	180	ug/kg
108-95-2	Phenol	ND	180	ug/kg
129-00-0	Pyrene	ND	180	ug/kg
120-82-1	1,2,4-Trichlorobenzene	ND	180	ug/kg
95-95-4	2,4,5-Trichlorophenol	ND	180	ug/kg
88-06-2	2,4,6-Trichlorophenol	ND	180	ug/kg

Surrogate
2,4,6-Tribromophenol
2-Fluorobiphenyl
2-Fluorophenol
4-Terphenyl-d14
Nitrobenzene-d5
Phenol-d6

Sample QC

Report No: E106J35 Sample No: 2 Sample Description: 841110628-02

Date Collected: 06/28/2011 10:15 Date Received: 06/29/2011 16:10 Date Extracted: 07/05/2011 09:00 By: DPR Date Analyzed: 07/07/2011 03:19 By: MRB Preparation Method: 8100 Analytical Method: 8100 Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 6.8 Sample Weight/Volume: 10.00 Dilution Factor: 1 Extract Volume: 1 Lab Data File: 6070634.D QC Batch#: 86265

CAS No. Parameter	Result	DL	Units
C6-C12 Light Petroleum Distillate C10-C28 Medium Petroleum Distillate C16-C36 Heavy Petroleum Distillate Total PHC	ND ND ND ND	21 21 21 21 21	mg/kg mg/kg mg/kg mg/kg

Report No: E106J35 Sample No: 2 Sample Description: 841110628-02

Date Collected: 06/28/2011 10:15 Date Received: 06/29/2011 16:10 Date Extracted: 06/30/2011 09:00 By: DPR Date Analyzed: 07/06/2011 09:03 By: MRB Preparation Method: 3500 Analytical Method: 8082 Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 6.8 Sample Weight/Volume: 30.00 Dilution Factor: 1 Extract Volume: 2 Lab Data File: 8070603.D QC Batch#: 86192

CAS No.	Parameter	Result	DL	Units
12674-11-2	Aroclor 1016	ND	14	ug/kg
11104-28-2	Aroclor 1221	ND	14	ug/kg
11141-16-5	Aroclor 1232	ND	14	ug/kg
53469-21-9	Aroclor 1242	ND	14	ug/kg
12672-29-6	Aroclor 1248	ND	14	ug/kg
11097-69-1	Aroclor 1254	ND	14	ug/kg
11096-82-5	Aroclor 1260	ND	14	ug/kg
Sample QC				
Surrogate		Recovery QC Limits		
Tetrachloro-m-xyle	ene	66% 10%-103%		6
Decachlorobiphen		68% 10%-142%		0

Report No: E106J35 Sample No: 2 Sample Description: 841110628-02

Date Collected: 06/28/2011 10:15 Date Received: 06/29/2011 16:10 Date Analyzed: 06/30/2011 12:13 By: AMH Analytical Method: 8260B Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 6.8 Dilution Factor: 1 Lab Data File: J45999.D QC Batch#: 86074

CAS No.	Parameter	Result	DL	Units
67-64-1	Acetone	ND	12	ug/kg
107-13-1	Acrylonitrile	ND	5.9	ug/kg
71-43-2	Benzene	ND	5.9	ug/kg
108-86-1	Bromobenzene	ND	5.9	ug/kg
74-97-5	Bromochloromethane	ND	5.9	ug/kg
75-27-4	Bromodichloromethane	ND	5.9	ug/kg
75-25-2	Bromoform	ND	5.9	ug/kg
74-83-9	Bromomethane	ND	5.9	ug/kg
78-93-3	2-Butanone (MEK)	ND	12	ug/kg
104-51-8	n-Butylbenzene	ND	5.9	ug/kg
135-98-8	sec-Butylbenzene	ND	5.9	ug/kg
98-06-6	tert-Butylbenzene	ND	5.9	ug/kg
75-15-0	Carbon disulfide	ND	5.9	ug/kg
56-23-5	Carbon tetrachloride	ND	5.9	ug/kg
108-90-7	Chlorobenzene	ND	5.9	ug/kg
75-00-3	Chloroethane	ND	5.9	ug/kg
67-66-3	Chloroform	ND	5.9	ug/kg
74-87-3	Chloromethane	ND	5.9	ug/kg
95-49-8	2-Chlorotoluene	ND	5.9	ug/kg
106-43-4	4-Chlorotoluene	ND	5.9	ug/kg
96-12-8	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.9	ug/kg
124-48-1	Dibromochloromethane	ND	5.9	ug/kg
106-93-4	1,2-Dibromoethane (EDB)	ND	5.9	ug/kg
74-95-3	Dibromomethane	ND	5.9	ug/kg
95-50-1	1,2-Dichlorobenzene	ND	5.9	ug/kg
541-73-1	1,3-Dichlorobenzene	ND	5.9	ug/kg
106-46-7	1,4-Dichlorobenzene	ND	5.9	ug/kg
75-71-8	Dichlorodifluoromethane	ND	5.9	ug/kg
75-34-3	1,1-Dichloroethane	ND	5.9	ug/kg
107-06-2	1,2-Dichloroethane	ND	5.9	ug/kg
75-35-4	1,1-Dichloroethene	ND	5.9	ug/kg
156-59-2	cis-1,2-Dichloroethene	ND	5.9	ug/kg
156-60-5	trans-1,2-Dichloroethene	ND	5.9	ug/kg
78-87-5	1,2-Dichloropropane	ND	5.9	ug/kg
142-28-9	1,3-Dichloropropane	ND	5.9	ug/kg
594-20-7	2,2-Dichloropropane	ND	5.9	ug/kg
563-58-6	1,1-Dichloropropene	ND	5.9	ug/kg
10061-01-5	cis-1,3-Dichloropropene	ND	5.9	ug/kg
10061-02-6	trans-1,3-Dichloropropene	ND	5.9	ug/kg
60-29-7	Diethyl ether	ND	5.9	ug/kg

Report No: E106J35 Sample No: 2 Sample Description: 841110628-02

Date Collected: 06/28/2011 10:15 Date Received: 06/29/2011 16:10 Date Analyzed: 06/30/2011 12:13 By: AMH Analytical Method: 8260B Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 6.8 Dilution Factor: 1 Lab Data File: J45999.D QC Batch#: 86074

CAS No.	Parameter	Result	DL	Units
123-91-1	1,4-Dioxane	ND	24	ug/kg
100-41-4	Ethylbenzene	ND	5.9	ug/kg
87-68-3	Hexachlorobutadiene	ND	5.9	ug/kg
591-78-6	2-Hexanone	ND	12	ug/kg
98-82-8	Isopropylbenzene	ND	5.9	ug/kg
99-87-6	4-Isopropyltoluene	ND	5.9	ug/kg
1634-04-4	Methyl tert-butyl ether (MTBE)	ND	5.9	ug/kg
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	12	ug/kg
75-09-2	Methylene chloride	ND	5.9	ug/kg
91-20-3	Naphthalene	ND	5.9	ug/kg
103-65-1	n-Propylbenzene	ND	5.9	ug/kg
100-42-5	Styrene	ND	5.9	ug/kg
109-99-9	Tetrahydrofuran	ND	5.9	ug/kg
110-57-6	trans-1,4-Dichloro-2-butene	ND	5.9	ug/kg
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.9	ug/kg
96-18-4	1,2,3-Trichloropropane	ND	5.9	ug/kg
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.9	ug/kg
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.9	ug/kg
127-18-4	Tetrachloroethene (PCE)	ND	5.9	ug/kg
108-88-3	Toluene	ND	5.9	ug/kg
87-61-6	1,2,3-Trichlorobenzene	ND	5.9	ug/kg
120-82-1	1,2,4-Trichlorobenzene	ND	5.9	ug/kg
71-55-6	1,1,1-Trichloroethane	ND	5.9	ug/kg
79-00-5	1,1,2-Trichloroethane	ND	5.9	ug/kg
79-01-6	Trichloroethene (TCE)	ND	5.9	ug/kg
75-69-4	Trichlorofluoromethane	ND	5.9	ug/kg
95-63-6	1,2,4-Trimethylbenzene	ND	5.9	ug/kg
108-67-8	1,3,5-Trimethylbenzene	ND	5.9	ug/kg
75-01-4	Vinyl chloride	ND	5.9	ug/kg
95-47-6	o-Xylene	ND	5.9	ug/kg
108-38-3	m,p-Xylenes	ND	12	ug/kg
Sample QC				

Sample QC			
Surrogate	Recovery	QC Limits	
1,2-Dichloroethane-d4	107%	82%-120%	
Bromofluorobenzene	99%	70%-122%	
Toluene-d8	101%	77%-126%	

Report No: E106J35 Sample No: 3 Sample Description: 841110628-03

Date Collected: 06/28/2011 11:50 Date Received: 06/29/2011 16:10 Date Extracted: 07/01/2011 11:00 By: AJM Date Analyzed: 07/05/2011 21:33 By: GMP Preparation Method: 3500 Analytical Method: 8270C Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 4.5 Sample Weight/Volume: 30.00 Dilution Factor: 1 Extract Volume: 1 Lab Data File: L32800.D QC Batch#: 86210

CAS No.	Parameter	Result	DL	Units
103-33-3	Azobenzene	ND	170	ug/kg
83-32-9	Acenaphthene	ND	170	ug/kg
208-96-8	Acenaphthylene	ND	170	ug/kg
62-53-3	Aniline	ND	350	ug/kg
120-12-7	Anthracene	ND	170	ug/kg
92-52-4	Biphenyl	ND	170	ug/kg
56-55-3	Benzo[a]anthracene	320	170	ug/kg
50-32-8	Benzo[a]pyrene	280	170	ug/kg
205-99-2	Benzo[b]fluoranthene	330	170	ug/kg
191-24-2	Benzo[g,h,i]perylene	ND	170	ug/kg
207-08-9	Benzo[k]fluoranthene	ND	170	ug/kg
65-85-0	Benzoic acid	ND	870	ug/kg
100-51-6	Benzyl alcohol	ND	350	ug/kg
85-68-7	Benzyl butyl phthalate	ND	170	ug/kg
111-91-1	Bis(2-chloroethoxy)methane	ND	170	ug/kg
111-44-4	Bis(2-chloroethyl)ether	ND	170	ug/kg
108-60-1	Bis(2-chloroisopropyl)ether	ND	350	ug/kg
117-81-7	Bis(2-ethylhexyl)phthalate	ND	170	ug/kg
101-55-3	4-Bromophenyl phenyl ether	ND	170	ug/kg
59-50-7	4-Chloro-3-methylphenol	ND	170	ug/kg
106-47-8	4-Chloroaniline	ND	350	ug/kg
91-58-7	2-Chloronaphthalene	ND	170	ug/kg
95-57-8	2-Chlorophenol	ND	170	ug/kg
7005-72-3	4-Chlorophenyl phenyl ether	ND	170	ug/kg
218-01-9	Chrysene	340	170	ug/kg
53-70-3	Dibenz[a,h]anthracene	ND	170	ug/kg
84-74-2	Di-n-butyl phthalate	ND	170	ug/kg
117-84-0	Di-n-octyl phthalate	ND	170	ug/kg
132-64-9	Dibenzofuran	ND	350	ug/kg
95-50-1	1,2-Dichlorobenzene	ND	170	ug/kg
541-73-1	1,3-Dichlorobenzene	ND	170	ug/kg
106-46-7	1,4-Dichlorobenzene	ND	170	ug/kg
91-94-1	3,3-Dichlorobenzidine	ND	170	ug/kg
120-83-2	2,4-Dichlorophenol	ND	170	ug/kg
84-66-2	Diethyl phthalate	ND	170	ug/kg
131-11-3	Dimethyl phthalate	ND	170	ug/kg
105-67-9	2,4-Dimethylphenol	ND	170	ug/kg
51-28-5	2,4-Dinitrophenol	ND	170	ug/kg
121-14-2	2,4-Dinitrotoluene	ND	170	ug/kg
606-20-2	2,6-Dinitrotoluene	ND	170	ug/kg

Report No: E106J35 Sample No: 3 Sample Description: 841110628-03

Date Collected: 06/28/2011 11:50 Date Received: 06/29/2011 16:10 Date Extracted: 07/01/2011 11:00 By: AJM Date Analyzed: 07/05/2011 21:33 By: GMP Preparation Method: 3500 Analytical Method: 8270C Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 4.5 Sample Weight/Volume: 30.00 Dilution Factor: 1 Extract Volume: 1 Lab Data File: L32800.D QC Batch#: 86210

CAS No.	Parameter	Result	DL	Units
206-44-0	Fluoranthene	720	170	ug/kg
86-73-7	Fluorene	ND	170	ug/kg
118-74-1	Hexachlorobenzene	ND	170	ug/kg
87-68-3	Hexachlorobutadiene	ND	170	ug/kg
77-47-4	Hexachlorocyclopentadiene	ND	170	ug/kg
67-72-1	Hexachloroethane	ND	170	ug/kg
193-39-5	Indeno[1,2,3-cd]pyrene	180	170	ug/kg
78-59-1	Isophorone	ND	170	ug/kg
534-52-1	2-Methyl-4,6-dinitrophenol	ND	170	ug/kg
91-57-6	2-Methylnaphthalene	ND	170	ug/kg
95-48-7	2-Methylphenol	ND	170	ug/kg
108-39-4	3- & 4-Methylphenols	ND	350	ug/kg
91-20-3	Naphthalene	ND	170	ug/kg
88-74-4	2-Nitroaniline	ND	350	ug/kg
99-09-2	3-Nitroaniline	ND	350	ug/kg
100-01-6	4-Nitroaniline	ND	350	ug/kg
98-95-3	Nitrobenzene	ND	170	ug/kg
88-75-5	2-Nitrophenol	ND	170	ug/kg
100-02-1	4-Nitrophenol	ND	170	ug/kg
621-64-7	N-Nitrosodi-n-propylamine	ND	170	ug/kg
62-75-9	N-Nitrosodimethylamine	ND	170	ug/kg
86-30-6	N-Nitrosodiphenylamine	ND	170	ug/kg
87-86-5	Pentachlorophenol	ND	170	ug/kg
85-01-8	Phenanthrene	860	170	ug/kg
108-95-2	Phenol	ND	170	ug/kg
129-00-0	Pyrene	780	170	ug/kg
120-82-1	1,2,4-Trichlorobenzene	ND	170	ug/kg
95-95-4	2,4,5-Trichlorophenol	ND	170	ug/kg
88-06-2	2,4,6-Trichlorophenol	ND	170	ug/kg

Sample QC

Surrogate	Recovery	QC Limits
2,4,6-Tribromophenol	78%	18%-118%
2-Fluorobiphenyl	50%	24%-101%
2-Fluorophenol	45%	10%-94%
4-Terphenyl-d14	97%	20%-133%
Nitrobenzene-d5	52%	16%-98%
Phenol-d6	49%	15%-102%

Report No: E106J35 Sample No: 3 Sample Description: 841110628-03

Date Collected: 06/28/2011 11:50 Date Received: 06/29/2011 16:10 Date Extracted: 07/05/2011 09:00 By: DPR Date Analyzed: 07/07/2011 03:53 By: MRB Preparation Method: 8100 Analytical Method: 8100 Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 4.5 Sample Weight/Volume: 10.12 Dilution Factor: 1 Extract Volume: 1 Lab Data File: 6070635.D QC Batch#: 86265

CAS No. Parameter	Result	DL	Units
C6-C12 Light Petroleum Distillate C10-C28 Medium Petroleum Distillate C16-C36 Heavy Petroleum Distillate Total PHC	ND ND 29 29	21 21 21 21 21	mg/kg mg/kg mg/kg mg/kg

Report No: E106J35 Sample No: 3 Sample Description: 841110628-03

Date Collected: 06/28/2011 11:50 Date Received: 06/29/2011 16:10 Date Extracted: 06/30/2011 09:00 By: DPR Date Analyzed: 07/05/2011 13:38 By: MRB Preparation Method: 3500 Analytical Method: 8082 Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 4.5 Sample Weight/Volume: 30.00 Dilution Factor: 1 Extract Volume: 2 Lab Data File: 8070507.D QC Batch#: 86192

CAS No.	Parameter	Result	DL	Units
12674-11-2	Aroclor 1016	ND	14	ug/kg
11104-28-2	Aroclor 1221	ND	14	ug/kg
11141-16-5	Aroclor 1232	ND	14	ug/kg
53469-21-9	Aroclor 1242	ND	14	ug/kg
12672-29-6	Aroclor 1248	ND	14	ug/kg
11097-69-1	Aroclor 1254	ND	14	ug/kg
11096-82-5	Aroclor 1260	ND	14	ug/kg
Sample QC				
Surrogate		Recovery	QC Limits	
Tetrachloro-m-xylene		69%	10%-103%	
Decachlorobiphenyl		118%	10%-142%	

Report No: E106J35 Sample No: 3 Sample Description: 841110628-03

Date Collected: 06/28/2011 11:50 Date Received: 06/29/2011 16:10 Date Analyzed: 06/30/2011 12:40 By: AMH Analytical Method: 8260B Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 4.5 Dilution Factor: 1 Lab Data File: J46000.D QC Batch#: 86074

CAS No.	Parameter	Result	DL	Units
67-64-1	Acetone	ND	8.9	ug/kg
107-13-1	Acrylonitrile	ND	4.5	ug/kg
71-43-2	Benzene	ND	4.5	ug/kg
108-86-1	Bromobenzene	ND	4.5	ug/kg
74-97-5	Bromochloromethane	ND	4.5	ug/kg
75-27-4	Bromodichloromethane	ND	4.5	ug/kg
75-25-2	Bromoform	ND	4.5	ug/kg
74-83-9	Bromomethane	ND	4.5	ug/kg
78-93-3	2-Butanone (MEK)	ND	8.9	ug/kg
104-51-8	n-Butylbenzene	ND	4.5	ug/kg
135-98-8	sec-Butylbenzene	ND	4.5	ug/kg
98-06-6	tert-Butylbenzene	ND	4.5	ug/kg
75-15-0	Carbon disulfide	ND	4.5	ug/kg
56-23-5	Carbon tetrachloride	ND	4.5	ug/kg
108-90-7	Chlorobenzene	ND	4.5	ug/kg
75-00-3	Chloroethane	ND	4.5	ug/kg
67-66-3	Chloroform	ND	4.5	ug/kg
74-87-3	Chloromethane	ND	4.5	ug/kg
95-49-8	2-Chlorotoluene	ND	4.5	ug/kg
106-43-4	4-Chlorotoluene	ND	4.5	ug/kg
96-12-8	1,2-Dibromo-3-chloropropane (DBCP)	ND	4.5	ug/kg
124-48-1	Dibromochloromethane	ND	4.5	ug/kg
106-93-4	1,2-Dibromoethane (EDB)	ND	4.5	ug/kg
74-95-3	Dibromomethane	ND	4.5	ug/kg
95-50-1	1,2-Dichlorobenzene	ND	4.5	ug/kg
541-73-1	1,3-Dichlorobenzene	ND	4.5	ug/kg
106-46-7	1,4-Dichlorobenzene	ND	4.5	ug/kg
75-71-8	Dichlorodifluoromethane	ND	4.5	ug/kg
75-34-3	1,1-Dichloroethane	ND	4.5	ug/kg
107-06-2	1,2-Dichloroethane	ND	4.5	ug/kg
75-35-4	1,1-Dichloroethene	ND	4.5	ug/kg
156-59-2	cis-1,2-Dichloroethene	ND	4.5	ug/kg
156-60-5	trans-1,2-Dichloroethene	ND	4.5	ug/kg
78-87-5	1,2-Dichloropropane	ND	4.5	ug/kg
142-28-9	1,3-Dichloropropane	ND	4.5	ug/kg
594-20-7	2,2-Dichloropropane	ND	4.5	ug/kg
563-58-6	1,1-Dichloropropene	ND	4.5	ug/kg
10061-01-5	cis-1,3-Dichloropropene	ND	4.5	ug/kg
10061-02-6	trans-1,3-Dichloropropene	ND	4.5	ug/kg
60-29-7	Diethyl ether	ND	4.5	ug/kg

Report No: E106J35 Sample No: 3 Sample Description: 841110628-03

Date Collected: 06/28/2011 11:50 Date Received: 06/29/2011 16:10 Date Analyzed: 06/30/2011 12:40 By: AMH Analytical Method: 8260B Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 4.5 Dilution Factor: 1 Lab Data File: J46000.D QC Batch#: 86074

CAS No.	Parameter	Result	DL	Units
123-91-1	1,4-Dioxane	ND	18	ug/kg
100-41-4	Ethylbenzene	ND	4.5	ug/kg
87-68-3	Hexachlorobutadiene	ND	4.5	ug/kg
591-78-6	2-Hexanone	ND	8.9	ug/kg
98-82-8	Isopropylbenzene	ND	4.5	ug/kg
99-87-6	4-Isopropyltoluene	ND	4.5	ug/kg
1634-04-4	Methyl tert-butyl ether (MTBE)	ND	4.5	ug/kg
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	8.9	ug/kg
75-09-2	Methylene chloride	ND	4.5	ug/kg
91-20-3	Naphthalene	ND	4.5	ug/kg
103-65-1	n-Propylbenzene	ND	4.5	ug/kg
100-42-5	Styrene	ND	4.5	ug/kg
109-99-9	Tetrahydrofuran	ND	4.5	ug/kg
110-57-6	trans-1,4-Dichloro-2-butene	ND	4.5	ug/kg
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.5	ug/kg
96-18-4	1,2,3-Trichloropropane	ND	4.5	ug/kg
630-20-6	1,1,1,2-Tetrachloroethane	ND	4.5	ug/kg
79-34-5	1,1,2,2-Tetrachloroethane	ND	4.5	ug/kg
127-18-4	Tetrachloroethene (PCE)	ND	4.5	ug/kg
108-88-3	Toluene	ND	4.5	ug/kg
87-61-6	1,2,3-Trichlorobenzene	ND	4.5	ug/kg
120-82-1	1,2,4-Trichlorobenzene	ND	4.5	ug/kg
71-55-6	1,1,1-Trichloroethane	ND	4.5	ug/kg
79-00-5	1,1,2-Trichloroethane	ND	4.5	ug/kg
79-01-6	Trichloroethene (TCE)	ND	4.5	ug/kg
75-69-4	Trichlorofluoromethane	ND	4.5	ug/kg
95-63-6	1,2,4-Trimethylbenzene	ND	4.5	ug/kg
108-67-8	1,3,5-Trimethylbenzene	ND	4.5	ug/kg
75-01-4	Vinyl chloride	ND	4.5	ug/kg
95-47-6	o-Xylene	ND	4.5	ug/kg
108-38-3	m,p-Xylenes	ND	8.9	ug/kg

Sample QC		
Surrogate	Recovery	QC Limits
1,2-Dichloroethane-d4	106%	82%-120%
Bromofluorobenzene	99%	70%-122%
Toluene-d8	98%	77%-126%

Report No: E106J35 Sample No: 4 Sample Description: 841110628-04

Date Collected: 06/28/2011 12:00 Date Received: 06/29/2011 16:10 Date Extracted: 07/01/2011 11:00 By: AJM Date Analyzed: 07/05/2011 19:10 By: GMP Preparation Method: 3500 Analytical Method: 8270C Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 3.2 Sample Weight/Volume: 30.00 Dilution Factor: 1 Extract Volume: 1 Lab Data File: L32795.D QC Batch#: 86210

CAS No.	Parameter	Result	DL	Units
103-33-3	Azobenzene	ND	170	ug/kg
83-32-9	Acenaphthene	ND	170	ug/kg
208-96-8	Acenaphthylene	ND	170	ug/kg
62-53-3	Aniline	ND	340	ug/kg
120-12-7	Anthracene	ND	170	ug/kg
92-52-4	Biphenyl	ND	170	ug/kg
56-55-3	Benzo[a]anthracene	ND	170	ug/kg
50-32-8	Benzo[a]pyrene	ND	170	ug/kg
205-99-2	Benzo[b]fluoranthene	ND	170	ug/kg
191-24-2	Benzo[g,h,i]perylene	ND	170	ug/kg
207-08-9	Benzo[k]fluoranthene	ND	170	ug/kg
65-85-0	Benzoic acid	ND	860	ug/kg
100-51-6	Benzyl alcohol	ND	340	ug/kg
85-68-7	Benzyl butyl phthalate	ND	170	ug/kg
111-91-1	Bis(2-chloroethoxy)methane	ND	170	ug/kg
111-44-4	Bis(2-chloroethyl)ether	ND	170	ug/kg
108-60-1	Bis(2-chloroisopropyl)ether	ND	340	ug/kg
117-81-7	Bis(2-ethylhexyl)phthalate	ND	170	ug/kg
101-55-3	4-Bromophenyl phenyl ether	ND	170	ug/kg
59-50-7	4-Chloro-3-methylphenol	ND	170	ug/kg
106-47-8	4-Chloroaniline	ND	340	ug/kg
91-58-7	2-Chloronaphthalene	ND	170	ug/kg
95-57-8	2-Chlorophenol	ND	170	ug/kg
7005-72-3	4-Chlorophenyl phenyl ether	ND	170	ug/kg
218-01-9	Chrysene	ND	170	ug/kg
53-70-3	Dibenz[a,h]anthracene	ND	170	ug/kg
84-74-2	Di-n-butyl phthalate	ND	170	ug/kg
117-84-0	Di-n-octyl phthalate	ND	170	ug/kg
132-64-9	Dibenzofuran	ND	340	ug/kg
95-50-1	1,2-Dichlorobenzene	ND	170	ug/kg
541-73-1	1,3-Dichlorobenzene	ND	170	ug/kg
106-46-7	1,4-Dichlorobenzene	ND	170	ug/kg
91-94-1	3,3-Dichlorobenzidine	ND	170	ug/kg
120-83-2	2,4-Dichlorophenol	ND	170	ug/kg
84-66-2	Diethyl phthalate	ND	170	ug/kg
131-11-3	Dimethyl phthalate	ND	170	ug/kg
105-67-9	2,4-Dimethylphenol	ND	170	ug/kg
51-28-5	2,4-Dinitrophenol	ND	170	ug/kg
121-14-2	2,4-Dinitrotoluene	ND	170	ug/kg
606-20-2	2,6-Dinitrotoluene	ND	170	ug/kg

Report No: E106J35 Sample No: 4 Sample Description: 841110628-04

Date Collected: 06/28/2011 12:00 Date Received: 06/29/2011 16:10 Date Extracted: 07/01/2011 11:00 By: AJM Date Analyzed: 07/05/2011 19:10 By: GMP Preparation Method: 3500 Analytical Method: 8270C Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 3.2 Sample Weight/Volume: 30.00 Dilution Factor: 1 Extract Volume: 1 Lab Data File: L32795.D QC Batch#: 86210

CAS No.	Parameter	Result	DL	Units
206-44-0	Fluoranthene	ND	170	ug/kg
86-73-7	Fluorene	ND	170	ug/kg
118-74-1	Hexachlorobenzene	ND	170	ug/kg
87-68-3	Hexachlorobutadiene	ND	170	ug/kg
77-47-4	Hexachlorocyclopentadiene	ND	170	ug/kg
67-72-1	Hexachloroethane	ND	170	ug/kg
193-39-5	Indeno[1,2,3-cd]pyrene	ND	170	ug/kg
78-59-1	Isophorone	ND	170	ug/kg
534-52-1	2-Methyl-4,6-dinitrophenol	ND	170	ug/kg
91-57-6	2-Methylnaphthalene	ND	170	ug/kg
95-48-7	2-Methylphenol	ND	170	ug/kg
108-39-4	3- & 4-Methylphenols	ND	340	ug/kg
91-20-3	Naphthalene	ND	170	ug/kg
88-74-4	2-Nitroaniline	ND	340	ug/kg
99-09-2	3-Nitroaniline	ND	340	ug/kg
100-01-6	4-Nitroaniline	ND	340	ug/kg
98-95-3	Nitrobenzene	ND	170	ug/kg
88-75-5	2-Nitrophenol	ND	170	ug/kg
100-02-1	4-Nitrophenol	ND	170	ug/kg
621-64-7	N-Nitrosodi-n-propylamine	ND	170	ug/kg
62-75-9	N-Nitrosodimethylamine	ND	170	ug/kg
86-30-6	N-Nitrosodiphenylamine	ND	170	ug/kg
87-86-5	Pentachlorophenol	ND	170	ug/kg
85-01-8	Phenanthrene	ND	170	ug/kg
108-95-2	Phenol	ND	170	ug/kg
129-00-0	Pyrene	ND	170	ug/kg
120-82-1	1,2,4-Trichlorobenzene	ND	170	ug/kg
95-95-4	2,4,5-Trichlorophenol	ND	170	ug/kg
88-06-2	2,4,6-Trichlorophenol	ND	170	ug/kg

Surrogate	Recovery	QC Limits
2,4,6-Tribromophenol	62%	18%-118%
2-Fluorobiphenyl	60%	24%-101%
2-Fluorophenol	33%	10%-94%
4-Terphenyl-d14	84%	20%-133%
Nitrobenzene-d5	60%	16%-98%
Phenol-d6	50%	15%-102%

Report No: E106J35 Sample No: 4 Sample Description: 841110628-04

Date Collected: 06/28/2011 12:00 Date Received: 06/29/2011 16:10 Date Extracted: 07/05/2011 09:00 By: DPR Date Analyzed: 07/07/2011 04:26 By: MRB Preparation Method: 8100 Analytical Method: 8100 Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 3.2 Sample Weight/Volume: 10.00 Dilution Factor: 1 Extract Volume: 1 Lab Data File: 6070636.D QC Batch#: 86265

CAS No.	Parameter	Result	DL	Units
	C6-C12 Light Petroleum Distillate	ND	21	mg/kg
	C10-C28 Medium Petroleum Distillate	ND	21	mg/kg
	C16-C36 Heavy Petroleum Distillate	ND	21	mg/kg
	Total PHC	ND	21	mg/kg

Report No: E106J35 Sample No: 4 Sample Description: 841110628-04

Date Collected: 06/28/2011 12:00 Date Received: 06/29/2011 16:10 Date Extracted: 07/07/2011 09:00 By: DPR Date Analyzed: 07/07/2011 19:28 By: MRB Preparation Method: 3500 Analytical Method: 8082 Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 3.2 Sample Weight/Volume: 30.05 Dilution Factor: 1 Extract Volume: 2 Lab Data File: 8070705.D QC Batch#: 86262

CAS No.	Parameter	Result	DL	Units
12674-11-2	Aroclor 1016	ND	14	ug/kg
11104-28-2	Aroclor 1221	ND	14	ug/kg
11141-16-5	Aroclor 1232	ND	14	ug/kg
53469-21-9	Aroclor 1242	ND	14	ug/kg
12672-29-6	Aroclor 1248	ND	14	ug/kg
11097-69-1	Aroclor 1254	ND	14	ug/kg
11096-82-5	Aroclor 1260	ND	14	ug/kg
Sample QC				
Surrogate		Recovery	QC Limits	
Tetrachloro-m-xylene		56%	10%-103%	
Decachlorobiphenyl		60%	10%-142%	6

Report No: E106J35 Sample No: 4 Sample Description: 841110628-04

Date Collected: 06/28/2011 12:00 Date Received: 06/29/2011 16:10 Date Analyzed: 07/01/2011 15:07 By: AMH Analytical Method: 8260B Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 3.2 Dilution Factor: 1 Lab Data File: J46033.D QC Batch#: 86156

CAS No.	Parameter	Result	DL	Units
67-64-1	Acetone	ND	10	ug/kg
107-13-1	Acrylonitrile	ND	5.3	ug/kg
71-43-2	Benzene	ND	5.3	ug/kg
108-86-1	Bromobenzene	ND	5.3	ug/kg
74-97-5	Bromochloromethane	ND	5.3	ug/kg
75-27-4	Bromodichloromethane	ND	5.3	ug/kg
75-25-2	Bromoform	ND	5.3	ug/kg
74-83-9	Bromomethane	ND	5.3	ug/kg
78-93-3	2-Butanone (MEK)	ND	10	ug/kg
104-51-8	n-Butylbenzene	ND	5.3	ug/kg
135-98-8	sec-Butylbenzene	ND	5.3	ug/kg
98-06-6	tert-Butylbenzene	ND	5.3	ug/kg
75-15-0	Carbon disulfide	ND	5.3	ug/kg
56-23-5	Carbon tetrachloride	ND	5.3	ug/kg
108-90-7	Chlorobenzene	ND	5.3	ug/kg
75-00-3	Chloroethane	ND	5.3	ug/kg
67-66-3	Chloroform	ND	5.3	ug/kg
74-87-3	Chloromethane	ND	5.3	ug/kg
95-49-8	2-Chlorotoluene	ND	5.3	ug/kg
106-43-4	4-Chlorotoluene	ND	5.3	ug/kg
96-12-8	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.3	ug/kg
124-48-1	Dibromochloromethane	ND	5.3	ug/kg
106-93-4	1,2-Dibromoethane (EDB)	ND	5.3	ug/kg
74-95-3	Dibromomethane	ND	5.3	ug/kg
95-50-1	1,2-Dichlorobenzene	ND	5.3	ug/kg
541-73-1	1,3-Dichlorobenzene	ND	5.3	ug/kg
106-46-7	1,4-Dichlorobenzene	ND	5.3	ug/kg
75-71-8	Dichlorodifluoromethane	ND	5.3	ug/kg
75-34-3	1,1-Dichloroethane	ND	5.3	ug/kg
107-06-2	1,2-Dichloroethane	ND	5.3	ug/kg
75-35-4	1,1-Dichloroethene	ND	5.3	ug/kg
156-59-2	cis-1,2-Dichloroethene	ND	5.3	ug/kg
156-60-5	trans-1,2-Dichloroethene	ND	5.3	ug/kg
78-87-5	1,2-Dichloropropane	ND	5.3	ug/kg
142-28-9	1,3-Dichloropropane	ND	5.3	ug/kg
594-20-7	2,2-Dichloropropane	ND	5.3	ug/kg
563-58-6	1,1-Dichloropropene	ND	5.3	ug/kg
10061-01-5	cis-1,3-Dichloropropene	ND	5.3	ug/kg
10061-02-6	trans-1,3-Dichloropropene	ND	5.3	ug/kg
60-29-7	Diethyl ether	ND	5.3	ug/kg

Report No: E106J35 Sample No: 4 Sample Description: 841110628-04

Date Collected: 06/28/2011 12:00 Date Received: 06/29/2011 16:10 Date Analyzed: 07/01/2011 15:07 By: AMH Analytical Method: 8260B Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 3.2 Dilution Factor: 1 Lab Data File: J46033.D QC Batch#: 86156

CAS No.	Parameter	Result	DL	Units
123-91-1	1,4-Dioxane	ND	21	ug/kg
100-41-4	Ethylbenzene	ND	5.3	ug/kg
87-68-3	Hexachlorobutadiene	ND	5.3	ug/kg
591-78-6	2-Hexanone	ND	10	ug/kg
98-82-8	Isopropylbenzene	ND	5.3	ug/kg
99-87-6	4-Isopropyltoluene	ND	5.3	ug/kg
1634-04-4	Methyl tert-butyl ether (MTBE)	ND	5.3	ug/kg
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	10	ug/kg
75-09-2	Methylene chloride	ND	5.3	ug/kg
91-20-3	Naphthalene	ND	5.3	ug/kg
103-65-1	n-Propylbenzene	ND	5.3	ug/kg
100-42-5	Styrene	ND	5.3	ug/kg
109-99-9	Tetrahydrofuran	ND	5.3	ug/kg
110-57-6	trans-1,4-Dichloro-2-butene	ND	5.3	ug/kg
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.3	ug/kg
96-18-4	1,2,3-Trichloropropane	ND	5.3	ug/kg
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.3	ug/kg
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.3	ug/kg
127-18-4	Tetrachloroethene (PCE)	ND	5.3	ug/kg
108-88-3	Toluene	ND	5.3	ug/kg
87-61-6	1,2,3-Trichlorobenzene	ND	5.3	ug/kg
120-82-1	1,2,4-Trichlorobenzene	ND	5.3	ug/kg
71-55-6	1,1,1-Trichloroethane	ND	5.3	ug/kg
79-00-5	1,1,2-Trichloroethane	ND	5.3	ug/kg
79-01-6	Trichloroethene (TCE)	ND	5.3	ug/kg
75-69-4	Trichlorofluoromethane	ND	5.3	ug/kg
95-63-6	1,2,4-Trimethylbenzene	ND	5.3	ug/kg
108-67-8	1,3,5-Trimethylbenzene	ND	5.3	ug/kg
75-01-4	Vinyl chloride	ND	5.3	ug/kg
95-47-6	o-Xylene	ND	5.3	ug/kg
108-38-3	m,p-Xylenes	ND	10	ug/kg
~ . ~ ~				

Sample QC					
Surrogate	Recovery	QC Limits			
1,2-Dichloroethane-d4	119%	82%-120%			
Bromofluorobenzene	105%	70%-122%			
Toluene-d8	101%	77%-126%			

Report No: E106J35 Sample No: 5 Sample Description: 841110628-05

Date Collected: 06/28/2011 12:20 Date Received: 06/29/2011 16:10 Date Extracted: 07/01/2011 11:00 By: AJM Date Analyzed: 07/05/2011 20:07 By: GMP Preparation Method: 3500 Analytical Method: 8270C Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 6.3 Sample Weight/Volume: 30.00 Dilution Factor: 1 Extract Volume: 1 Lab Data File: L32797.D QC Batch#: 86210

CAS No.	Parameter	Result	DL	Units
103-33-3	Azobenzene	ND	180	ug/kg
83-32-9	Acenaphthene	ND	180	ug/kg
208-96-8	Acenaphthylene	ND	180	ug/kg
62-53-3	Aniline	ND	360	ug/kg
120-12-7	Anthracene	ND	180	ug/kg
92-52-4	Biphenyl	ND	180	ug/kg
56-55-3	Benzo[a]anthracene	ND	180	ug/kg
50-32-8	Benzo[a]pyrene	ND	180	ug/kg
205-99-2	Benzo[b]fluoranthene	ND	180	ug/kg
191-24-2	Benzo[g,h,i]perylene	ND	180	ug/kg
207-08-9	Benzo[k]fluoranthene	ND	180	ug/kg
65-85-0	Benzoic acid	ND	890	ug/kg
100-51-6	Benzyl alcohol	ND	360	ug/kg
85-68-7	Benzyl butyl phthalate	ND	180	ug/kg
111-91-1	Bis(2-chloroethoxy)methane	ND	180	ug/kg
111-44-4	Bis(2-chloroethyl)ether	ND	180	ug/kg
108-60-1	Bis(2-chloroisopropyl)ether	ND	360	ug/kg
117-81-7	Bis(2-ethylhexyl)phthalate	ND	180	ug/kg
101-55-3	4-Bromophenyl phenyl ether	ND	180	ug/kg
59-50-7	4-Chloro-3-methylphenol	ND	180	ug/kg
106-47-8	4-Chloroaniline	ND	360	ug/kg
91-58-7	2-Chloronaphthalene	ND	180	ug/kg
95-57-8	2-Chlorophenol	ND	180	ug/kg
7005-72-3	4-Chlorophenyl phenyl ether	ND	180	ug/kg
218-01-9	Chrysene	ND	180	ug/kg
53-70-3	Dibenz[a,h]anthracene	ND	180	ug/kg
84-74-2	Di-n-butyl phthalate	ND	180	ug/kg
117-84-0	Di-n-octyl phthalate	ND	180	ug/kg
132-64-9	Dibenzofuran	ND	360	ug/kg
95-50-1	1,2-Dichlorobenzene	ND	180	ug/kg
541-73-1	1,3-Dichlorobenzene	ND	180	ug/kg
106-46-7	1,4-Dichlorobenzene	ND	180	ug/kg
91-94-1	3,3-Dichlorobenzidine	ND	180	ug/kg
120-83-2	2,4-Dichlorophenol	ND	180	ug/kg
84-66-2	Diethyl phthalate	ND	180	ug/kg
131-11-3	Dimethyl phthalate	ND	180	ug/kg
105-67-9	2,4-Dimethylphenol	ND	180	ug/kg
51-28-5	2,4-Dinitrophenol	ND	180	ug/kg
121-14-2	2,4-Dinitrotoluene	ND	180	ug/kg
606-20-2	2,6-Dinitrotoluene	ND	180	ug/kg

Report No: E106J35 Sample No: 5 Sample Description: 841110628-05

Date Collected: 06/28/2011 12:20 Date Received: 06/29/2011 16:10 Date Extracted: 07/01/2011 11:00 By: AJM Date Analyzed: 07/05/2011 20:07 By: GMP Preparation Method: 3500 Analytical Method: 8270C Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 6.3 Sample Weight/Volume: 30.00 Dilution Factor: 1 Extract Volume: 1 Lab Data File: L32797.D QC Batch#: 86210

Recovery

81%

45% 39%

83%

41%

43%

QC Limits

18%-118% 24%-101%

10%-94% 20%-133%

16%-98%

15%-102%

CAS No.	Parameter	Result	DL	Units
206-44-0	Fluoranthene	ND	180	ug/kg
86-73-7	Fluorene	ND	180	ug/kg
118-74-1	Hexachlorobenzene	ND	180	ug/kg
87-68-3	Hexachlorobutadiene	ND	180	ug/kg
77-47-4	Hexachlorocyclopentadiene	ND	180	ug/kg
67-72-1	Hexachloroethane	ND	180	ug/kg
193-39-5	Indeno[1,2,3-cd]pyrene	ND	180	ug/kg
78-59-1	Isophorone	ND	180	ug/kg
534-52-1	2-Methyl-4,6-dinitrophenol	ND	180	ug/kg
91-57-6	2-Methylnaphthalene	ND	180	ug/kg
95-48-7	2-Methylphenol	ND	180	ug/kg
108-39-4	3- & 4-Methylphenols	ND	360	ug/kg
91-20-3	Naphthalene	ND	180	ug/kg
88-74-4	2-Nitroaniline	ND	360	ug/kg
99-09-2	3-Nitroaniline	ND	360	ug/kg
100-01-6	4-Nitroaniline	ND	360	ug/kg
98-95-3	Nitrobenzene	ND	180	ug/kg
88-75-5	2-Nitrophenol	ND	180	ug/kg
100-02-1	4-Nitrophenol	ND	180	ug/kg
621-64-7	N-Nitrosodi-n-propylamine	ND	180	ug/kg
62-75-9	N-Nitrosodimethylamine	ND	180	ug/kg
86-30-6	N-Nitrosodiphenylamine	ND	180	ug/kg
87-86-5	Pentachlorophenol	ND	180	ug/kg
85-01-8	Phenanthrene	ND	180	ug/kg
108-95-2	Phenol	ND	180	ug/kg
129-00-0	Pyrene	ND	180	ug/kg
120-82-1	1,2,4-Trichlorobenzene	ND	180	ug/kg
95-95-4	2,4,5-Trichlorophenol	ND	180	ug/kg
88-06-2	2,4,6-Trichlorophenol	ND	180	ug/kg

Surrogate
2,4,6-Tribromophenol
2-Fluorobiphenyl
2-Fluorophenol
4-Terphenyl-d14
Nitrobenzene-d5

Phenol-d6

Sample QC

Report No: E106J35 Sample No: 5 Sample Description: 841110628-05

Date Collected: 06/28/2011 12:20 Date Received: 06/29/2011 16:10 Date Extracted: 07/05/2011 09:00 By: DPR Date Analyzed: 07/07/2011 04:59 By: MRB Preparation Method: 8100 Analytical Method: 8100 Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 6.3 Sample Weight/Volume: 10.15 Dilution Factor: 1 Extract Volume: 1 Lab Data File: 6070637.D QC Batch#: 86265

CAS No. Parameter	Result	DL	Units
C6-C12 Light Petroleum Distillate	ND	21	mg/kg
C10-C28 Medium Petroleum Distillate	ND	21	mg/kg
C16-C36 Heavy Petroleum Distillate	ND	21	mg/kg
Total PHC	ND	21	mg/kg

Report No: E106J35 Sample No: 5 Sample Description: 841110628-05

Date Collected: 06/28/2011 12:20 Date Received: 06/29/2011 16:10 Date Extracted: 07/07/2011 09:00 By: DPR Date Analyzed: 07/07/2011 19:47 By: MRB Preparation Method: 3500 Analytical Method: 8082 Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 6.3 Sample Weight/Volume: 30.10 Dilution Factor: 1 Extract Volume: 2 Lab Data File: 8070706.D QC Batch#: 86262

CAS No.	Parameter	Result	DL	Units
12674-11-2	Aroclor 1016	ND	14	ug/kg
11104-28-2	Aroclor 1221	ND	14	ug/kg
11141-16-5	Aroclor 1232	ND	14	ug/kg
53469-21-9	Aroclor 1242	ND	14	ug/kg
12672-29-6	Aroclor 1248	ND	14	ug/kg
11097-69-1	Aroclor 1254	ND	14	ug/kg
11096-82-5	Aroclor 1260	ND	14	ug/kg
Sample QC				
Surrogate		Recovery	QC Limits	
Tetrachloro-m-xylene		85%	10%-103%	
Decachlorobiphenyl		92%	10%-142%	

Report No: E106J35 Sample No: 5 Sample Description: 841110628-05

Date Collected: 06/28/2011 12:20 Date Received: 06/29/2011 16:10 Date Analyzed: 06/30/2011 13:35 By: AMH Analytical Method: 8260B Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 6.3 Dilution Factor: 1 Lab Data File: J46002.D QC Batch#: 86074

CAS No.	Parameter	Result	DL	Units
67-64-1	Acetone	ND	11	ug/kg
107-13-1	Acrylonitrile	ND	5.6	ug/kg
71-43-2	Benzene	ND	5.6	ug/kg
108-86-1	Bromobenzene	ND	5.6	ug/kg
74-97-5	Bromochloromethane	ND	5.6	ug/kg
75-27-4	Bromodichloromethane	ND	5.6	ug/kg
75-25-2	Bromoform	ND	5.6	ug/kg
74-83-9	Bromomethane	ND	5.6	ug/kg
78-93-3	2-Butanone (MEK)	ND	11	ug/kg
104-51-8	n-Butylbenzene	ND	5.6	ug/kg
135-98-8	sec-Butylbenzene	ND	5.6	ug/kg
98-06-6	tert-Butylbenzene	ND	5.6	ug/kg
75-15-0	Carbon disulfide	ND	5.6	ug/kg
56-23-5	Carbon tetrachloride	ND	5.6	ug/kg
108-90-7	Chlorobenzene	ND	5.6	ug/kg
75-00-3	Chloroethane	ND	5.6	ug/kg
67-66-3	Chloroform	ND	5.6	ug/kg
74-87-3	Chloromethane	ND	5.6	ug/kg
95-49-8	2-Chlorotoluene	ND	5.6	ug/kg
106-43-4	4-Chlorotoluene	ND	5.6	ug/kg
96-12-8	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.6	ug/kg
124-48-1	Dibromochloromethane	ND	5.6	ug/kg
106-93-4	1,2-Dibromoethane (EDB)	ND	5.6	ug/kg
74-95-3	Dibromomethane	ND	5.6	ug/kg
95-50-1	1,2-Dichlorobenzene	ND	5.6	ug/kg
541-73-1	1,3-Dichlorobenzene	ND	5.6	ug/kg
106-46-7	1,4-Dichlorobenzene	ND	5.6	ug/kg
75-71-8	Dichlorodifluoromethane	ND	5.6	ug/kg
75-34-3	1,1-Dichloroethane	ND	5.6	ug/kg
107-06-2	1,2-Dichloroethane	ND	5.6	ug/kg
75-35-4	1,1-Dichloroethene	ND	5.6	ug/kg
156-59-2	cis-1,2-Dichloroethene	ND	5.6	ug/kg
156-60-5	trans-1,2-Dichloroethene	ND	5.6	ug/kg
78-87-5	1,2-Dichloropropane	ND	5.6	ug/kg
142-28-9	1,3-Dichloropropane	ND	5.6	ug/kg
594-20-7	2,2-Dichloropropane	ND	5.6	ug/kg
563-58-6	1,1-Dichloropropene	ND	5.6	ug/kg
10061-01-5	cis-1,3-Dichloropropene	ND	5.6	ug/kg
10061-02-6	trans-1,3-Dichloropropene	ND	5.6	ug/kg
60-29-7	Diethyl ether	ND	5.6	ug/kg

Report No: E106J35 Sample No: 5 Sample Description: 841110628-05

Date Collected: 06/28/2011 12:20 Date Received: 06/29/2011 16:10 Date Analyzed: 06/30/2011 13:35 By: AMH Analytical Method: 8260B Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 6.3 Dilution Factor: 1 Lab Data File: J46002.D QC Batch#: 86074

CAS No.	Parameter	Result	DL	Units
123-91-1	1,4-Dioxane	ND	22	ug/kg
100-41-4	Ethylbenzene	ND	5.6	ug/kg
87-68-3	Hexachlorobutadiene	ND	5.6	ug/kg
591-78-6	2-Hexanone	ND	11	ug/kg
98-82-8	Isopropylbenzene	ND	5.6	ug/kg
99-87-6	4-Isopropyltoluene	ND	5.6	ug/kg
1634-04-4	Methyl tert-butyl ether (MTBE)	ND	5.6	ug/kg
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	11	ug/kg
75-09-2	Methylene chloride	ND	5.6	ug/kg
91-20-3	Naphthalene	ND	5.6	ug/kg
103-65-1	n-Propylbenzene	ND	5.6	ug/kg
100-42-5	Styrene	ND	5.6	ug/kg
109-99-9	Tetrahydrofuran	ND	5.6	ug/kg
110-57-6	trans-1,4-Dichloro-2-butene	ND	5.6	ug/kg
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.6	ug/kg
96-18-4	1,2,3-Trichloropropane	ND	5.6	ug/kg
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.6	ug/kg
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.6	ug/kg
127-18-4	Tetrachloroethene (PCE)	ND	5.6	ug/kg
108-88-3	Toluene	ND	5.6	ug/kg
87-61-6	1,2,3-Trichlorobenzene	ND	5.6	ug/kg
120-82-1	1,2,4-Trichlorobenzene	ND	5.6	ug/kg
71-55-6	1,1,1-Trichloroethane	ND	5.6	ug/kg
79-00-5	1,1,2-Trichloroethane	ND	5.6	ug/kg
79-01-6	Trichloroethene (TCE)	ND	5.6	ug/kg
75-69-4	Trichlorofluoromethane	ND	5.6	ug/kg
95-63-6	1,2,4-Trimethylbenzene	ND	5.6	ug/kg
108-67-8	1,3,5-Trimethylbenzene	ND	5.6	ug/kg
75-01-4	Vinyl chloride	ND	5.6	ug/kg
95-47-6	o-Xylene	ND	5.6	ug/kg
108-38-3	m,p-Xylenes	ND	11	ug/kg
Sample QC				

Sample QC			
Surrogate	Recovery	QC Limits	
1,2-Dichloroethane-d4	111%	82%-120%	
Bromofluorobenzene	102%	70%-122%	
Toluene-d8	99%	77%-126%	

Report No: E106J35 Sample No: 6 Sample Description: 841110628-06

Date Collected: 06/28/2011 12:50 Date Received: 06/29/2011 16:10 Date Extracted: 07/01/2011 11:00 By: AJM Date Analyzed: 07/05/2011 17:16 By: GMP Preparation Method: 3500 Analytical Method: 8270C Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 4.0 Sample Weight/Volume: 30.00 Dilution Factor: 1 Extract Volume: 1 Lab Data File: L32791.D QC Batch#: 86210

CAS No.	Parameter	Result	DL	Units
103-33-3	Azobenzene	ND	170	ug/kg
83-32-9	Acenaphthene	ND	170	ug/kg
208-96-8	Acenaphthylene	ND	170	ug/kg
62-53-3	Aniline	ND	350	ug/kg
120-12-7	Anthracene	ND	170	ug/kg
92-52-4	Biphenyl	ND	170	ug/kg
56-55-3	Benzo[a]anthracene	ND	170	ug/kg
50-32-8	Benzo[a]pyrene	ND	170	ug/kg
205-99-2	Benzo[b]fluoranthene	ND	170	ug/kg
191-24-2	Benzo[g,h,i]perylene	ND	170	ug/kg
207-08-9	Benzo[k]fluoranthene	ND	170	ug/kg
65-85-0	Benzoic acid	ND	870	ug/kg
100-51-6	Benzyl alcohol	ND	350	ug/kg
85-68-7	Benzyl butyl phthalate	ND	170	ug/kg
111-91-1	Bis(2-chloroethoxy)methane	ND	170	ug/kg
111-44-4	Bis(2-chloroethyl)ether	ND	170	ug/kg
108-60-1	Bis(2-chloroisopropyl)ether	ND	350	ug/kg
117-81-7	Bis(2-ethylhexyl)phthalate	ND	170	ug/kg
101-55-3	4-Bromophenyl phenyl ether	ND	170	ug/kg
59-50-7	4-Chloro-3-methylphenol	ND	170	ug/kg
106-47-8	4-Chloroaniline	ND	350	ug/kg
91-58-7	2-Chloronaphthalene	ND	170	ug/kg
95-57-8	2-Chlorophenol	ND	170	ug/kg
7005-72-3	4-Chlorophenyl phenyl ether	ND	170	ug/kg
218-01-9	Chrysene	ND	170	ug/kg
53-70-3	Dibenz[a,h]anthracene	ND	170	ug/kg
84-74-2	Di-n-butyl phthalate	ND	170	ug/kg
117-84-0	Di-n-octyl phthalate	ND	170	ug/kg
132-64-9	Dibenzofuran	ND	350	ug/kg
95-50-1	1,2-Dichlorobenzene	ND	170	ug/kg
541-73-1	1,3-Dichlorobenzene	ND	170	ug/kg
106-46-7	1,4-Dichlorobenzene	ND	170	ug/kg
91-94-1	3,3-Dichlorobenzidine	ND	170	ug/kg
120-83-2	2,4-Dichlorophenol	ND	170	ug/kg
84-66-2	Diethyl phthalate	ND	170	ug/kg
131-11-3	Dimethyl phthalate	ND	170	ug/kg
105-67-9	2,4-Dimethylphenol	ND	170	ug/kg
51-28-5	2,4-Dinitrophenol	ND	170	ug/kg
121-14-2	2,4-Dinitrotoluene	ND	170	ug/kg
606-20-2	2,6-Dinitrotoluene	ND	170	ug/kg

Report No: E106J35 Sample No: 6 Sample Description: 841110628-06

Date Collected: 06/28/2011 12:50 Date Received: 06/29/2011 16:10 Date Extracted: 07/01/2011 11:00 By: AJM Date Analyzed: 07/05/2011 17:16 By: GMP Preparation Method: 3500 Analytical Method: 8270C

Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 4.0 Sample Weight/Volume: 30.00 Dilution Factor: 1 Extract Volume: 1 Lab Data File: L32791.D QC Batch#: 86210

CAS No.	Parameter	Result	DL	Units
206-44-0	Fluoranthene	ND	170	ug/kg
86-73-7	Fluorene	ND	170	ug/kg
118-74-1	Hexachlorobenzene	ND	170	ug/kg
87-68-3	Hexachlorobutadiene	ND	170	ug/kg
77-47-4	Hexachlorocyclopentadiene	ND	170	ug/kg
67-72-1	Hexachloroethane	ND	170	ug/kg
193-39-5	Indeno[1,2,3-cd]pyrene	ND	170	ug/kg
78-59-1	Isophorone	ND	170	ug/kg
534-52-1	2-Methyl-4,6-dinitrophenol	ND	170	ug/kg
91-57-6	2-Methylnaphthalene	ND	170	ug/kg
95-48-7	2-Methylphenol	ND	170	ug/kg
108-39-4	3- & 4-Methylphenols	ND	350	ug/kg
91-20-3	Naphthalene	ND	170	ug/kg
88-74-4	2-Nitroaniline	ND	350	ug/kg
99-09-2	3-Nitroaniline	ND	350	ug/kg
100-01-6	4-Nitroaniline	ND	350	ug/kg
98-95-3	Nitrobenzene	ND	170	ug/kg
88-75-5	2-Nitrophenol	ND	170	ug/kg
100-02-1	4-Nitrophenol	ND	170	ug/kg
621-64-7	N-Nitrosodi-n-propylamine	ND	170	ug/kg
62-75-9	N-Nitrosodimethylamine	ND	170	ug/kg
86-30-6	N-Nitrosodiphenylamine	ND	170	ug/kg
87-86-5	Pentachlorophenol	ND	170	ug/kg
85-01-8	Phenanthrene	ND	170	ug/kg
108-95-2	Phenol	ND	170	ug/kg
129-00-0	Pyrene	ND	170	ug/kg
120-82-1	1,2,4-Trichlorobenzene	ND	170	ug/kg
95-95-4	2,4,5-Trichlorophenol	ND	170	ug/kg
88-06-2	2,4,6-Trichlorophenol	ND	170	ug/kg
Sample QC				

Sample QC	
Surrogate	Recovery
2,4,6-Tribromophenol	45%
2-Fluorobiphenyl	29%
2-Fluorophenol	25%
4-Terphenyl-d14	46%
Nitrobenzene-d5	29%
Phenol-d6	26%

QC Limits

18%-118%

24%-101%

10%-94% 20%-133%

16%-98% 15%-102%

Report No: E106J35 Sample No: 6 Sample Description: 841110628-06

Date Collected: 06/28/2011 12:50 Date Received: 06/29/2011 16:10 Date Extracted: 07/05/2011 09:00 By: DPR Date Analyzed: 07/07/2011 05:32 By: MRB Preparation Method: 8100 Analytical Method: 8100 Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 4.0 Sample Weight/Volume: 10.19 Dilution Factor: 1 Extract Volume: 1 Lab Data File: 6070638.D QC Batch#: 86265

CAS No.	Parameter	Result	DL	Units
	C6-C12 Light Petroleum Distillate C10-C28 Medium Petroleum Distillate	ND ND	20 20	mg/kg mg/kg
	C16-C36 Heavy Petroleum Distillate	ND	20	mg/kg
	Total PHC	ND	20	mg/kg

Report No: E106J35 Sample No: 6 Sample Description: 841110628-06

Date Collected: 06/28/2011 12:50 Date Received: 06/29/2011 16:10 Date Extracted: 07/07/2011 09:00 By: DPR Date Analyzed: 07/07/2011 20:06 By: MRB Preparation Method: 3500 Analytical Method: 8082 Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 4.0 Sample Weight/Volume: 30.00 Dilution Factor: 1 Extract Volume: 2 Lab Data File: 8070707.D QC Batch#: 86262

CAS No.	Parameter	Result	DL	Units
12674-11-2	Aroclor 1016	ND	14	ug/kg
11104-28-2	Aroclor 1221	ND	14	ug/kg
11141-16-5	Aroclor 1232	ND	14	ug/kg
53469-21-9	Aroclor 1242	ND	14	ug/kg
12672-29-6	Aroclor 1248	ND	14	ug/kg
11097-69-1	Aroclor 1254	ND	14	ug/kg
11096-82-5	Aroclor 1260	ND	14	ug/kg
Sample QC				
Surrogate		Recovery	QC Limits	
Tetrachloro-m-xylene		70%	10%-103%	
Decachlorobiphen		86%	10%-142%	6

Report No: E106J35 Sample No: 6 Sample Description: 841110628-06

Date Collected: 06/28/2011 12:50 Date Received: 06/29/2011 16:10 Date Analyzed: 06/30/2011 14:03 By: AMH Analytical Method: 8260B Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 4.0 Dilution Factor: 1 Lab Data File: J46003.D QC Batch#: 86074

CAS No.	Parameter	Result	DL	Units
67-64-1	Acetone	ND	9.2	ug/kg
107-13-1	Acrylonitrile	ND	4.6	ug/kg
71-43-2	Benzene	ND	4.6	ug/kg
108-86-1	Bromobenzene	ND	4.6	ug/kg
74-97-5	Bromochloromethane	ND	4.6	ug/kg
75-27-4	Bromodichloromethane	ND	4.6	ug/kg
75-25-2	Bromoform	ND	4.6	ug/kg
74-83-9	Bromomethane	ND	4.6	ug/kg
78-93-3	2-Butanone (MEK)	ND	9.2	ug/kg
104-51-8	n-Butylbenzene	ND	4.6	ug/kg
135-98-8	sec-Butylbenzene	ND	4.6	ug/kg
98-06-6	tert-Butylbenzene	ND	4.6	ug/kg
75-15-0	Carbon disulfide	ND	4.6	ug/kg
56-23-5	Carbon tetrachloride	ND	4.6	ug/kg
108-90-7	Chlorobenzene	ND	4.6	ug/kg
75-00-3	Chloroethane	ND	4.6	ug/kg
67-66-3	Chloroform	ND	4.6	ug/kg
74-87-3	Chloromethane	ND	4.6	ug/kg
95-49-8	2-Chlorotoluene	ND	4.6	ug/kg
106-43-4	4-Chlorotoluene	ND	4.6	ug/kg
96-12-8	1,2-Dibromo-3-chloropropane (DBCP)	ND	4.6	ug/kg
124-48-1	Dibromochloromethane	ND	4.6	ug/kg
106-93-4	1,2-Dibromoethane (EDB)	ND	4.6	ug/kg
74-95-3	Dibromomethane	ND	4.6	ug/kg
95-50-1	1,2-Dichlorobenzene	ND	4.6	ug/kg
541-73-1	1,3-Dichlorobenzene	ND	4.6	ug/kg
106-46-7	1,4-Dichlorobenzene	ND	4.6	ug/kg
75-71-8	Dichlorodifluoromethane	ND	4.6	ug/kg
75-34-3	1,1-Dichloroethane	ND	4.6	ug/kg
107-06-2	1,2-Dichloroethane	ND	4.6	ug/kg
75-35-4	1,1-Dichloroethene	ND	4.6	ug/kg
156-59-2	cis-1,2-Dichloroethene	ND	4.6	ug/kg
156-60-5	trans-1,2-Dichloroethene	ND	4.6	ug/kg
78-87-5	1,2-Dichloropropane	ND	4.6	ug/kg
142-28-9	1,3-Dichloropropane	ND	4.6	ug/kg
594-20-7	2,2-Dichloropropane	ND	4.6	ug/kg
563-58-6	1,1-Dichloropropene	ND	4.6	ug/kg
10061-01-5	cis-1,3-Dichloropropene	ND	4.6	ug/kg
10061-02-6	trans-1,3-Dichloropropene	ND	4.6	ug/kg
60-29-7	Diethyl ether	ND	4.6	ug/kg
	2		-	

Report No: E106J35 Sample No: 6 Sample Description: 841110628-06

Date Collected: 06/28/2011 12:50 Date Received: 06/29/2011 16:10 Date Analyzed: 06/30/2011 14:03 By: AMH Analytical Method: 8260B Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 4.0 Dilution Factor: 1 Lab Data File: J46003.D QC Batch#: 86074

CAS No.	Parameter	Result	DL	Units
123-91-1	1,4-Dioxane	ND	18	ug/kg
100-41-4	Ethylbenzene	ND	4.6	ug/kg
87-68-3	Hexachlorobutadiene	ND	4.6	ug/kg
591-78-6	2-Hexanone	ND	9.2	ug/kg
98-82-8	Isopropylbenzene	ND	4.6	ug/kg
99-87-6	4-Isopropyltoluene	ND	4.6	ug/kg
1634-04-4	Methyl tert-butyl ether (MTBE)	ND	4.6	ug/kg
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	9.2	ug/kg
75-09-2	Methylene chloride	ND	4.6	ug/kg
91-20-3	Naphthalene	ND	4.6	ug/kg
103-65-1	n-Propylbenzene	ND	4.6	ug/kg
100-42-5	Styrene	ND	4.6	ug/kg
109-99-9	Tetrahydrofuran	ND	4.6	ug/kg
110-57-6	trans-1,4-Dichloro-2-butene	ND	4.6	ug/kg
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.6	ug/kg
96-18-4	1,2,3-Trichloropropane	ND	4.6	ug/kg
630-20-6	1,1,1,2-Tetrachloroethane	ND	4.6	ug/kg
79-34-5	1,1,2,2-Tetrachloroethane	ND	4.6	ug/kg
127-18-4	Tetrachloroethene (PCE)	ND	4.6	ug/kg
108-88-3	Toluene	ND	4.6	ug/kg
87-61-6	1,2,3-Trichlorobenzene	ND	4.6	ug/kg
120-82-1	1,2,4-Trichlorobenzene	ND	4.6	ug/kg
71-55-6	1,1,1-Trichloroethane	ND	4.6	ug/kg
79-00-5	1,1,2-Trichloroethane	ND	4.6	ug/kg
79-01-6	Trichloroethene (TCE)	ND	4.6	ug/kg
75-69-4	Trichlorofluoromethane	ND	4.6	ug/kg
95-63-6	1,2,4-Trimethylbenzene	ND	4.6	ug/kg
108-67-8	1,3,5-Trimethylbenzene	ND	4.6	ug/kg
75-01-4	Vinyl chloride	ND	4.6	ug/kg
95-47-6	o-Xylene	ND	4.6	ug/kg
108-38-3	m,p-Xylenes	ND	9.2	ug/kg
~ ~				

Sample QC		
Surrogate	Recovery	QC Limits
1,2-Dichloroethane-d4	112%	82%-120%
Bromofluorobenzene	100%	70%-122%
Toluene-d8	98%	77%-126%

Report No: E106J35 Sample No: 7 Sample Description: 841110628-07

Date Collected: 06/28/2011 13:40 Date Received: 06/29/2011 16:10 Date Extracted: 07/01/2011 11:00 By: AJM Date Analyzed: 07/05/2011 22:01 By: GMP Preparation Method: 3500 Analytical Method: 8270C Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 9.8 Sample Weight/Volume: 30.00 Dilution Factor: 2 Extract Volume: 1 Lab Data File: L32801.D QC Batch#: 86210

CAS No.	Parameter	Result	DL	Units
103-33-3	Azobenzene	ND	370	ug/kg
83-32-9	Acenaphthene	ND	370	ug/kg
208-96-8	Acenaphthylene	ND	370	ug/kg
62-53-3	Aniline	ND	740	ug/kg
120-12-7	Anthracene	ND	370	ug/kg
92-52-4	Biphenyl	ND	370	ug/kg
56-55-3	Benzo[a]anthracene	ND	370	ug/kg
50-32-8	Benzo[a]pyrene	ND	370	ug/kg
205-99-2	Benzo[b]fluoranthene	430	370	ug/kg
191-24-2	Benzo[g,h,i]perylene	ND	370	ug/kg
207-08-9	Benzo[k]fluoranthene	ND	370	ug/kg
65-85-0	Benzoic acid	ND	1800	ug/kg
100-51-6	Benzyl alcohol	ND	740	ug/kg
85-68-7	Benzyl butyl phthalate	ND	370	ug/kg
111-91-1	Bis(2-chloroethoxy)methane	ND	370	ug/kg
111-44-4	Bis(2-chloroethyl)ether	ND	370	ug/kg
108-60-1	Bis(2-chloroisopropyl)ether	ND	740	ug/kg
117-81-7	Bis(2-ethylhexyl)phthalate	ND	370	ug/kg
101-55-3	4-Bromophenyl phenyl ether	ND	370	ug/kg
59-50-7	4-Chloro-3-methylphenol	ND	370	ug/kg
106-47-8	4-Chloroaniline	ND	740	ug/kg
91-58-7	2-Chloronaphthalene	ND	370	ug/kg
95-57-8	2-Chlorophenol	ND	370	ug/kg
7005-72-3	4-Chlorophenyl phenyl ether	ND	370	ug/kg
218-01-9	Chrysene	ND	370	ug/kg
53-70-3	Dibenz[a,h]anthracene	ND	370	ug/kg
84-74-2	Di-n-butyl phthalate	ND	370	ug/kg
117-84-0	Di-n-octyl phthalate	ND	370	ug/kg
132-64-9	Dibenzofuran	ND	740	ug/kg
95-50-1	1,2-Dichlorobenzene	ND	370	ug/kg
541-73-1	1,3-Dichlorobenzene	ND	370	ug/kg
106-46-7	1,4-Dichlorobenzene	ND	370	ug/kg
91-94-1	3,3-Dichlorobenzidine	ND	370	ug/kg
120-83-2	2,4-Dichlorophenol	ND	370	ug/kg
84-66-2	Diethyl phthalate	ND	370	ug/kg
131-11-3	Dimethyl phthalate	ND	370	ug/kg
105-67-9	2,4-Dimethylphenol	ND	370	ug/kg
51-28-5	2,4-Dinitrophenol	ND	370	ug/kg
121-14-2	2,4-Dinitrotoluene	ND	370	ug/kg
606-20-2	2,6-Dinitrotoluene	ND	370	ug/kg

Report No: E106J35 Sample No: 7 Sample Description: 841110628-07

Date Collected: 06/28/2011 13:40 Date Received: 06/29/2011 16:10 Date Extracted: 07/01/2011 11:00 By: AJM Date Analyzed: 07/05/2011 22:01 By: GMP Preparation Method: 3500 Analytical Method: 8270C Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 9.8 Sample Weight/Volume: 30.00 Dilution Factor: 2 Extract Volume: 1 Lab Data File: L32801.D QC Batch#: 86210

Recovery

103%

82%

74%

116%

76% 78% QC Limits

18%-118%

24%-101%

10%-94%

20%-133%

16%-98%

15%-102%

CAS No.	Parameter	Result	DL	Units
206-44-0	Fluoranthene	670	370	ug/kg
86-73-7	Fluorene	ND	370	ug/kg
118-74-1	Hexachlorobenzene	ND	370	ug/kg
87-68-3	Hexachlorobutadiene	ND	370	ug/kg
77-47-4	Hexachlorocyclopentadiene	ND	370	ug/kg
67-72-1	Hexachloroethane	ND	370	ug/kg
193-39-5	Indeno[1,2,3-cd]pyrene	ND	370	ug/kg
78-59-1	Isophorone	ND	370	ug/kg
534-52-1	2-Methyl-4,6-dinitrophenol	ND	370	ug/kg
91-57-6	2-Methylnaphthalene	ND	370	ug/kg
95-48-7	2-Methylphenol	ND	370	ug/kg
108-39-4	3- & 4-Methylphenols	ND	740	ug/kg
91-20-3	Naphthalene	ND	370	ug/kg
88-74-4	2-Nitroaniline	ND	740	ug/kg
99-09-2	3-Nitroaniline	ND	740	ug/kg
100-01-6	4-Nitroaniline	ND	740	ug/kg
98-95-3	Nitrobenzene	ND	370	ug/kg
88-75-5	2-Nitrophenol	ND	370	ug/kg
100-02-1	4-Nitrophenol	ND	370	ug/kg
621-64-7	N-Nitrosodi-n-propylamine	ND	370	ug/kg
62-75-9	N-Nitrosodimethylamine	ND	370	ug/kg
86-30-6	N-Nitrosodiphenylamine	ND	370	ug/kg
87-86-5	Pentachlorophenol	ND	370	ug/kg
85-01-8	Phenanthrene	510	370	ug/kg
108-95-2	Phenol	ND	370	ug/kg
129-00-0	Pyrene	730	370	ug/kg
120-82-1	1,2,4-Trichlorobenzene	ND	370	ug/kg
95-95-4	2,4,5-Trichlorophenol	ND	370	ug/kg
88-06-2	2,4,6-Trichlorophenol	ND	370	ug/kg

Surrogate
2,4,6-Tribrom

Sample QC

2,4,6-Tribromophenol 2-Fluorobiphenyl 2-Fluorophenol 4-Terphenyl-d14 Nitrobenzene-d5 Phenol-d6

Report No: E106J35 Sample No: 7 Sample Description: 841110628-07

Date Collected: 06/28/2011 13:40 Date Received: 06/29/2011 16:10 Date Extracted: 07/05/2011 09:00 By: DPR Date Analyzed: 07/07/2011 06:06 By: MRB Preparation Method: 8100 Analytical Method: 8100 Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 9.8 Sample Weight/Volume: 10.00 Dilution Factor: 1 Extract Volume: 1 Lab Data File: 6070639.D QC Batch#: 86265

CAS No.	Parameter	Result	DL	Units
	C6-C12 Light Petroleum Distillate C10-C28 Medium Petroleum Distillate C16-C36 Heavy Petroleum Distillate Total PHC	ND ND 56 56	22 22 22 22 22	mg/kg mg/kg mg/kg mg/kg

Report No: E106J35 Sample No: 7 Sample Description: 841110628-07

Date Collected: 06/28/2011 13:40 Date Received: 06/29/2011 16:10 Date Extracted: 07/07/2011 09:00 By: DPR Date Analyzed: 07/07/2011 20:25 By: MRB Preparation Method: 3500 Analytical Method: 8082

Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 9.8 Sample Weight/Volume: 30.10 Dilution Factor: 1 Extract Volume: 2 Lab Data File: 8070708.D QC Batch#: 86262

CAS No.	Parameter	Result	DL	Units
12674-11-2	Aroclor 1016	ND	15	ug/kg
11104-28-2	Aroclor 1221	ND	15	ug/kg
11141-16-5	Aroclor 1232	ND	15	ug/kg
53469-21-9	Aroclor 1242	ND	15	ug/kg
12672-29-6	Aroclor 1248	ND	15	ug/kg
11097-69-1	Aroclor 1254	ND	15	ug/kg
11096-82-5	Aroclor 1260	ND	15	ug/kg
Sample QC				
Surrogate		Recovery	QC Limits	
Tetrachloro-m-xylene		46%	10%-103%	
Decachlorobiphenyl		87%	10%-142%	

Report No: E106J35 Sample No: 7 Sample Description: 841110628-07

Date Collected: 06/28/2011 13:40 Date Received: 06/29/2011 16:10 Date Analyzed: 07/01/2011 15:35 By: AMH Analytical Method: 8260B Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 9.8 Dilution Factor: 1 Lab Data File: J46034.D QC Batch#: 86156

CAS No.	Parameter	Result	DL	Units
67-64-1	Acetone	ND	12	ug/kg
107-13-1	Acrylonitrile	ND	6.0	ug/kg
71-43-2	Benzene	ND	6.0	ug/kg
108-86-1	Bromobenzene	ND	6.0	ug/kg
74-97-5	Bromochloromethane	ND	6.0	ug/kg
75-27-4	Bromodichloromethane	ND	6.0	ug/kg
75-25-2	Bromoform	ND	6.0	ug/kg
74-83-9	Bromomethane	ND	6.0	ug/kg
78-93-3	2-Butanone (MEK)	ND	12	ug/kg
104-51-8	n-Butylbenzene	ND	6.0	ug/kg
135-98-8	sec-Butylbenzene	ND	6.0	ug/kg
98-06-6	tert-Butylbenzene	ND	6.0	ug/kg
75-15-0	Carbon disulfide	ND	6.0	ug/kg
56-23-5	Carbon tetrachloride	ND	6.0	ug/kg
108-90-7	Chlorobenzene	ND	6.0	ug/kg
75-00-3	Chloroethane	ND	6.0	ug/kg
67-66-3	Chloroform	ND	6.0	ug/kg
74-87-3	Chloromethane	ND	6.0	ug/kg
95-49-8	2-Chlorotoluene	ND	6.0	ug/kg
106-43-4	4-Chlorotoluene	ND	6.0	ug/kg
96-12-8	1,2-Dibromo-3-chloropropane (DBCP)	ND	6.0	ug/kg
124-48-1	Dibromochloromethane	ND	6.0	ug/kg
106-93-4	1,2-Dibromoethane (EDB)	ND	6.0	ug/kg
74-95-3	Dibromomethane	ND	6.0	ug/kg
95-50-1	1,2-Dichlorobenzene	ND	6.0	ug/kg
541-73-1	1,3-Dichlorobenzene	ND	6.0	ug/kg
106-46-7	1,4-Dichlorobenzene	ND	6.0	ug/kg
75-71-8	Dichlorodifluoromethane	ND	6.0	ug/kg
75-34-3	1,1-Dichloroethane	ND	6.0	ug/kg
107-06-2	1,2-Dichloroethane	ND	6.0	ug/kg
75-35-4	1,1-Dichloroethene	ND	6.0	ug/kg
156-59-2	cis-1,2-Dichloroethene	ND	6.0	ug/kg
156-60-5	trans-1,2-Dichloroethene	ND	6.0	ug/kg
78-87-5	1,2-Dichloropropane	ND	6.0	ug/kg
142-28-9	1,3-Dichloropropane	ND	6.0	ug/kg
594-20-7	2,2-Dichloropropane	ND	6.0	ug/kg
563-58-6	1,1-Dichloropropene	ND	6.0	ug/kg
10061-01-5	cis-1,3-Dichloropropene	ND	6.0	ug/kg
10061-02-6	trans-1,3-Dichloropropene	ND	6.0	ug/kg
60-29-7	Diethyl ether	ND	6.0	ug/kg

Report No: E106J35 Sample No: 7 Sample Description: 841110628-07

Date Collected: 06/28/2011 13:40 Date Received: 06/29/2011 16:10 Date Analyzed: 07/01/2011 15:35 By: AMH Analytical Method: 8260B Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 9.8 Dilution Factor: 1 Lab Data File: J46034.D QC Batch#: 86156

CAS No.	Parameter	Result	DL	Units
123-91-1	1,4-Dioxane	ND	24	ug/kg
100-41-4	Ethylbenzene	ND	6.0	ug/kg
87-68-3	Hexachlorobutadiene	ND	6.0	ug/kg
591-78-6	2-Hexanone	ND	12	ug/kg
98-82-8	Isopropylbenzene	ND	6.0	ug/kg
99-87-6	4-Isopropyltoluene	ND	6.0	ug/kg
1634-04-4	Methyl tert-butyl ether (MTBE)	ND	6.0	ug/kg
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	12	ug/kg
75-09-2	Methylene chloride	ND	6.0	ug/kg
91-20-3	Naphthalene	ND	6.0	ug/kg
103-65-1	n-Propylbenzene	ND	6.0	ug/kg
100-42-5	Styrene	ND	6.0	ug/kg
109-99-9	Tetrahydrofuran	ND	6.0	ug/kg
110-57-6	trans-1,4-Dichloro-2-butene	ND	6.0	ug/kg
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	ND	6.0	ug/kg
96-18-4	1,2,3-Trichloropropane	ND	6.0	ug/kg
630-20-6	1,1,1,2-Tetrachloroethane	ND	6.0	ug/kg
79-34-5	1,1,2,2-Tetrachloroethane	ND	6.0	ug/kg
127-18-4	Tetrachloroethene (PCE)	ND	6.0	ug/kg
108-88-3	Toluene	ND	6.0	ug/kg
87-61-6	1,2,3-Trichlorobenzene	ND	6.0	ug/kg
120-82-1	1,2,4-Trichlorobenzene	ND	6.0	ug/kg
71-55-6	1,1,1-Trichloroethane	ND	6.0	ug/kg
79-00-5	1,1,2-Trichloroethane	ND	6.0	ug/kg
79-01-6	Trichloroethene (TCE)	ND	6.0	ug/kg
75-69-4	Trichlorofluoromethane	ND	6.0	ug/kg
95-63-6	1,2,4-Trimethylbenzene	ND	6.0	ug/kg
108-67-8	1,3,5-Trimethylbenzene	ND	6.0	ug/kg
75-01-4	Vinyl chloride	ND	6.0	ug/kg
95-47-6	o-Xylene	ND	6.0	ug/kg
108-38-3	m,p-Xylenes	ND	12	ug/kg
~ ~				

Sample QC		
Surrogate	Recovery	QC Limits
1,2-Dichloroethane-d4	112%	82%-120%
Bromofluorobenzene	88%	70%-122%
Toluene-d8	109%	77%-126%

Report No: E106J35 Sample No: 8 Sample Description: 841110628-08

Date Collected: 06/28/2011 13:50 Date Received: 06/29/2011 16:10 Date Extracted: 07/01/2011 11:00 By: AJM Date Analyzed: 07/05/2011 17:44 By: GMP Preparation Method: 3500 Analytical Method: 8270C Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 3.5 Sample Weight/Volume: 30.00 Dilution Factor: 1 Extract Volume: 1 Lab Data File: L32792.D QC Batch#: 86210

CAS No.	Parameter	Result	DL	Units
103-33-3	Azobenzene	ND	170	ug/kg
83-32-9	Acenaphthene	ND	170	ug/kg
208-96-8	Acenaphthylene	ND	170	ug/kg
62-53-3	Aniline	ND	340	ug/kg
120-12-7	Anthracene	ND	170	ug/kg
92-52-4	Biphenyl	ND	170	ug/kg
56-55-3	Benzo[a]anthracene	ND	170	ug/kg
50-32-8	Benzo[a]pyrene	ND	170	ug/kg
205-99-2	Benzo[b]fluoranthene	ND	170	ug/kg
191-24-2	Benzo[g,h,i]perylene	ND	170	ug/kg
207-08-9	Benzo[k]fluoranthene	ND	170	ug/kg
65-85-0	Benzoic acid	ND	860	ug/kg
100-51-6	Benzyl alcohol	ND	340	ug/kg
85-68-7	Benzyl butyl phthalate	ND	170	ug/kg
111-91-1	Bis(2-chloroethoxy)methane	ND	170	ug/kg
111-44-4	Bis(2-chloroethyl)ether	ND	170	ug/kg
108-60-1	Bis(2-chloroisopropyl)ether	ND	340	ug/kg
117-81-7	Bis(2-ethylhexyl)phthalate	ND	170	ug/kg
101-55-3	4-Bromophenyl phenyl ether	ND	170	ug/kg
59-50-7	4-Chloro-3-methylphenol	ND	170	ug/kg
106-47-8	4-Chloroaniline	ND	340	ug/kg
91-58-7	2-Chloronaphthalene	ND	170	ug/kg
95-57-8	2-Chlorophenol	ND	170	ug/kg
7005-72-3	4-Chlorophenyl phenyl ether	ND	170	ug/kg
218-01-9	Chrysene	ND	170	ug/kg
53-70-3	Dibenz[a,h]anthracene	ND	170	ug/kg
84-74-2	Di-n-butyl phthalate	ND	170	ug/kg
117-84-0	Di-n-octyl phthalate	ND	170	ug/kg
132-64-9	Dibenzofuran	ND	340	ug/kg
95-50-1	1,2-Dichlorobenzene	ND	170	ug/kg
541-73-1	1,3-Dichlorobenzene	ND	170	ug/kg
106-46-7	1,4-Dichlorobenzene	ND	170	ug/kg
91-94-1	3,3-Dichlorobenzidine	ND	170	ug/kg
120-83-2	2,4-Dichlorophenol	ND	170	ug/kg
84-66-2	Diethyl phthalate	ND	170	ug/kg
131-11-3	Dimethyl phthalate	ND	170	ug/kg
105-67-9	2,4-Dimethylphenol	ND	170	ug/kg
51-28-5	2,4-Dinitrophenol	ND	170	ug/kg
121-14-2	2,4-Dinitrotoluene	ND	170	ug/kg
606-20-2	2,6-Dinitrotoluene	ND	170	ug/kg

Report No: E106J35 Sample No: 8 Sample Description: 841110628-08

Date Collected: 06/28/2011 13:50 Date Received: 06/29/2011 16:10 Date Extracted: 07/01/2011 11:00 By: AJM Date Analyzed: 07/05/2011 17:44 By: GMP Preparation Method: 3500 Analytical Method: 8270C Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 3.5 Sample Weight/Volume: 30.00 Dilution Factor: 1 Extract Volume: 1 Lab Data File: L32792.D QC Batch#: 86210

CAS No.	Parameter	Result	DL	Units
206-44-0	Fluoranthene	ND	170	ug/kg
86-73-7	Fluorene	ND	170	ug/kg
118-74-1	Hexachlorobenzene	ND	170	ug/kg
87-68-3	Hexachlorobutadiene	ND	170	ug/kg
77-47-4	Hexachlorocyclopentadiene	ND	170	ug/kg
67-72-1	Hexachloroethane	ND	170	ug/kg
193-39-5	Indeno[1,2,3-cd]pyrene	ND	170	ug/kg
78-59-1	Isophorone	ND	170	ug/kg
534-52-1	2-Methyl-4,6-dinitrophenol	ND	170	ug/kg
91-57-6	2-Methylnaphthalene	ND	170	ug/kg
95-48-7	2-Methylphenol	ND	170	ug/kg
108-39-4	3- & 4-Methylphenols	ND	340	ug/kg
91-20-3	Naphthalene	ND	170	ug/kg
88-74-4	2-Nitroaniline	ND	340	ug/kg
99-09-2	3-Nitroaniline	ND	340	ug/kg
100-01-6	4-Nitroaniline	ND	340	ug/kg
98-95-3	Nitrobenzene	ND	170	ug/kg
88-75-5	2-Nitrophenol	ND	170	ug/kg
100-02-1	4-Nitrophenol	ND	170	ug/kg
621-64-7	N-Nitrosodi-n-propylamine	ND	170	ug/kg
62-75-9	N-Nitrosodimethylamine	ND	170	ug/kg
86-30-6	N-Nitrosodiphenylamine	ND	170	ug/kg
87-86-5	Pentachlorophenol	ND	170	ug/kg
85-01-8	Phenanthrene	ND	170	ug/kg
108-95-2	Phenol	ND	170	ug/kg
129-00-0	Pyrene	ND	170	ug/kg
120-82-1	1,2,4-Trichlorobenzene	ND	170	ug/kg
95-95-4	2,4,5-Trichlorophenol	ND	170	ug/kg
88-06-2	2,4,6-Trichlorophenol	ND	170	ug/kg

Sam	ple	Q

Surrogate	Recovery	QC Limits
2,4,6-Tribromophenol	64%	18%-118%
2-Fluorobiphenyl	40%	24%-101%
2-Fluorophenol	35%	10%-94%
4-Terphenyl-d14	80%	20%-133%
Nitrobenzene-d5	37%	16%-98%
Phenol-d6	39%	15%-102%

Report No: E106J35 Sample No: 8 Sample Description: 841110628-08

Date Collected: 06/28/2011 13:50 Date Received: 06/29/2011 16:10 Date Extracted: 07/05/2011 09:00 By: DPR Date Analyzed: 07/07/2011 06:39 By: MRB Preparation Method: 8100 Analytical Method: 8100 Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 3.5 Sample Weight/Volume: 10.08 Dilution Factor: 1 Extract Volume: 1 Lab Data File: 6070640.D QC Batch#: 86265

CAS No.	Parameter	Result	DL	Units
	C6-C12 Light Petroleum Distillate	ND	20	mg/kg
	C10-C28 Medium Petroleum Distillate	ND	20	mg/kg
	C16-C36 Heavy Petroleum Distillate	ND	20	mg/kg
	Total PHC	ND	20	mg/kg

Report No: E106J35 Sample No: 8 Sample Description: 841110628-08

Date Collected: 06/28/2011 13:50 Date Received: 06/29/2011 16:10 Date Extracted: 07/07/2011 09:00 By: DPR Date Analyzed: 07/07/2011 20:44 By: MRB Preparation Method: 3500 Analytical Method: 8082

Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 3.5 Sample Weight/Volume: 30.15 Dilution Factor: 1 Extract Volume: 2 Lab Data File: 8070709.D QC Batch#: 86262

CAS No.	Parameter	Result	DL	Units
12674-11-2	Aroclor 1016	ND	14	ug/kg
11104-28-2	Aroclor 1221	ND	14	ug/kg
11141-16-5	Aroclor 1232	ND	14	ug/kg
53469-21-9	Aroclor 1242	ND	14	ug/kg
12672-29-6	Aroclor 1248	ND	14	ug/kg
11097-69-1	Aroclor 1254	ND	14	ug/kg
11096-82-5	Aroclor 1260	ND	14	ug/kg
Sample QC				
Surrogate		Recovery	QC Limits	
Tetrachloro-m-xylene		81%	10%-103%	
Decachlorobiphenyl		82%	10%-142%	

Report No: E106J35 Sample No: 8 Sample Description: 841110628-08

Date Collected: 06/28/2011 13:50 Date Received: 06/29/2011 16:10 Date Analyzed: 06/30/2011 14:58 By: AMH Analytical Method: 8260B Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 3.5 Dilution Factor: 1 Lab Data File: J46005.D QC Batch#: 86074

67-64-1 Acetone ND 5.1 ug/kg $107-13-1$ Acrylonitrile ND 2.5 ug/kg $174-32$ Bernzene ND 2.5 ug/kg $108-86-1$ Hromobenzene ND 2.5 ug/kg $74-97-5$ Bromochloromethane ND 2.5 ug/kg $75-27-4$ Bromodichloromethane ND 2.5 ug/kg $75-27-4$ Bromodichloromethane ND 2.5 ug/kg $75-27-4$ Bromomethane ND 2.5 ug/kg $74-83-9$ Bromomethane ND 2.5 ug/kg $78-93-3$ 2 -Butanone (MEK) ND 5.1 ug/kg $135-98-8$ sc-Butylbenzene ND 2.5 ug/kg $135-98-8$ sc-Butylbenzene ND 2.5 ug/kg $135-98-8$ sc-Butylbenzene ND 2.5 ug/kg $106-6-6$ tert-Butylbenzene ND 2.5 ug/kg $107-06-7$ Chlorobetnzene ND 2.5 ug/kg	CAS No.	Parameter	Result	DL	Units
107-13-1 Acrylonitric ND 2.5 ug/kg 71-43-2 Benzene ND 2.5 ug/kg 108-86-1 Bromochloromethane ND 2.5 ug/kg 74-97-5 Bromodichloromethane ND 2.5 ug/kg 75-27-4 Bromodichloromethane ND 2.5 ug/kg 75-25-2 Bromodichloromethane ND 2.5 ug/kg 74-83-9 Bromomethane ND 2.5 ug/kg 104-51-8 n-Butylbenzene ND 2.5 ug/kg 135-98-8 sce-Butylbenzene ND 2.5 ug/kg 98-06-6 tert-Butylbenzene ND 2.5 ug/kg 108-90-7 Chlorobenzene	67-64-1	Acetone	ND	5.1	ug/kg
7143-2 Benzene ND 2.5 ug/kg 108-86-1 Bromochloromethane ND 2.5 ug/kg 74-97-5 Bromochloromethane ND 2.5 ug/kg 75-27-4 Bromodichloromethane ND 2.5 ug/kg 75-25-2 Bromomethane ND 2.5 ug/kg 74-83-9 Bromomethane ND 2.5 ug/kg 78-93-3 2-Butanone (MEK) ND 5.1 ug/kg 135-98-8 see-Butylbenzene ND 2.5 ug/kg 98-06-6 tert-Butylbenzene ND 2.5 ug/kg 56-23-5 Carbon tetrachloride ND 2.5 ug/kg 67-66-3 Chlorobenzene ND 2.5 ug/kg 67-66-3 Chloroform ND 2.5 ug/kg 96-49-8 2.Chlorotoluene ND 2.5 ug/kg 96-42-8 1.2-Dibromo-3-chloropropane (DBCP) ND 2.5 ug/kg 96-42-8 1.2-Dibromo-3-chloropropane (DBCP) ND 2.5 ug/kg 96-50-1	107-13-1	Acrylonitrile	ND	2.5	
108-86-1 Bromochnormethane ND 2.5 ug/kg 74-97.5 Bromochloromethane ND 2.5 ug/kg 75-27-4 Bromodichloromethane ND 2.5 ug/kg 75-27-4 Bromodichloromethane ND 2.5 ug/kg 75-27-4 Bromodichloromethane ND 2.5 ug/kg 78-93-3 2-Butanone (MEK) ND 5.1 ug/kg 135-98-8 ne-Butylbenzene ND 2.5 ug/kg 98-06-6 tert-Butylbenzene ND 2.5 ug/kg 104-51-8 ne-Butylbenzene ND 2.5 ug/kg 98-06-6 tert-Butylbenzene ND 2.5 ug/kg 106-90-7 Chlorohenzene ND 2.5 ug/kg 106-90-7 Chlorotenane ND 2.5 ug/kg 106-43.4 Chlorotomethane ND 2.5 ug/kg 106-43.4 1-Chlorotomethane ND 2.5 ug/kg 106-43.4	71-43-2	-	ND		
74-97-5BromochloromethaneND2.5ug/kg75-27-4BromolchloromethaneND2.5ug/kg75-25-2BromolormND2.5ug/kg74-83-9BromonethaneND2.5ug/kg78-93-32-Butanone (MEK)ND5.1ug/kg104-51-8n-ButylbenzeneND2.5ug/kg135-98-8sec-ButylbenzeneND2.5ug/kg98-06-6tert-ButylbenzeneND2.5ug/kg56-23-5Carbon disulfideND2.5ug/kg56-23-5Carbon tetrachlorideND2.5ug/kg75-00-3ChlorobenzeneND2.5ug/kg75-03-3ChlorobenzeneND2.5ug/kg95-49-82-ChloroblueneND2.5ug/kg95-49-82-ChloroblueneND2.5ug/kg106-43-44-ChloroblueneND2.5ug/kg124-48-1Dibromochlane (DBCP)ND2.5ug/kg124-48-1Dibromochlane (DBCP)ND2.5ug/kg106-43-41,2-Dibromo-3-chloropropane (DBCP)ND2.5ug/kg106-43-41,2-Dibromo-3-chloropropane (DBCP)ND2.5ug/kg106-43-11,2-Dibromo-3-chloropropaneND2.5ug/kg106-43-11,2-Dibromo-3-chloropropaneND2.5ug/kg106-43-11,2-Dibromo-3-chloropropaneND2.5ug/kg106-43-11,2-Dibrlorochenzene<	108-86-1	Bromobenzene	ND	2.5	
75-25-2 Bromoform ND 2.5 ug/kg 74-83-9 Bromomethane ND 2.5 ug/kg 78-93-3 2-Butanone (MEK) ND 5.1 ug/kg 104-51-8 n-Butylbenzene ND 2.5 ug/kg 136-98-8 sec-Butylbenzene ND 2.5 ug/kg 98-06-6 tert-Butylbenzene ND 2.5 ug/kg 75-15-0 Carbon disulfide ND 2.5 ug/kg 56-23-5 Carbon tetrachloride ND 2.5 ug/kg 75-00-3 Chlorobenzene ND 2.5 ug/kg 74-87-3 Chlorothane ND 2.5 ug/kg 95-49-8 2-Chlorotoluene ND 2.5 ug/kg 96-12-8 1,2-Dibromo-3-chloropropane (DBCP) ND 2.5 ug/kg 106-43-4 4-Chlorothane (EDB) ND 2.5 ug/kg 124-48-1 Dibromonethane (EDB) ND 2.5 ug/kg 106-93-4 1,2-Dibromoethane (EDB) ND 2.5 ug/kg	74-97-5	Bromochloromethane	ND	2.5	
75-26-2BromoformND2.5 ug/kg 74-83-9BromothaneND2.5 ug/kg 78-93-32-Butanone (MEK)ND5.1 ug/kg 104-61-8n-ButybenzeneND2.5 ug/kg 135-98-8sec-ButybenzeneND2.5 ug/kg 98-06-6tert-ButybenzeneND2.5 ug/kg 56-23-5Carbon disulfideND2.5 ug/kg 108-90-7ChlorobenzeneND2.5 ug/kg 75-10-3ChlorobenzeneND2.5 ug/kg 67-66-3ChlorobenzeneND2.5 ug/kg 95-49-82-ChlorothaneND2.5 ug/kg 96-42-81,2-Dibromo-3-chloropropane (DBCP)ND2.5 ug/kg 106-43-444-ChlorotommanaND2.5 ug/kg 96-12-81,2-Dibromo-3-chloropropane (DBCP)ND2.5 ug/kg 106-43-41,2-Dibromo-3-chloropropane (DBCP)ND2.5 ug/kg 106-43-41,2-Dibromo-1ND2.5 ug/kg 124-48-1DibromonethaneND2.5 ug/kg 124-48-1DibromonethaneND2.5 ug/kg 166-93-41,2-Dibromo-3-chloropropaneND2.5 ug/kg 166-93-41,2-Dibromo-1ND2.5 ug/kg 166-93-41,2-DibromochlaneND2.5 ug/kg 166-93-51,3-DichlorobenzeneND2.5 ug/kg 106-93-41,2	75-27-4	Bromodichloromethane	ND	2.5	ug/kg
78-93-3 2-Butanone (MEK) ND 5.1 ug/kg 104-51-8 n-Butylbenzene ND 2.5 ug/kg 98-06-6 tert-Butylbenzene ND 2.5 ug/kg 98-06-6 tert-Butylbenzene ND 2.5 ug/kg 56-23-5 Carbon disulfide ND 2.5 ug/kg 56-23-5 Carbon tetrachloride ND 2.5 ug/kg 75-00-3 Chlorobenzene ND 2.5 ug/kg 67-66-3 Chlorothane ND 2.5 ug/kg 95-49-8 2-Chlorotoluene ND 2.5 ug/kg 96-12-8 1,2-Dibromo-3-chloropropane (DBCP) ND 2.5 ug/kg 96-12-8 1,2-Dibromo-4-chlorobenzene ND 2.5 ug/kg 106-93-4 1,2-Dibromo-thane (EDB) ND 2.5 ug/kg 95-50-1 1,2-Dichlorobenzene ND 2.5 ug/kg 95-50-1 1,2-Dichlorobenzene ND 2.5 ug/kg 95-50-1 1,2-Dichlorobenzene ND 2.5 u	75-25-2	Bromoform	ND	2.5	
104-51-8n-ButylbenzeneND2.5 ug/kg 135-98-8scc-ButylbenzeneND2.5 ug/kg 98-06-6tert-ButylbenzeneND2.5 ug/kg 75-15-0Carbon disulfideND2.5 ug/kg 56-23-5Carbon tetrachlorideND2.5 ug/kg 75-00-3ChlorobenzeneND2.5 ug/kg 67-66-3ChloroofermND2.5 ug/kg 95-49-82-ChlorotolueneND2.5 ug/kg 96-12-81,2-Dibrono-3-chloropropane (DBCP)ND2.5 ug/kg 106-93-41,2-Dibromo-3-chloropropane (DBCP)ND2.5 ug/kg 106-93-41,2-Dibromo-dhaneND2.5 ug/kg 106-93-41,2-DibromoethaneND2.5 ug/kg 541-73-11,2-Dibromoethane (EDB)ND2.5 ug/kg 541-73-11,2-DibromoethaneND2.5 ug/kg 541-73-11,3-DichlorobenzeneND2.5 ug/kg 541-73-11,3-DichlorobenzeneND2.5 ug/kg 55-71-8DichlorodifluoromethaneND2.5 ug/kg 57-71-8DichlorodifluoromethaneND2.5 ug/kg 106-62 $\iota_3-1,2-DichlorobenzeneND2.5ug/kg156-50-2\iota_3-1,2-DichloropthaneND2.5ug/kg156-60-5trans-1,2-DichloropthaneND2.5ug/kg156-60-5trans-1,2-DichloroptheneND2.5$	74-83-9	Bromomethane	ND	2.5	ug/kg
135-98-8sec-ButylbenzeneND2.5 ug/kg 98-06-6tert-ButylbenzeneND2.5 ug/kg 75-15-0Carbon disulfideND2.5 ug/kg 56-23.5Carbon disulfideND2.5 ug/kg 108-90-7ChlorobenzeneND2.5 ug/kg 75-00-3ChlorothaneND2.5 ug/kg 74-87-3ChlorothaneND2.5 ug/kg 96-49-82-ChlorotolueneND2.5 ug/kg 96-49-82-ChlorotolueneND2.5 ug/kg 96-12-81,2-Dibromo-3-chloropropane (DBCP)ND2.5 ug/kg 124-48-1DibromochloromethaneND2.5 ug/kg 96-50-11,2-Dibromo-thane (EDB)ND2.5 ug/kg 95-50-11,2-DibromoethaneND2.5 ug/kg 95-50-11,2-DichlorobenzeneND2.5 ug/kg 95-50-11,2-DichlorobenzeneND2.5 ug/kg 95-50-11,2-DichlorobenzeneND2.5 ug/kg 95-50-11,2-DichlorobenzeneND2.5 ug/kg 106-46-71,4-DichlorobenzeneND2.5 ug/kg 106-46-71,4-DichlorobenzeneND2.5 ug/kg 107-06-21,2-DichlorochaneND2.5 ug/kg 156-50-2cis-1,2-DichlorocheneND2.5 ug/kg 156-50-2cis-1,2-DichlorocheneND2.5 ug/kg 156-50-2c	78-93-3	2-Butanone (MEK)	ND	5.1	ug/kg
98-06-6 tert-Butylbenzene ND 2.5 u_g/kg 75-15-0 Carbon disulfide ND 2.5 u_g/kg 56-23-5 Carbon tetrachloride ND 2.5 u_g/kg 75-00-3 Chlorobenzene ND 2.5 u_g/kg 75-00-3 Chlorobenzene ND 2.5 u_g/kg 95-49-8 2-Chlorobenzene ND 2.5 u_g/kg 96-12-8 1,2-Dibrono-3-chloropropane (DBCP) ND 2.5 u_g/kg 106-43-4 4-Chlorotoluene ND 2.5 u_g/kg 106-43-4 1,2-Dibrono-3-chloropropane (DBCP) ND 2.5 u_g/kg 106-43-4 1,2-Dibrono-3-chloropropane (DBCP) ND 2.5 u_g/kg 106-43-4 1,2-Dibrono-3-chloropropane (DBCP) ND 2.5 u_g/kg 106-93-4 1,2-Dibrono-3-chloropropane (DBCP) ND 2.5 u_g/kg 106-62-7 1,4-Dichlorobenzene ND 2.5 u_g/kg 106-46-7 1,4-Dichloroben	104-51-8	n-Butylbenzene	ND	2.5	
98-06-6 tert-Butylbenzene ND 2.5 ug/kg 75-15-0 Carbon disulfide ND 2.5 ug/kg 56-23-5 Carbon tetrachloride ND 2.5 ug/kg 108-90-7 Chlorobenzene ND 2.5 ug/kg 75-00-3 Chlorobenzene ND 2.5 ug/kg 67-66-3 Chlorobenzene ND 2.5 ug/kg 95-49-8 2-Chlorotoluene ND 2.5 ug/kg 96-12-8 1,2-Dibrono-3-chloropropane (DBCP) ND 2.5 ug/kg 96-12-8 1,2-Dibromo-3-chloropropane (DBCP) ND 2.5 ug/kg 106-93-4 1,2-Dibromo-dane (EDB) ND 2.5 ug/kg 94-95-3 Dibromoethane ND 2.5 ug/kg 95-10-1 1,2-Dichlorobenzene ND 2.5 ug/kg 95-50-1 1,2-Dichlorobenzene ND 2.5 ug/kg 106-46-7 1,4-Dichlorobenzene ND 2.5 ug/kg	135-98-8	sec-Butylbenzene	ND	2.5	ug/kg
56-23-5Carbon tetrachlorideND2.5 ug/kg 108-90-7ChlorobenzeneND2.5 ug/kg 75-00-3ChloroformND2.5 ug/kg 74-87-3ChloroformND2.5 ug/kg 74-87-3ChloronethaneND2.5 ug/kg 95-49-82-ChlorotolueneND2.5 ug/kg 106-43-44-ChlorotolueneND2.5 ug/kg 106-43-44-ChlorotolueneND2.5 ug/kg 106-43-41,2-Dibromo-3-chloropropane (DBCP)ND2.5 ug/kg 104-93-41,2-DibromochlaronethaneND2.5 ug/kg 106-93-41,2-DibromochlaronethaneND2.5 ug/kg 95-50-11,2-DichlorobenzeneND2.5 ug/kg 95-50-11,2-DichlorobenzeneND2.5 ug/kg 106-46-71,4-DichlorobenzeneND2.5 ug/kg 106-46-71,1-DichlorobenzeneND2.5 ug/kg 107-06-21,2-DichlorothaneND2.5 ug/kg 156-50-2cis-1,2-DichlorotheneND2.5 ug/kg 156-60-5trans-1,2-DichlorotheneND2.5 ug/kg 156-60-5trans-1,2-DichlorotheneND2.5 ug/kg 156-60-5trans-1,2-DichlorotheneND2.5 ug/kg 156-60-5trans-1,2-DichlorotheneND2.5 ug/kg 156-60-5trans-1,2-DichlorotheneND2.5 ug/kg <td>98-06-6</td> <td>tert-Butylbenzene</td> <td>ND</td> <td>2.5</td> <td></td>	98-06-6	tert-Butylbenzene	ND	2.5	
108-90-7ChlorobenzeneND2.5 ug/kg 75-00-3ChloroethaneND2.5 ug/kg 67-66-3ChloroformND2.5 ug/kg 67-66-3ChloromethaneND2.5 ug/kg 95-49-82-ChlorotolueneND2.5 ug/kg 96-43-44-ChlorotolueneND2.5 ug/kg 96-12-81,2-Dibromo-3-chloropropane (DBCP)ND2.5 ug/kg 106-93-41,2-DibromochloromethaneND2.5 ug/kg 106-93-41,2-Dibromoethane (EDB)ND2.5 ug/kg 95-50-11,2-DichlorobenzeneND2.5 ug/kg 106-46-71,4-DichlorobenzeneND2.5 ug/kg 106-46-71,4-DichlorobenzeneND2.5 ug/kg 106-46-71,1,1-DichlorobenzeneND2.5 ug/kg 107-06-21,2-DichloroethaneND2.5 ug/kg 156-59-2cis-1,2-DichloroethaneND2.5 ug/kg 156-60-5trans-1,2-DichloroetheneND2.5 ug/kg 156-60-5trans-1,2-DichloroetheneND2.5 ug/kg 142-28-91,3-DichloroppaneND2.5 ug/kg 142-28-91,3-DichloroppaneND2.5 ug/kg 142-28-91,3-DichloroppaneND2.5 ug/kg 142-28-91,3-DichloroppaneND2.5 ug/kg 10061-01-5cis-1,3-DichloroppaneND2.5 ug/kg	75-15-0	Carbon disulfide	ND	2.5	ug/kg
75-00-3ChloroethaneND2.5 ug/kg 67-66-3ChloroformND2.5 ug/kg 74-87-3ChloromethaneND2.5 ug/kg 95-49-82-ChlorotolueneND2.5 ug/kg 106-43-44-ChlorotolueneND2.5 ug/kg 96-12-81,2-Dibromo-3-chloropropane (DBCP)ND2.5 ug/kg 106-43-44-ChlorotolueneND2.5 ug/kg 96-12-81,2-Dibromo-3-chloropropane (DBCP)ND2.5 ug/kg 106-93-41,2-DibromochlaromethaneND2.5 ug/kg 95-50-11,2-Dibromochlare (EDB)ND2.5 ug/kg 95-50-11,2-DichlorobenzeneND2.5 ug/kg 541-73-11,3-DichlorobenzeneND2.5 ug/kg 55-71-8DichlorothaneND2.5 ug/kg 75-71-8DichlorothaneND2.5 ug/kg 107-06-21,2-DichloroethaneND2.5 ug/kg 107-06-21,2-DichloroethaneND2.5 ug/kg 156-60-5trans-1,2-DichloroetheneND2.5 ug/kg 142-28-91,3-DichloropopaneND2.5 ug/kg 142-28-91,3-DichloropopaneND2.5 ug/kg 563-58-61,1-DichloropopaneND2.5 ug/kg 563-58-61,1-DichloropopaneND2.5 ug/kg 563-58-61,1-DichloropopaneND2.5 ug/kg 50	56-23-5	Carbon tetrachloride	ND	2.5	ug/kg
67-66-3 Chloroform ND 2.5 ug/kg 74-87-3 Chloromethane ND 2.5 ug/kg 95-49-8 2-Chlorotoluene ND 2.5 ug/kg 106-43-4 4-Chlorotoluene ND 2.5 ug/kg 96-12-8 1,2-Dibromo-3-chloropropane (DBCP) ND 2.5 ug/kg 106-93-4 1,2-Dibromo-diloromethane ND 2.5 ug/kg 106-93-4 1,2-Dibromoethane (EDB) ND 2.5 ug/kg 95-50-1 1,2-Dichlorobenzene ND 2.5 ug/kg 95-50-1 1,2-Dichlorobenzene ND 2.5 ug/kg 106-46-7 1,4-Dichlorobenzene ND 2.5 ug/kg 106-46-7 1,4-Dichloroethane ND 2.5 ug/kg 107-06-2 1,2-Dichloroethane ND 2.5 ug/kg 156-59-2 cis-1,2-Dichloroethene ND 2.5 ug/kg 156-60-5 trans-1,2-Dichloroethene ND 2.5 ug/kg <td>108-90-7</td> <td>Chlorobenzene</td> <td>ND</td> <td>2.5</td> <td>ug/kg</td>	108-90-7	Chlorobenzene	ND	2.5	ug/kg
74-87-3ChloromethaneND2.5 ug/kg 95-49-82-ChlorotolueneND2.5 ug/kg 96-43-44-ChlorotolueneND2.5 ug/kg 96-12-81,2-Dibromo-3-chloropropane (DBCP)ND2.5 ug/kg 124-48-1DibromochloromethaneND2.5 ug/kg 106-93-41,2-DibromochloromethaneND2.5 ug/kg 106-93-41,2-Dibromoethane (EDB)ND2.5 ug/kg 95-50-11,2-DichlorobenzeneND2.5 ug/kg 541-73-11,3-DichlorobenzeneND2.5 ug/kg 57-71-8DichlorodenzeneND2.5 ug/kg 75-34-31,1-DichlorobenzeneND2.5 ug/kg 107-06-21,2-DichloroethaneND2.5 ug/kg 156-59-2cis-1,2-DichloroethaneND2.5 ug/kg 156-59-2cis-1,2-DichloroetheneND2.5 ug/kg 156-60-5trans-1,2-DichloroetheneND2.5 ug/kg 164-671,3-DichloroetheneND2.5 ug/kg 175-35-41,1-DichloroetheneND2.5 ug/kg 186-60-5trans-1,2-DichloroetheneND2.5 ug/kg 186-60-5trans-1,2-DichloroetheneND2.5 ug/kg 192-80-91,3-DichloropropaneND2.5 ug/kg 194-87-51,2-DichloropropaneND2.5 ug/kg 194-87-51,2-DichloropropaneND2.5<	75-00-3	Chloroethane	ND	2.5	ug/kg
95-49-8 2-Chlorotoluene ND 2.5 ug/kg 106-43-4 4-Chlorotoluene ND 2.5 ug/kg 96-12-8 1,2-Dibromo-3-chloropropane (DBCP) ND 2.5 ug/kg 106-93-4 1,2-Dibromo-delloromethane ND 2.5 ug/kg 106-93-4 1,2-Dibromoethane (EDB) ND 2.5 ug/kg 95-50-1 1,2-Dichlorobenzene ND 2.5 ug/kg 95-50-1 1,2-Dichlorobenzene ND 2.5 ug/kg 541-73-1 1,3-Dichlorobenzene ND 2.5 ug/kg 106-46-7 1,4-Dichlorobenzene ND 2.5 ug/kg 75-71-8 Dichlorodifluoromethane ND 2.5 ug/kg 107-06-2 1,2-Dichloroethane ND 2.5 ug/kg 156-59-2 cis-1,2-Dichloroethene ND 2.5 ug/kg 156-60-5 trans-1,2-Dichloroethene ND 2.5 ug/kg 142-28-9 1,3-Dichloropropane ND 2.5 ug/kg 594-20-7 2,2-Dichloropropane ND 2.5	67-66-3	Chloroform	ND	2.5	ug/kg
106-43-44-ChlorotolueneND2.5 ug/kg 96-12-81,2-Dibromo-3-chloropropane (DBCP)ND2.5 ug/kg 124-48-1DibromochloromethaneND2.5 ug/kg 106-93-41,2-Dibromoethane (EDB)ND2.5 ug/kg 74-95-3DibromoethaneND2.5 ug/kg 95-50-11,2-DichlorobenzeneND2.5 ug/kg 541-73-11,3-DichlorobenzeneND2.5 ug/kg 106-46-71,4-DichlorobenzeneND2.5 ug/kg 75-71-8DichlorodifluoromethaneND2.5 ug/kg 107-06-21,2-DichlorobtaneND2.5 ug/kg 107-06-21,2-DichloroethaneND2.5 ug/kg 156-59-2cis-1,2-DichloroetheneND2.5 ug/kg 156-60-5trans-1,2-DichloroetheneND2.5 ug/kg 142-28-91,3-DichloropropaneND2.5 ug/kg 142-28-91,3-DichloropropaneND2.5 ug/kg 563-58-61,1-DichloropropaneND2.5 ug/kg 563-58-61,1-DichloropropaneND2.5 ug/kg 563-58-61,1-DichloropropaneND2.5 ug/kg 563-58-61,1-DichloropropaneND2.5 ug/kg 503-541,1-DichloropropaneND2.5 ug/kg 504-551,3-DichloropropaneND2.5 ug/kg 504-561,1-DichloropropaneND2.5 <td< td=""><td>74-87-3</td><td>Chloromethane</td><td>ND</td><td>2.5</td><td>ug/kg</td></td<>	74-87-3	Chloromethane	ND	2.5	ug/kg
96-12-8 1,2-Dibromo-3-chloropropane (DBCP) ND 2.5 ug/kg 124-48-1 Dibromochloromethane ND 2.5 ug/kg 106-93-4 1,2-Dibromoethane (EDB) ND 2.5 ug/kg 95-50-1 1,2-Dichlorobenzene ND 2.5 ug/kg 95-50-1 1,2-Dichlorobenzene ND 2.5 ug/kg 541-73-1 1,3-Dichlorobenzene ND 2.5 ug/kg 106-46-7 1,4-Dichlorobenzene ND 2.5 ug/kg 75-71-8 Dichlorodifluoromethane ND 2.5 ug/kg 107-06-2 1,2-Dichloroethane ND 2.5 ug/kg 107-06-2 1,2-Dichloroethane ND 2.5 ug/kg 156-59-2 cis-1,2-Dichloroethene ND 2.5 ug/kg 156-60-5 trans-1,2-Dichloroethene ND 2.5 ug/kg 142-28-9 1,3-Dichloropropane ND 2.5 ug/kg 142-28-9 1,3-Dichloropropane ND 2.5	95-49-8	2-Chlorotoluene	ND	2.5	ug/kg
124-48-1 Dibromochloromethane ND 2.5 ug/kg 106-93-4 1,2-Dibromoethane (EDB) ND 2.5 ug/kg 74-95-3 Dibromomethane ND 2.5 ug/kg 95-50-1 1,2-Dichlorobenzene ND 2.5 ug/kg 541-73-1 1,3-Dichlorobenzene ND 2.5 ug/kg 106-46-7 1,4-Dichlorobenzene ND 2.5 ug/kg 75-71-8 Dichlorodifluoromethane ND 2.5 ug/kg 107-06-2 1,2-Dichloroethane ND 2.5 ug/kg 156-59-2 cis-1,2-Dichloroethene ND 2.5 ug/kg 156-60-5 trans-1,2-Dichloroethene ND 2.5 ug/kg 142-28-9 1,3-Dichloropropane ND 2.5 ug/kg 142-28-9 1,3-Dichloropropane ND 2.5 ug/kg 594-20-7 2,2-Dichloropropane ND 2.5 ug/kg 594-20-7 2,2-Dichloropropane ND 2.5 ug/kg 503-58-6 1,1-Dichloropropane ND 2.5 ug/kg </td <td>106-43-4</td> <td>4-Chlorotoluene</td> <td>ND</td> <td>2.5</td> <td>ug/kg</td>	106-43-4	4-Chlorotoluene	ND	2.5	ug/kg
106-93-4 1,2-Dibromoethane (EDB) ND 2.5 ug/kg 74-95-3 Dibromomethane ND 2.5 ug/kg 95-50-1 1,2-Dichlorobenzene ND 2.5 ug/kg 541-73-1 1,3-Dichlorobenzene ND 2.5 ug/kg 106-46-7 1,4-Dichlorobenzene ND 2.5 ug/kg 75-71-8 Dichlorodifluoromethane ND 2.5 ug/kg 107-06-2 1,2-Dichloroethane ND 2.5 ug/kg 107-06-2 1,2-Dichloroethane ND 2.5 ug/kg 156-59-2 cis-1,2-Dichloroethene ND 2.5 ug/kg 156-60-5 trans-1,2-Dichloroethene ND 2.5 ug/kg 142-28-9 1,3-Dichloroptopane ND 2.5 ug/kg 142-28-9 1,3-Dichloroptopane ND 2.5 ug/kg 563-58-6 1,1-Dichloroptopane ND 2.5 ug/kg 563-58-6 1,1-Dichloroptopene ND 2.5 ug/kg 10061-01-5 cis-1,3-Dichloroptopene ND 2.5 ug/	96-12-8	1,2-Dibromo-3-chloropropane (DBCP)	ND	2.5	ug/kg
74-95-3DibromonethaneND2.5ug/kg95-50-11,2-DichlorobenzeneND2.5ug/kg541-73-11,3-DichlorobenzeneND2.5ug/kg106-46-71,4-DichlorobenzeneND2.5ug/kg75-71-8DichlorodifluoromethaneND2.5ug/kg107-06-21,2-DichloroethaneND2.5ug/kg107-06-21,2-DichloroethaneND2.5ug/kg156-59-2cis-1,2-DichloroetheneND2.5ug/kg156-60-5trans-1,2-DichloroetheneND2.5ug/kg142-28-91,3-DichloropropaneND2.5ug/kg594-20-72,2-DichloropropaneND2.5ug/kg503-58-61,1-DichloropropaneND2.5ug/kg10061-01-5cis-1,3-DichloropropeneND2.5ug/kg10061-02-6trans-1,3-DichloropropeneND2.5ug/kg	124-48-1	Dibromochloromethane	ND	2.5	ug/kg
95-50-11,2-DichlorobenzeneND2.5ug/kg541-73-11,3-DichlorobenzeneND2.5ug/kg106-46-71,4-DichlorobenzeneND2.5ug/kg75-71-8DichlorodifluoromethaneND2.5ug/kg75-34-31,1-DichloroethaneND2.5ug/kg107-06-21,2-DichloroethaneND2.5ug/kg156-59-2cis-1,2-DichloroetheneND2.5ug/kg156-60-5trans-1,2-DichloroetheneND2.5ug/kg142-28-91,3-DichloropropaneND2.5ug/kg594-20-72,2-DichloropropaneND2.5ug/kg503-58-61,1-DichloropropaneND2.5ug/kg10061-01-5cis-1,3-DichloropropaneND2.5ug/kg10061-02-6trans-1,3-DichloropropaneND2.5ug/kg	106-93-4	1,2-Dibromoethane (EDB)	ND	2.5	ug/kg
541-73-11,3-DichlorobenzeneND2.5ug/kg106-46-71,4-DichlorobenzeneND2.5ug/kg75-71-8DichlorodifluoromethaneND2.5ug/kg75-34-31,1-DichloroethaneND2.5ug/kg107-06-21,2-DichloroethaneND2.5ug/kg156-59-2cis-1,2-DichloroetheneND2.5ug/kg156-60-5trans-1,2-DichloroetheneND2.5ug/kg142-28-91,3-DichloropropaneND2.5ug/kg594-20-72,2-DichloropropaneND2.5ug/kg563-58-61,1-DichloropropeneND2.5ug/kg10061-01-5cis-1,3-DichloropropeneND2.5ug/kg10061-02-6trans-1,3-DichloropropeneND2.5ug/kg	74-95-3	Dibromomethane	ND	2.5	ug/kg
106-46-71,4-DichlorobenzeneND2.5ug/kg75-71-8DichlorodifluoromethaneND2.5ug/kg75-34-31,1-DichloroethaneND2.5ug/kg107-06-21,2-DichloroethaneND2.5ug/kg75-35-41,1-DichloroetheneND2.5ug/kg156-59-2cis-1,2-DichloroetheneND2.5ug/kg156-60-5trans-1,2-DichloroetheneND2.5ug/kg142-28-91,3-DichloropropaneND2.5ug/kg594-20-72,2-DichloropropaneND2.5ug/kg563-58-61,1-DichloropropeneND2.5ug/kg10061-01-5cis-1,3-DichloropropeneND2.5ug/kg10061-02-6trans-1,3-DichloropropeneND2.5ug/kg	95-50-1	1,2-Dichlorobenzene	ND	2.5	ug/kg
75-71-8DichlorodifluoromethaneND2.5ug/kg75-34-31,1-DichloroethaneND2.5ug/kg107-06-21,2-DichloroethaneND2.5ug/kg75-35-41,1-DichloroetheneND2.5ug/kg156-59-2cis-1,2-DichloroetheneND2.5ug/kg156-60-5trans-1,2-DichloroetheneND2.5ug/kg142-28-91,3-DichloropropaneND2.5ug/kg594-20-72,2-DichloropropaneND2.5ug/kg563-58-61,1-DichloropropeneND2.5ug/kg10061-01-5cis-1,3-DichloropropeneND2.5ug/kg10061-02-6trans-1,3-DichloropropeneND2.5ug/kg	541-73-1	1,3-Dichlorobenzene	ND	2.5	ug/kg
75-34-31,1-DichloroethaneND2.5ug/kg107-06-21,2-DichloroethaneND2.5ug/kg75-35-41,1-DichloroetheneND2.5ug/kg156-59-2cis-1,2-DichloroetheneND2.5ug/kg156-60-5trans-1,2-DichloroetheneND2.5ug/kg78-87-51,2-DichloropropaneND2.5ug/kg142-28-91,3-DichloropropaneND2.5ug/kg594-20-72,2-DichloropropaneND2.5ug/kg563-58-61,1-DichloropropeneND2.5ug/kg10061-01-5cis-1,3-DichloropropeneND2.5ug/kg10061-02-6trans-1,3-DichloropropeneND2.5ug/kg	106-46-7	1,4-Dichlorobenzene	ND	2.5	ug/kg
107-06-21,2-DichloroethaneND2.5ug/kg75-35-41,1-DichloroetheneND2.5ug/kg156-59-2cis-1,2-DichloroetheneND2.5ug/kg156-60-5trans-1,2-DichloroetheneND2.5ug/kg78-87-51,2-DichloropropaneND2.5ug/kg142-28-91,3-DichloropropaneND2.5ug/kg594-20-72,2-DichloropropaneND2.5ug/kg563-58-61,1-DichloropropeneND2.5ug/kg10061-01-5cis-1,3-DichloropropeneND2.5ug/kg10061-02-6trans-1,3-DichloropropeneND2.5ug/kg	75-71-8	Dichlorodifluoromethane	ND	2.5	ug/kg
75-35-41,1-DichloroetheneND2.5ug/kg156-59-2cis-1,2-DichloroetheneND2.5ug/kg156-60-5trans-1,2-DichloroetheneND2.5ug/kg78-87-51,2-DichloropropaneND2.5ug/kg142-28-91,3-DichloropropaneND2.5ug/kg594-20-72,2-DichloropropaneND2.5ug/kg563-58-61,1-DichloropropeneND2.5ug/kg10061-01-5cis-1,3-DichloropropeneND2.5ug/kg10061-02-6trans-1,3-DichloropropeneND2.5ug/kg	75-34-3	1,1-Dichloroethane	ND	2.5	ug/kg
156-59-2cis-1,2-DichloroetheneND2.5ug/kg156-60-5trans-1,2-DichloroetheneND2.5ug/kg78-87-51,2-DichloropropaneND2.5ug/kg142-28-91,3-DichloropropaneND2.5ug/kg594-20-72,2-DichloropropaneND2.5ug/kg563-58-61,1-DichloropropeneND2.5ug/kg10061-01-5cis-1,3-DichloropropeneND2.5ug/kg10061-02-6trans-1,3-DichloropropeneND2.5ug/kg	107-06-2	1,2-Dichloroethane	ND	2.5	ug/kg
156-60-5trans-1,2-DichloroetheneND2.5ug/kg78-87-51,2-DichloropropaneND2.5ug/kg142-28-91,3-DichloropropaneND2.5ug/kg594-20-72,2-DichloropropaneND2.5ug/kg563-58-61,1-DichloropropeneND2.5ug/kg10061-01-5cis-1,3-DichloropropeneND2.5ug/kg10061-02-6trans-1,3-DichloropropeneND2.5ug/kg	75-35-4	1,1-Dichloroethene	ND	2.5	ug/kg
78-87-51,2-DichloropropaneND2.5ug/kg142-28-91,3-DichloropropaneND2.5ug/kg594-20-72,2-DichloropropaneND2.5ug/kg563-58-61,1-DichloropropeneND2.5ug/kg10061-01-5cis-1,3-DichloropropeneND2.5ug/kg10061-02-6trans-1,3-DichloropropeneND2.5ug/kg	156-59-2	cis-1,2-Dichloroethene	ND	2.5	ug/kg
142-28-91,3-DichloropropaneND2.5ug/kg594-20-72,2-DichloropropaneND2.5ug/kg563-58-61,1-DichloropropeneND2.5ug/kg10061-01-5cis-1,3-DichloropropeneND2.5ug/kg10061-02-6trans-1,3-DichloropropeneND2.5ug/kg	156-60-5	trans-1,2-Dichloroethene	ND	2.5	ug/kg
594-20-7 2,2-Dichloropropane ND 2.5 ug/kg 563-58-6 1,1-Dichloropropene ND 2.5 ug/kg 10061-01-5 cis-1,3-Dichloropropene ND 2.5 ug/kg 10061-02-6 trans-1,3-Dichloropropene ND 2.5 ug/kg	78-87-5	1,2-Dichloropropane	ND	2.5	ug/kg
563-58-6 1,1-Dichloropropene ND 2.5 ug/kg 10061-01-5 cis-1,3-Dichloropropene ND 2.5 ug/kg 10061-02-6 trans-1,3-Dichloropropene ND 2.5 ug/kg	142-28-9	1,3-Dichloropropane	ND	2.5	ug/kg
10061-01-5 cis-1,3-Dichloropropene ND 2.5 ug/kg 10061-02-6 trans-1,3-Dichloropropene ND 2.5 ug/kg	594-20-7	2,2-Dichloropropane	ND	2.5	ug/kg
10061-02-6 trans-1,3-Dichloropropene ND 2.5 ug/kg	563-58-6	1,1-Dichloropropene	ND	2.5	ug/kg
		· · ·			ug/kg
60-29-7Diethyl etherND2.5ug/kg		trans-1,3-Dichloropropene	ND	2.5	ug/kg
	60-29-7	Diethyl ether	ND	2.5	ug/kg

Report No: E106J35 Sample No: 8 Sample Description: 841110628-08

Date Collected: 06/28/2011 13:50 Date Received: 06/29/2011 16:10 Date Analyzed: 06/30/2011 14:58 By: AMH Analytical Method: 8260B Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 3.5 Dilution Factor: 1 Lab Data File: J46005.D QC Batch#: 86074

CAS No.	Parameter	Result	DL	Units
123-91-1	1,4-Dioxane	ND	10	ug/kg
100-41-4	Ethylbenzene	ND	2.5	ug/kg
87-68-3	Hexachlorobutadiene	ND	2.5	ug/kg
591-78-6	2-Hexanone	ND	5.1	ug/kg
98-82-8	Isopropylbenzene	ND	2.5	ug/kg
99-87-6	4-Isopropyltoluene	ND	2.5	ug/kg
1634-04-4	Methyl tert-butyl ether (MTBE)	ND	2.5	ug/kg
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.1	ug/kg
75-09-2	Methylene chloride	ND	2.5	ug/kg
91-20-3	Naphthalene	ND	2.5	ug/kg
103-65-1	n-Propylbenzene	ND	2.5	ug/kg
100-42-5	Styrene	ND	2.5	ug/kg
109-99-9	Tetrahydrofuran	ND	2.5	ug/kg
110-57-6	trans-1,4-Dichloro-2-butene	ND	2.5	ug/kg
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	ND	2.5	ug/kg
96-18-4	1,2,3-Trichloropropane	ND	2.5	ug/kg
630-20-6	1,1,1,2-Tetrachloroethane	ND	2.5	ug/kg
79-34-5	1,1,2,2-Tetrachloroethane	ND	2.5	ug/kg
127-18-4	Tetrachloroethene (PCE)	ND	2.5	ug/kg
108-88-3	Toluene	ND	2.5	ug/kg
87-61-6	1,2,3-Trichlorobenzene	ND	2.5	ug/kg
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	ug/kg
71-55-6	1,1,1-Trichloroethane	ND	2.5	ug/kg
79-00-5	1,1,2-Trichloroethane	ND	2.5	ug/kg
79-01-6	Trichloroethene (TCE)	ND	2.5	ug/kg
75-69-4	Trichlorofluoromethane	ND	2.5	ug/kg
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	ug/kg
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	ug/kg
75-01-4	Vinyl chloride	ND	2.5	ug/kg
95-47-6	o-Xylene	ND	2.5	ug/kg
108-38-3	m,p-Xylenes	ND	5.1	ug/kg
Sample QC				

Sample Qe			
Surrogate	Recovery	QC Limits	
1,2-Dichloroethane-d4	62%	80%-120%	
Bromofluorobenzene	85%	80%-120%	
Toluene-d8	136%	80%-120%	

Report No: E106J35 Sample No: 9 Sample Description: 841110628-09

Date Collected: 06/28/2011 14:20 Date Received: 06/29/2011 16:10 Date Extracted: 07/01/2011 11:00 By: AJM Date Analyzed: 07/05/2011 20:35 By: GMP Preparation Method: 3500 Analytical Method: 8270C Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 6.4 Sample Weight/Volume: 30.00 Dilution Factor: 1 Extract Volume: 1 Lab Data File: L32798.D QC Batch#: 86210

CAS No.	Parameter	Result	DL	Units
103-33-3	Azobenzene	ND	180	ug/kg
83-32-9	Acenaphthene	ND	180	ug/kg
208-96-8	Acenaphthylene	ND	180	ug/kg
62-53-3	Aniline	ND	360	ug/kg
120-12-7	Anthracene	ND	180	ug/kg
92-52-4	Biphenyl	ND	180	ug/kg
56-55-3	Benzo[a]anthracene	ND	180	ug/kg
50-32-8	Benzo[a]pyrene	ND	180	ug/kg
205-99-2	Benzo[b]fluoranthene	ND	180	ug/kg
191-24-2	Benzo[g,h,i]perylene	ND	180	ug/kg
207-08-9	Benzo[k]fluoranthene	ND	180	ug/kg
65-85-0	Benzoic acid	ND	890	ug/kg
100-51-6	Benzyl alcohol	ND	360	ug/kg
85-68-7	Benzyl butyl phthalate	ND	180	ug/kg
111-91-1	Bis(2-chloroethoxy)methane	ND	180	ug/kg
111-44-4	Bis(2-chloroethyl)ether	ND	180	ug/kg
108-60-1	Bis(2-chloroisopropyl)ether	ND	360	ug/kg
117-81-7	Bis(2-ethylhexyl)phthalate	ND	180	ug/kg
101-55-3	4-Bromophenyl phenyl ether	ND	180	ug/kg
59-50-7	4-Chloro-3-methylphenol	ND	180	ug/kg
106-47-8	4-Chloroaniline	ND	360	ug/kg
91-58-7	2-Chloronaphthalene	ND	180	ug/kg
95-57-8	2-Chlorophenol	ND	180	ug/kg
7005-72-3	4-Chlorophenyl phenyl ether	ND	180	ug/kg
218-01-9	Chrysene	ND	180	ug/kg
53-70-3	Dibenz[a,h]anthracene	ND	180	ug/kg
84-74-2	Di-n-butyl phthalate	ND	180	ug/kg
117-84-0	Di-n-octyl phthalate	ND	180	ug/kg
132-64-9	Dibenzofuran	ND	360	ug/kg
95-50-1	1,2-Dichlorobenzene	ND	180	ug/kg
541-73-1	1,3-Dichlorobenzene	ND	180	ug/kg
106-46-7	1,4-Dichlorobenzene	ND	180	ug/kg
91-94-1	3,3-Dichlorobenzidine	ND	180	ug/kg
120-83-2	2,4-Dichlorophenol	ND	180	ug/kg
84-66-2	Diethyl phthalate	ND	180	ug/kg
131-11-3	Dimethyl phthalate	ND	180	ug/kg
105-67-9	2,4-Dimethylphenol	ND	180	ug/kg
51-28-5	2,4-Dinitrophenol	ND	180	ug/kg
121-14-2	2,4-Dinitrotoluene	ND	180	ug/kg
606-20-2	2,6-Dinitrotoluene	ND	180	ug/kg

Report No: E106J35 Sample No: 9 Sample Description: 841110628-09

Date Collected: 06/28/2011 14:20 Date Received: 06/29/2011 16:10 Date Extracted: 07/01/2011 11:00 By: AJM Date Analyzed: 07/05/2011 20:35 By: GMP Preparation Method: 3500 Analytical Method: 8270C Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 6.4 Sample Weight/Volume: 30.00 Dilution Factor: 1 Extract Volume: 1 Lab Data File: L32798.D QC Batch#: 86210

CAS No.	Parameter	Result	DL	Units
206-44-0	Fluoranthene	ND	180	ug/kg
86-73-7	Fluorene	ND	180	ug/kg
118-74-1	Hexachlorobenzene	ND	180	ug/kg
87-68-3	Hexachlorobutadiene	ND	180	ug/kg
77-47-4	Hexachlorocyclopentadiene	ND	180	ug/kg
67-72-1	Hexachloroethane	ND	180	ug/kg
193-39-5	Indeno[1,2,3-cd]pyrene	ND	180	ug/kg
78-59-1	Isophorone	ND	180	ug/kg
534-52-1	2-Methyl-4,6-dinitrophenol	ND	180	ug/kg
91-57-6	2-Methylnaphthalene	ND	180	ug/kg
95-48-7	2-Methylphenol	ND	180	ug/kg
108-39-4	3- & 4-Methylphenols	ND	360	ug/kg
91-20-3	Naphthalene	ND	180	ug/kg
88-74-4	2-Nitroaniline	ND	360	ug/kg
99-09-2	3-Nitroaniline	ND	360	ug/kg
100-01-6	4-Nitroaniline	ND	360	ug/kg
98-95-3	Nitrobenzene	ND	180	ug/kg
88-75-5	2-Nitrophenol	ND	180	ug/kg
100-02-1	4-Nitrophenol	ND	180	ug/kg
621-64-7	N-Nitrosodi-n-propylamine	ND	180	ug/kg
62-75-9	N-Nitrosodimethylamine	ND	180	ug/kg
86-30-6	N-Nitrosodiphenylamine	ND	180	ug/kg
87-86-5	Pentachlorophenol	ND	180	ug/kg
85-01-8	Phenanthrene	ND	180	ug/kg
108-95-2	Phenol	ND	180	ug/kg
129-00-0	Pyrene	ND	180	ug/kg
120-82-1	1,2,4-Trichlorobenzene	ND	180	ug/kg
95-95-4	2,4,5-Trichlorophenol	ND	180	ug/kg
88-06-2	2,4,6-Trichlorophenol	ND	180	ug/kg

Sample QC

Surrogate	Recovery	QC Limits
2,4,6-Tribromophenol	93%	18%-118%
2-Fluorobiphenyl	45%	24%-101%
2-Fluorophenol	38%	10%-94%
4-Terphenyl-d14	102%	20%-133%
Nitrobenzene-d5	39%	16%-98%
Phenol-d6	44%	15%-102%

Report No: E106J35 Sample No: 9 Sample Description: 841110628-09

Date Collected: 06/28/2011 14:20 Date Received: 06/29/2011 16:10 Date Extracted: 07/05/2011 09:00 By: DPR Date Analyzed: 07/07/2011 07:13 By: MRB Preparation Method: 8100 Analytical Method: 8100 Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 6.4 Sample Weight/Volume: 10.02 Dilution Factor: 1 Extract Volume: 1 Lab Data File: 6070641.D QC Batch#: 86265

CAS No. Parameter	Result	DL	Units
C6-C12 Light Petroleum Distillate C10-C28 Medium Petroleum Distillate C16-C36 Heavy Petroleum Distillate Total PHC	ND ND ND ND	21 21 21 21 21	mg/kg mg/kg mg/kg mg/kg

Report No: E106J35 Sample No: 9 Sample Description: 841110628-09

Date Collected: 06/28/2011 14:20 Date Received: 06/29/2011 16:10 Date Extracted: 07/07/2011 09:00 By: DPR Date Analyzed: 07/07/2011 21:04 By: MRB Preparation Method: 3500 Analytical Method: 8082

Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 6.4 Sample Weight/Volume: 30.00 Dilution Factor: 1 Extract Volume: 2 Lab Data File: 8070710.D QC Batch#: 86262

CAS No.	Parameter	Result	DL	Units
12674-11-2	Aroclor 1016	ND	14	ug/kg
11104-28-2	Aroclor 1221	ND	14	ug/kg
11141-16-5	Aroclor 1232	ND	14	ug/kg
53469-21-9	Aroclor 1242	ND	14	ug/kg
12672-29-6	Aroclor 1248	ND	14	ug/kg
11097-69-1	Aroclor 1254	ND	14	ug/kg
11096-82-5	Aroclor 1260	ND	14	ug/kg
Sample QC				
Surrogate		Recovery	QC Limits	
Tetrachloro-m-xylene		79%	10%-103%	0
Decachlorobiphen		93%	10%-142%	

Report No: E106J35 Sample No: 9 Sample Description: 841110628-09

Date Collected: 06/28/2011 14:20 Date Received: 06/29/2011 16:10 Date Analyzed: 06/30/2011 15:25 By: AMH Analytical Method: 8260B Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 6.4 Dilution Factor: 1 Lab Data File: J46006.D QC Batch#: 86074

CAS No.	Parameter	Result	DL	Units
67-64-1	Acetone	ND	10	ug/kg
107-13-1	Acrylonitrile	ND	5.2	ug/kg
71-43-2	Benzene	ND	5.2	ug/kg
108-86-1	Bromobenzene	ND	5.2	ug/kg
74-97-5	Bromochloromethane	ND	5.2	ug/kg
75-27-4	Bromodichloromethane	ND	5.2	ug/kg
75-25-2	Bromoform	ND	5.2	ug/kg
74-83-9	Bromomethane	ND	5.2	ug/kg
78-93-3	2-Butanone (MEK)	ND	10	ug/kg
104-51-8	n-Butylbenzene	ND	5.2	ug/kg
135-98-8	sec-Butylbenzene	ND	5.2	ug/kg
98-06-6	tert-Butylbenzene	ND	5.2	ug/kg
75-15-0	Carbon disulfide	ND	5.2	ug/kg
56-23-5	Carbon tetrachloride	ND	5.2	ug/kg
108-90-7	Chlorobenzene	ND	5.2	ug/kg
75-00-3	Chloroethane	ND	5.2	ug/kg
67-66-3	Chloroform	ND	5.2	ug/kg
74-87-3	Chloromethane	ND	5.2	ug/kg
95-49-8	2-Chlorotoluene	ND	5.2	ug/kg
106-43-4	4-Chlorotoluene	ND	5.2	ug/kg
96-12-8	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.2	ug/kg
124-48-1	Dibromochloromethane	ND	5.2	ug/kg
106-93-4	1,2-Dibromoethane (EDB)	ND	5.2	ug/kg
74-95-3	Dibromomethane	ND	5.2	ug/kg
95-50-1	1,2-Dichlorobenzene	ND	5.2	ug/kg
541-73-1	1,3-Dichlorobenzene	ND	5.2	ug/kg
106-46-7	1,4-Dichlorobenzene	ND	5.2	ug/kg
75-71-8	Dichlorodifluoromethane	ND	5.2	ug/kg
75-34-3	1,1-Dichloroethane	ND	5.2	ug/kg
107-06-2	1,2-Dichloroethane	ND	5.2	ug/kg
75-35-4	1,1-Dichloroethene	ND	5.2	ug/kg
156-59-2	cis-1,2-Dichloroethene	ND	5.2	ug/kg
156-60-5	trans-1,2-Dichloroethene	ND	5.2	ug/kg
78-87-5	1,2-Dichloropropane	ND	5.2	ug/kg
142-28-9	1,3-Dichloropropane	ND	5.2	ug/kg
594-20-7	2,2-Dichloropropane	ND	5.2	ug/kg
563-58-6	1,1-Dichloropropene	ND	5.2	ug/kg
10061-01-5	cis-1,3-Dichloropropene	ND	5.2	ug/kg
10061-02-6	trans-1,3-Dichloropropene	ND	5.2	ug/kg
60-29-7	Diethyl ether	ND	5.2	ug/kg
	2			

Report No: E106J35 Sample No: 9 Sample Description: 841110628-09

Date Collected: 06/28/2011 14:20 Date Received: 06/29/2011 16:10 Date Analyzed: 06/30/2011 15:25 By: AMH Analytical Method: 8260B Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 6.4 Dilution Factor: 1 Lab Data File: J46006.D QC Batch#: 86074

CAS No.	Parameter	Result	DL	Units
123-91-1	1,4-Dioxane	ND	21	ug/kg
100-41-4	Ethylbenzene	ND	5.2	ug/kg
87-68-3	Hexachlorobutadiene	ND	5.2	ug/kg
591-78-6	2-Hexanone	ND	10	ug/kg
98-82-8	Isopropylbenzene	ND	5.2	ug/kg
99-87-6	4-Isopropyltoluene	ND	5.2	ug/kg
1634-04-4	Methyl tert-butyl ether (MTBE)	ND	5.2	ug/kg
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	10	ug/kg
75-09-2	Methylene chloride	ND	5.2	ug/kg
91-20-3	Naphthalene	ND	5.2	ug/kg
103-65-1	n-Propylbenzene	ND	5.2	ug/kg
100-42-5	Styrene	ND	5.2	ug/kg
109-99-9	Tetrahydrofuran	ND	5.2	ug/kg
110-57-6	trans-1,4-Dichloro-2-butene	ND	5.2	ug/kg
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.2	ug/kg
96-18-4	1,2,3-Trichloropropane	ND	5.2	ug/kg
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.2	ug/kg
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.2	ug/kg
127-18-4	Tetrachloroethene (PCE)	ND	5.2	ug/kg
108-88-3	Toluene	ND	5.2	ug/kg
87-61-6	1,2,3-Trichlorobenzene	ND	5.2	ug/kg
120-82-1	1,2,4-Trichlorobenzene	ND	5.2	ug/kg
71-55-6	1,1,1-Trichloroethane	ND	5.2	ug/kg
79-00-5	1,1,2-Trichloroethane	ND	5.2	ug/kg
79-01-6	Trichloroethene (TCE)	ND	5.2	ug/kg
75-69-4	Trichlorofluoromethane	ND	5.2	ug/kg
95-63-6	1,2,4-Trimethylbenzene	ND	5.2	ug/kg
108-67-8	1,3,5-Trimethylbenzene	ND	5.2	ug/kg
75-01-4	Vinyl chloride	ND	5.2	ug/kg
95-47-6	o-Xylene	ND	5.2	ug/kg
108-38-3	m,p-Xylenes	ND	10	ug/kg
~ ~ ~				

Sample QC		
Surrogate	Recovery	QC Limits
1,2-Dichloroethane-d4	111%	82%-120%
Bromofluorobenzene	95%	70%-122%
Toluene-d8	103%	77%-126%

Report No: E106J35 Sample No: 10 Sample Description: 841110628-10

Date Collected: 06/28/2011 14:30 Date Received: 06/29/2011 16:10 Date Extracted: 07/01/2011 11:00 By: AJM Date Analyzed: 07/05/2011 22:30 By: GMP Preparation Method: 3500 Analytical Method: 8270C Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 7.8 Sample Weight/Volume: 30.00 Dilution Factor: 2 Extract Volume: 1 Lab Data File: L32802.D QC Batch#: 86210

CAS No.	Parameter	Result	DL	Units
103-33-3	Azobenzene	ND	360	ug/kg
83-32-9	Acenaphthene	ND	360	ug/kg
208-96-8	Acenaphthylene	ND	360	ug/kg
62-53-3	Aniline	ND	720	ug/kg
120-12-7	Anthracene	ND	360	ug/kg
92-52-4	Biphenyl	ND	360	ug/kg
56-55-3	Benzo[a]anthracene	ND	360	ug/kg
50-32-8	Benzo[a]pyrene	ND	360	ug/kg
205-99-2	Benzo[b]fluoranthene	ND	360	ug/kg
191-24-2	Benzo[g,h,i]perylene	ND	360	ug/kg
207-08-9	Benzo[k]fluoranthene	ND	360	ug/kg
65-85-0	Benzoic acid	ND	1800	ug/kg
100-51-6	Benzyl alcohol	ND	720	ug/kg
85-68-7	Benzyl butyl phthalate	ND	360	ug/kg
111-91-1	Bis(2-chloroethoxy)methane	ND	360	ug/kg
111-44-4	Bis(2-chloroethyl)ether	ND	360	ug/kg
108-60-1	Bis(2-chloroisopropyl)ether	ND	720	ug/kg
117-81-7	Bis(2-ethylhexyl)phthalate	ND	360	ug/kg
101-55-3	4-Bromophenyl phenyl ether	ND	360	ug/kg
59-50-7	4-Chloro-3-methylphenol	ND	360	ug/kg
106-47-8	4-Chloroaniline	ND	720	ug/kg
91-58-7	2-Chloronaphthalene	ND	360	ug/kg
95-57-8	2-Chlorophenol	ND	360	ug/kg
7005-72-3	4-Chlorophenyl phenyl ether	ND	360	ug/kg
218-01-9	Chrysene	ND	360	ug/kg
53-70-3	Dibenz[a,h]anthracene	ND	360	ug/kg
84-74-2	Di-n-butyl phthalate	ND	360	ug/kg
117-84-0	Di-n-octyl phthalate	ND	360	ug/kg
132-64-9	Dibenzofuran	ND	720	ug/kg
95-50-1	1,2-Dichlorobenzene	ND	360	ug/kg
541-73-1	1,3-Dichlorobenzene	ND	360	ug/kg
106-46-7	1,4-Dichlorobenzene	ND	360	ug/kg
91-94-1	3,3-Dichlorobenzidine	ND	360	ug/kg
120-83-2	2,4-Dichlorophenol	ND	360	ug/kg
84-66-2	Diethyl phthalate	ND	360	ug/kg
131-11-3	Dimethyl phthalate	ND	360	ug/kg
105-67-9	2,4-Dimethylphenol	ND	360	ug/kg
51-28-5	2,4-Dinitrophenol	ND	360	ug/kg
121-14-2	2,4-Dinitrotoluene	ND	360	ug/kg
606-20-2	2,6-Dinitrotoluene	ND	360	ug/kg

Report No: E106J35 Sample No: 10 Sample Description: 841110628-10

Date Collected: 06/28/2011 14:30 Date Received: 06/29/2011 16:10 Date Extracted: 07/01/2011 11:00 By: AJM Date Analyzed: 07/05/2011 22:30 By: GMP Preparation Method: 3500 Analytical Method: 8270C Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 7.8 Sample Weight/Volume: 30.00 Dilution Factor: 2 Extract Volume: 1 Lab Data File: L32802.D QC Batch#: 86210

CAS No.	Parameter	Result	DL	Units
206-44-0	Fluoranthene	360	360	ug/kg
86-73-7	Fluorene	ND	360	ug/kg
118-74-1	Hexachlorobenzene	ND	360	ug/kg
87-68-3	Hexachlorobutadiene	ND	360	ug/kg
77-47-4	Hexachlorocyclopentadiene	ND	360	ug/kg
67-72-1	Hexachloroethane	ND	360	ug/kg
193-39-5	Indeno[1,2,3-cd]pyrene	ND	360	ug/kg
78-59-1	Isophorone	ND	360	ug/kg
534-52-1	2-Methyl-4,6-dinitrophenol	ND	360	ug/kg
91-57-6	2-Methylnaphthalene	ND	360	ug/kg
95-48-7	2-Methylphenol	ND	360	ug/kg
108-39-4	3- & 4-Methylphenols	ND	720	ug/kg
91-20-3	Naphthalene	ND	360	ug/kg
88-74-4	2-Nitroaniline	ND	720	ug/kg
99-09-2	3-Nitroaniline	ND	720	ug/kg
100-01-6	4-Nitroaniline	ND	720	ug/kg
98-95-3	Nitrobenzene	ND	360	ug/kg
88-75-5	2-Nitrophenol	ND	360	ug/kg
100-02-1	4-Nitrophenol	ND	360	ug/kg
621-64-7	N-Nitrosodi-n-propylamine	ND	360	ug/kg
62-75-9	N-Nitrosodimethylamine	ND	360	ug/kg
86-30-6	N-Nitrosodiphenylamine	ND	360	ug/kg
87-86-5	Pentachlorophenol	ND	360	ug/kg
85-01-8	Phenanthrene	440	360	ug/kg
108-95-2	Phenol	ND	360	ug/kg
129-00-0	Pyrene	480	360	ug/kg
120-82-1	1,2,4-Trichlorobenzene	ND	360	ug/kg
95-95-4	2,4,5-Trichlorophenol	ND	360	ug/kg
88-06-2	2,4,6-Trichlorophenol	ND	360	ug/kg

Sample QC
Surrogate

Surrogate	Recovery	QC Limits
2,4,6-Tribromophenol	104%	18%-118%
2-Fluorobiphenyl	91%	24%-101%
2-Fluorophenol	86%	10%-94%
4-Terphenyl-d14	137%	20%-133%
Nitrobenzene-d5	91%	16%-98%
Phenol-d6	86%	15%-102%

Report No: E106J35 Sample No: 10 Sample Description: 841110628-10

Date Collected: 06/28/2011 14:30 Date Received: 06/29/2011 16:10 Date Extracted: 07/05/2011 09:00 By: DPR Date Analyzed: 07/07/2011 10:34 By: MRB Preparation Method: 8100 Analytical Method: 8100 Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 7.8 Sample Weight/Volume: 10.00 Dilution Factor: 1 Extract Volume: 1 Lab Data File: 6070647.D QC Batch#: 86265

CAS No.	Parameter	Result	DL	Units
	C6-C12 Light Petroleum Distillate C10-C28 Medium Petroleum Distillate C16-C36 Heavy Petroleum Distillate Total PHC	ND ND 260 260	22 22 22 22 22	mg/kg mg/kg mg/kg mg/kg

Report No: E106J35 Sample No: 10 Sample Description: 841110628-10

Date Collected: 06/28/2011 14:30 Date Received: 06/29/2011 16:10 Date Extracted: 07/07/2011 09:00 By: DPR Date Analyzed: 07/07/2011 21:23 By: MRB Preparation Method: 3500 Analytical Method: 8082 Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 7.8 Sample Weight/Volume: 30.00 Dilution Factor: 1 Extract Volume: 2 Lab Data File: 8070711.D QC Batch#: 86262

CAS No.	Parameter	Result	DL	Units
12674-11-2	Aroclor 1016	ND	14	ug/kg
11104-28-2	Aroclor 1221	ND	14	ug/kg
11141-16-5	Aroclor 1232	ND	14	ug/kg
53469-21-9	Aroclor 1242	ND	14	ug/kg
12672-29-6	Aroclor 1248	ND	14	ug/kg
11097-69-1	Aroclor 1254	ND	14	ug/kg
11096-82-5	Aroclor 1260	ND	14	ug/kg
Sample QC				
Surrogate		Recovery	QC Limits	
Tetrachloro-m-xylene		64%	10%-103%	6
Decachlorobiphen		64%	10%-142%	6

Report No: E106J35 Sample No: 10 Sample Description: 841110628-10

Date Collected: 06/28/2011 14:30 Date Received: 06/29/2011 16:10 Date Analyzed: 06/30/2011 15:52 By: AMH Analytical Method: 8260B Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 7.8 Dilution Factor: 1 Lab Data File: J46007.D QC Batch#: 86074

CAS No.	Parameter	Result	DL	Units
67-64-1	Acetone	ND	9.6	ug/kg
107-13-1	Acrylonitrile	ND	4.8	ug/kg
71-43-2	Benzene	ND	4.8	ug/kg
108-86-1	Bromobenzene	ND	4.8	ug/kg
74-97-5	Bromochloromethane	ND	4.8	ug/kg
75-27-4	Bromodichloromethane	ND	4.8	ug/kg
75-25-2	Bromoform	ND	4.8	ug/kg
74-83-9	Bromomethane	ND	4.8	ug/kg
78-93-3	2-Butanone (MEK)	ND	9.6	ug/kg
104-51-8	n-Butylbenzene	ND	4.8	ug/kg
135-98-8	sec-Butylbenzene	ND	4.8	ug/kg
98-06-6	tert-Butylbenzene	ND	4.8	ug/kg
75-15-0	Carbon disulfide	ND	4.8	ug/kg
56-23-5	Carbon tetrachloride	ND	4.8	ug/kg
108-90-7	Chlorobenzene	ND	4.8	ug/kg
75-00-3	Chloroethane	ND	4.8	ug/kg
67-66-3	Chloroform	ND	4.8	ug/kg
74-87-3	Chloromethane	ND	4.8	ug/kg
95-49-8	2-Chlorotoluene	ND	4.8	ug/kg
106-43-4	4-Chlorotoluene	ND	4.8	ug/kg
96-12-8	1,2-Dibromo-3-chloropropane (DBCP)	ND	4.8	ug/kg
124-48-1	Dibromochloromethane	ND	4.8	ug/kg
106-93-4	1,2-Dibromoethane (EDB)	ND	4.8	ug/kg
74-95-3	Dibromomethane	ND	4.8	ug/kg
95-50-1	1,2-Dichlorobenzene	ND	4.8	ug/kg
541-73-1	1,3-Dichlorobenzene	ND	4.8	ug/kg
106-46-7	1,4-Dichlorobenzene	ND	4.8	ug/kg
75-71-8	Dichlorodifluoromethane	ND	4.8	ug/kg
75-34-3	1,1-Dichloroethane	ND	4.8	ug/kg
107-06-2	1,2-Dichloroethane	ND	4.8	ug/kg
75-35-4	1,1-Dichloroethene	ND	4.8	ug/kg
156-59-2	cis-1,2-Dichloroethene	ND	4.8	ug/kg
156-60-5	trans-1,2-Dichloroethene	ND	4.8	ug/kg
78-87-5	1,2-Dichloropropane	ND	4.8	ug/kg
142-28-9	1,3-Dichloropropane	ND	4.8	ug/kg
594-20-7	2,2-Dichloropropane	ND	4.8	ug/kg
563-58-6	1,1-Dichloropropene	ND	4.8	ug/kg
10061-01-5	cis-1,3-Dichloropropene	ND	4.8	ug/kg
10061-02-6	trans-1,3-Dichloropropene	ND	4.8	ug/kg
60-29-7	Diethyl ether	ND	4.8	ug/kg

Report No: E106J35 Sample No: 10 Sample Description: 841110628-10

Date Collected: 06/28/2011 14:30 Date Received: 06/29/2011 16:10 Date Analyzed: 06/30/2011 15:52 By: AMH Analytical Method: 8260B Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 7.8 Dilution Factor: 1 Lab Data File: J46007.D QC Batch#: 86074

CAS No.	Parameter	Result	DL	Units
123-91-1	1,4-Dioxane	ND	19	ug/kg
100-41-4	Ethylbenzene	ND	4.8	ug/kg
87-68-3	Hexachlorobutadiene	ND	4.8	ug/kg
591-78-6	2-Hexanone	ND	9.6	ug/kg
98-82-8	Isopropylbenzene	ND	4.8	ug/kg
99-87-6	4-Isopropyltoluene	ND	4.8	ug/kg
1634-04-4	Methyl tert-butyl ether (MTBE)	ND	4.8	ug/kg
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	9.6	ug/kg
75-09-2	Methylene chloride	ND	4.8	ug/kg
91-20-3	Naphthalene	ND	4.8	ug/kg
103-65-1	n-Propylbenzene	ND	4.8	ug/kg
100-42-5	Styrene	ND	4.8	ug/kg
109-99-9	Tetrahydrofuran	ND	4.8	ug/kg
110-57-6	trans-1,4-Dichloro-2-butene	ND	4.8	ug/kg
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.8	ug/kg
96-18-4	1,2,3-Trichloropropane	ND	4.8	ug/kg
630-20-6	1,1,1,2-Tetrachloroethane	ND	4.8	ug/kg
79-34-5	1,1,2,2-Tetrachloroethane	ND	4.8	ug/kg
127-18-4	Tetrachloroethene (PCE)	ND	4.8	ug/kg
108-88-3	Toluene	ND	4.8	ug/kg
87-61-6	1,2,3-Trichlorobenzene	ND	4.8	ug/kg
120-82-1	1,2,4-Trichlorobenzene	ND	4.8	ug/kg
71-55-6	1,1,1-Trichloroethane	ND	4.8	ug/kg
79-00-5	1,1,2-Trichloroethane	ND	4.8	ug/kg
79-01-6	Trichloroethene (TCE)	ND	4.8	ug/kg
75-69-4	Trichlorofluoromethane	ND	4.8	ug/kg
95-63-6	1,2,4-Trimethylbenzene	ND	4.8	ug/kg
108-67-8	1,3,5-Trimethylbenzene	ND	4.8	ug/kg
75-01-4	Vinyl chloride	ND	4.8	ug/kg
95-47-6	o-Xylene	ND	4.8	ug/kg
108-38-3	m,p-Xylenes	ND	9.6	ug/kg
~ ~ ~				

Sample QC		
Surrogate	Recovery	QC Limits
1,2-Dichloroethane-d4	113%	82%-120%
Bromofluorobenzene	105%	70%-122%
Toluene-d8	102%	77%-126%

Report No: E106J35 Sample No: 11 Sample Description: 841110628-11

Date Collected: 06/28/2011 14:50 Date Received: 06/29/2011 16:10 Date Extracted: 07/06/2011 09:00 By: DPR Date Analyzed: 07/08/2011 19:13 By: GMP Preparation Method: 3500 Analytical Method: 8270C Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 4.9 Sample Weight/Volume: 30.00 Dilution Factor: 2 Extract Volume: 1 Lab Data File: L32850.D QC Batch#: 86268

CAS No.	Parameter	Result	DL	Units
103-33-3	Azobenzene	ND	350	ug/kg
83-32-9	Acenaphthene	ND	350	ug/kg
208-96-8	Acenaphthylene	ND	350	ug/kg
62-53-3	Aniline	ND	700	ug/kg
120-12-7	Anthracene	ND	350	ug/kg
92-52-4	Biphenyl	ND	350	ug/kg
56-55-3	Benzo[a]anthracene	ND	350	ug/kg
50-32-8	Benzo[a]pyrene	ND	350	ug/kg
205-99-2	Benzo[b]fluoranthene	ND	350	ug/kg
191-24-2	Benzo[g,h,i]perylene	ND	350	ug/kg
207-08-9	Benzo[k]fluoranthene	ND	350	ug/kg
65-85-0	Benzoic acid	ND	1800	ug/kg
100-51-6	Benzyl alcohol	ND	700	ug/kg
85-68-7	Benzyl butyl phthalate	ND	350	ug/kg
111-91-1	Bis(2-chloroethoxy)methane	ND	350	ug/kg
111-44-4	Bis(2-chloroethyl)ether	ND	350	ug/kg
108-60-1	Bis(2-chloroisopropyl)ether	ND	700	ug/kg
117-81-7	Bis(2-ethylhexyl)phthalate	ND	350	ug/kg
101-55-3	4-Bromophenyl phenyl ether	ND	350	ug/kg
59-50-7	4-Chloro-3-methylphenol	ND	350	ug/kg
106-47-8	4-Chloroaniline	ND	700	ug/kg
91-58-7	2-Chloronaphthalene	ND	350	ug/kg
95-57-8	2-Chlorophenol	ND	350	ug/kg
7005-72-3	4-Chlorophenyl phenyl ether	ND	350	ug/kg
218-01-9	Chrysene	ND	350	ug/kg
53-70-3	Dibenz[a,h]anthracene	ND	350	ug/kg
84-74-2	Di-n-butyl phthalate	ND	350	ug/kg
117-84-0	Di-n-octyl phthalate	ND	350	ug/kg
132-64-9	Dibenzofuran	ND	700	ug/kg
95-50-1	1,2-Dichlorobenzene	ND	350	ug/kg
541-73-1	1,3-Dichlorobenzene	ND	350	ug/kg
106-46-7	1,4-Dichlorobenzene	ND	350	ug/kg
91-94-1	3,3-Dichlorobenzidine	ND	350	ug/kg
120-83-2	2,4-Dichlorophenol	ND	350	ug/kg
84-66-2	Diethyl phthalate	ND	350	ug/kg
131-11-3	Dimethyl phthalate	ND	350	ug/kg
105-67-9	2,4-Dimethylphenol	ND	350	ug/kg
51-28-5	2,4-Dinitrophenol	ND	350	ug/kg
121-14-2	2,4-Dinitrotoluene	ND	350	ug/kg
606-20-2	2,6-Dinitrotoluene	ND	350	ug/kg

Report No: E106J35 Sample No: 11 Sample Description: 841110628-11

Date Collected: 06/28/2011 14:50 Date Received: 06/29/2011 16:10 Date Extracted: 07/06/2011 09:00 By: DPR Date Analyzed: 07/08/2011 19:13 By: GMP Preparation Method: 3500 Analytical Method: 8270C Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 4.9 Sample Weight/Volume: 30.00 Dilution Factor: 2 Extract Volume: 1 Lab Data File: L32850.D QC Batch#: 86268

CAS No.	Parameter	Result	DL	Units
206-44-0	Fluoranthene	ND	350	ug/kg
86-73-7	Fluorene	ND	350	ug/kg
118-74-1	Hexachlorobenzene	ND	350	ug/kg
87-68-3	Hexachlorobutadiene	ND	350	ug/kg
77-47-4	Hexachlorocyclopentadiene	ND	350	ug/kg
67-72-1	Hexachloroethane	ND	350	ug/kg
193-39-5	Indeno[1,2,3-cd]pyrene	ND	350	ug/kg
78-59-1	Isophorone	ND	350	ug/kg
534-52-1	2-Methyl-4,6-dinitrophenol	ND	350	ug/kg
91-57-6	2-Methylnaphthalene	ND	350	ug/kg
95-48-7	2-Methylphenol	ND	350	ug/kg
108-39-4	3- & 4-Methylphenols	ND	700	ug/kg
91-20-3	Naphthalene	ND	350	ug/kg
88-74-4	2-Nitroaniline	ND	700	ug/kg
99-09-2	3-Nitroaniline	ND	700	ug/kg
100-01-6	4-Nitroaniline	ND	700	ug/kg
98-95-3	Nitrobenzene	ND	350	ug/kg
88-75-5	2-Nitrophenol	ND	350	ug/kg
100-02-1	4-Nitrophenol	ND	350	ug/kg
621-64-7	N-Nitrosodi-n-propylamine	ND	350	ug/kg
62-75-9	N-Nitrosodimethylamine	ND	350	ug/kg
86-30-6	N-Nitrosodiphenylamine	ND	350	ug/kg
87-86-5	Pentachlorophenol	ND	350	ug/kg
85-01-8	Phenanthrene	ND	350	ug/kg
108-95-2	Phenol	ND	350	ug/kg
129-00-0	Pyrene	ND	350	ug/kg
120-82-1	1,2,4-Trichlorobenzene	ND	350	ug/kg
95-95-4	2,4,5-Trichlorophenol	ND	350	ug/kg
88-06-2	2,4,6-Trichlorophenol	ND	350	ug/kg

Sample QC

Surrogate	Recovery	QC Limits
2,4,6-Tribromophenol	84%	18%-118%
2-Fluorobiphenyl	70%	24%-101%
2-Fluorophenol	60%	10%-94%
4-Terphenyl-d14	110%	20%-133%
Nitrobenzene-d5	64%	16%-98%
Phenol-d6	65%	15%-102%

Report No: E106J35 Sample No: 11 Sample Description: 841110628-11

Date Collected: 06/28/2011 14:50 Date Received: 06/29/2011 16:10 Date Extracted: 07/05/2011 09:00 By: DPR Date Analyzed: 07/07/2011 07:46 By: MRB Preparation Method: 8100 Analytical Method: 8100 Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 4.9 Sample Weight/Volume: 10.19 Dilution Factor: 1 Extract Volume: 1 Lab Data File: 6070642.D QC Batch#: 86265

C6-C12 Light Petroleum DistillateNDC10-C28 Medium Petroleum DistillateNDC16-C36 Heavy Petroleum Distillate30Total PHC30	21 21 21 21	mg/kg mg/kg mg/kg mg/kg

Report No: E106J35 Sample No: 11 Sample Description: 841110628-11

Date Collected: 06/28/2011 14:50 Date Received: 06/29/2011 16:10 Date Extracted: 07/07/2011 09:00 By: DPR Date Analyzed: 07/07/2011 21:42 By: MRB Preparation Method: 3500 Analytical Method: 8082

Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 4.9 Sample Weight/Volume: 30.00 Dilution Factor: 1 Extract Volume: 2 Lab Data File: 8070712.D QC Batch#: 86262

CAS No.	Parameter	Result	DL	Units
12674-11-2	Aroclor 1016	ND	14	ug/kg
11104-28-2	Aroclor 1221	ND	14	ug/kg
11141-16-5	Aroclor 1232	ND	14	ug/kg
53469-21-9	Aroclor 1242	ND	14	ug/kg
12672-29-6	Aroclor 1248	ND	14	ug/kg
11097-69-1	Aroclor 1254	ND	14	ug/kg
11096-82-5	Aroclor 1260	ND	14	ug/kg
Sample QC				
Surrogate		Recovery	QC Limits	
Tetrachloro-m-xylene		79%	10%-103%	0
Decachlorobiphenyl		89%	10%-142%	6

Report No: E106J35 Sample No: 11 Sample Description: 841110628-11

Date Collected: 06/28/2011 14:50 Date Received: 06/29/2011 16:10 Date Analyzed: 06/30/2011 16:20 By: AMH Analytical Method: 8260B Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 4.9 Dilution Factor: 1 Lab Data File: J46008.D QC Batch#: 86074

CAS No.	Parameter	Result	DL	Units
67-64-1	Acetone	ND	11	ug/kg
107-13-1	Acrylonitrile	ND	5.7	ug/kg
71-43-2	Benzene	ND	5.7	ug/kg
108-86-1	Bromobenzene	ND	5.7	ug/kg
74-97-5	Bromochloromethane	ND	5.7	ug/kg
75-27-4	Bromodichloromethane	ND	5.7	ug/kg
75-25-2	Bromoform	ND	5.7	ug/kg
74-83-9	Bromomethane	ND	5.7	ug/kg
78-93-3	2-Butanone (MEK)	ND	11	ug/kg
104-51-8	n-Butylbenzene	ND	5.7	ug/kg
135-98-8	sec-Butylbenzene	ND	5.7	ug/kg
98-06-6	tert-Butylbenzene	ND	5.7	ug/kg
75-15-0	Carbon disulfide	ND	5.7	ug/kg
56-23-5	Carbon tetrachloride	ND	5.7	ug/kg
108-90-7	Chlorobenzene	ND	5.7	ug/kg
75-00-3	Chloroethane	ND	5.7	ug/kg
67-66-3	Chloroform	ND	5.7	ug/kg
74-87-3	Chloromethane	ND	5.7	ug/kg
95-49-8	2-Chlorotoluene	ND	5.7	ug/kg
106-43-4	4-Chlorotoluene	ND	5.7	ug/kg
96-12-8	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.7	ug/kg
124-48-1	Dibromochloromethane	ND	5.7	ug/kg
106-93-4	1,2-Dibromoethane (EDB)	ND	5.7	ug/kg
74-95-3	Dibromomethane	ND	5.7	ug/kg
95-50-1	1,2-Dichlorobenzene	ND	5.7	ug/kg
541-73-1	1,3-Dichlorobenzene	ND	5.7	ug/kg
106-46-7	1,4-Dichlorobenzene	ND	5.7	ug/kg
75-71-8	Dichlorodifluoromethane	ND	5.7	ug/kg
75-34-3	1,1-Dichloroethane	ND	5.7	ug/kg
107-06-2	1,2-Dichloroethane	ND	5.7	ug/kg
75-35-4	1,1-Dichloroethene	ND	5.7	ug/kg
156-59-2	cis-1,2-Dichloroethene	ND	5.7	ug/kg
156-60-5	trans-1,2-Dichloroethene	ND	5.7	ug/kg
78-87-5	1,2-Dichloropropane	ND	5.7	ug/kg
142-28-9	1,3-Dichloropropane	ND	5.7	ug/kg
594-20-7	2,2-Dichloropropane	ND	5.7	ug/kg
563-58-6	1,1-Dichloropropene	ND	5.7	ug/kg
10061-01-5	cis-1,3-Dichloropropene	ND	5.7	ug/kg
10061-02-6	trans-1,3-Dichloropropene	ND	5.7	ug/kg
60-29-7	Diethyl ether	ND	5.7	ug/kg

Report No: E106J35 Sample No: 11 Sample Description: 841110628-11

Date Collected: 06/28/2011 14:50 Date Received: 06/29/2011 16:10 Date Analyzed: 06/30/2011 16:20 By: AMH Analytical Method: 8260B Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 4.9 Dilution Factor: 1 Lab Data File: J46008.D QC Batch#: 86074

CAS No.	Parameter	Result	DL	Units
123-91-1	1,4-Dioxane	ND	23	ug/kg
100-41-4	Ethylbenzene	ND	5.7	ug/kg
87-68-3	Hexachlorobutadiene	ND	5.7	ug/kg
591-78-6	2-Hexanone	ND	11	ug/kg
98-82-8	Isopropylbenzene	ND	5.7	ug/kg
99-87-6	4-Isopropyltoluene	ND	5.7	ug/kg
1634-04-4	Methyl tert-butyl ether (MTBE)	ND	5.7	ug/kg
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	11	ug/kg
75-09-2	Methylene chloride	ND	5.7	ug/kg
91-20-3	Naphthalene	ND	5.7	ug/kg
103-65-1	n-Propylbenzene	ND	5.7	ug/kg
100-42-5	Styrene	ND	5.7	ug/kg
109-99-9	Tetrahydrofuran	ND	5.7	ug/kg
110-57-6	trans-1,4-Dichloro-2-butene	ND	5.7	ug/kg
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.7	ug/kg
96-18-4	1,2,3-Trichloropropane	ND	5.7	ug/kg
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.7	ug/kg
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.7	ug/kg
127-18-4	Tetrachloroethene (PCE)	ND	5.7	ug/kg
108-88-3	Toluene	ND	5.7	ug/kg
87-61-6	1,2,3-Trichlorobenzene	ND	5.7	ug/kg
120-82-1	1,2,4-Trichlorobenzene	ND	5.7	ug/kg
71-55-6	1,1,1-Trichloroethane	ND	5.7	ug/kg
79-00-5	1,1,2-Trichloroethane	ND	5.7	ug/kg
79-01-6	Trichloroethene (TCE)	ND	5.7	ug/kg
75-69-4	Trichlorofluoromethane	ND	5.7	ug/kg
95-63-6	1,2,4-Trimethylbenzene	ND	5.7	ug/kg
108-67-8	1,3,5-Trimethylbenzene	ND	5.7	ug/kg
75-01-4	Vinyl chloride	ND	5.7	ug/kg
95-47-6	o-Xylene	ND	5.7	ug/kg
108-38-3	m,p-Xylenes	ND	11	ug/kg
~ ~				

Sample QC		
Surrogate	Recovery	QC Limits
1,2-Dichloroethane-d4	112%	82%-120%
Bromofluorobenzene	103%	70%-122%
Toluene-d8	102%	77%-126%

Report No: E106J35 Sample No: 12 Sample Description: 841110628-12

Date Collected: 06/28/2011 15:00 Date Received: 06/29/2011 16:10 Date Extracted: 07/06/2011 09:00 By: DPR Date Analyzed: 07/08/2011 19:42 By: GMP Preparation Method: 3500 Analytical Method: 8270C Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 4.6 Sample Weight/Volume: 30.05 Dilution Factor: 2 Extract Volume: 1 Lab Data File: L32851.D QC Batch#: 86268

CAS No.	Parameter	Result	DL	Units
103-33-3	Azobenzene	ND	350	ug/kg
83-32-9	Acenaphthene	ND	350	ug/kg
208-96-8	Acenaphthylene	ND	350	ug/kg
62-53-3	Aniline	ND	700	ug/kg
120-12-7	Anthracene	ND	350	ug/kg
92-52-4	Biphenyl	ND	350	ug/kg
56-55-3	Benzo[a]anthracene	ND	350	ug/kg
50-32-8	Benzo[a]pyrene	ND	350	ug/kg
205-99-2	Benzo[b]fluoranthene	ND	350	ug/kg
191-24-2	Benzo[g,h,i]perylene	ND	350	ug/kg
207-08-9	Benzo[k]fluoranthene	ND	350	ug/kg
65-85-0	Benzoic acid	ND	1700	ug/kg
100-51-6	Benzyl alcohol	ND	700	ug/kg
85-68-7	Benzyl butyl phthalate	ND	350	ug/kg
111-91-1	Bis(2-chloroethoxy)methane	ND	350	ug/kg
111-44-4	Bis(2-chloroethyl)ether	ND	350	ug/kg
108-60-1	Bis(2-chloroisopropyl)ether	ND	700	ug/kg
117-81-7	Bis(2-ethylhexyl)phthalate	ND	350	ug/kg
101-55-3	4-Bromophenyl phenyl ether	ND	350	ug/kg
59-50-7	4-Chloro-3-methylphenol	ND	350	ug/kg
106-47-8	4-Chloroaniline	ND	700	ug/kg
91-58-7	2-Chloronaphthalene	ND	350	ug/kg
95-57-8	2-Chlorophenol	ND	350	ug/kg
7005-72-3	4-Chlorophenyl phenyl ether	ND	350	ug/kg
218-01-9	Chrysene	ND	350	ug/kg
53-70-3	Dibenz[a,h]anthracene	ND	350	ug/kg
84-74-2	Di-n-butyl phthalate	ND	350	ug/kg
117-84-0	Di-n-octyl phthalate	ND	350	ug/kg
132-64-9	Dibenzofuran	ND	700	ug/kg
95-50-1	1,2-Dichlorobenzene	ND	350	ug/kg
541-73-1	1,3-Dichlorobenzene	ND	350	ug/kg
106-46-7	1,4-Dichlorobenzene	ND	350	ug/kg
91-94-1	3,3-Dichlorobenzidine	ND	350	ug/kg
120-83-2	2,4-Dichlorophenol	ND	350	ug/kg
84-66-2	Diethyl phthalate	ND	350	ug/kg
131-11-3	Dimethyl phthalate	ND	350	ug/kg
105-67-9	2,4-Dimethylphenol	ND	350	ug/kg
51-28-5	2,4-Dinitrophenol	ND	350	ug/kg
121-14-2	2,4-Dinitrotoluene	ND	350	ug/kg
606-20-2	2,6-Dinitrotoluene	ND	350	ug/kg

Report No: E106J35 Sample No: 12 Sample Description: 841110628-12

Date Collected: 06/28/2011 15:00 Date Received: 06/29/2011 16:10 Date Extracted: 07/06/2011 09:00 By: DPR Date Analyzed: 07/08/2011 19:42 By: GMP Preparation Method: 3500 Analytical Method: 8270C Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 4.6 Sample Weight/Volume: 30.05 Dilution Factor: 2 Extract Volume: 1 Lab Data File: L32851.D QC Batch#: 86268

CAS No.	Parameter	Result	DL	Units
206-44-0	Fluoranthene	ND	350	ug/kg
86-73-7	Fluorene	ND	350	ug/kg
118-74-1	Hexachlorobenzene	ND	350	ug/kg
87-68-3	Hexachlorobutadiene	ND	350	ug/kg
77-47-4	Hexachlorocyclopentadiene	ND	350	ug/kg
67-72-1	Hexachloroethane	ND	350	ug/kg
193-39-5	Indeno[1,2,3-cd]pyrene	ND	350	ug/kg
78-59-1	Isophorone	ND	350	ug/kg
534-52-1	2-Methyl-4,6-dinitrophenol	ND	350	ug/kg
91-57-6	2-Methylnaphthalene	ND	350	ug/kg
95-48-7	2-Methylphenol	ND	350	ug/kg
108-39-4	3- & 4-Methylphenols	ND	700	ug/kg
91-20-3	Naphthalene	ND	350	ug/kg
88-74-4	2-Nitroaniline	ND	700	ug/kg
99-09-2	3-Nitroaniline	ND	700	ug/kg
100-01-6	4-Nitroaniline	ND	700	ug/kg
98-95-3	Nitrobenzene	ND	350	ug/kg
88-75-5	2-Nitrophenol	ND	350	ug/kg
100-02-1	4-Nitrophenol	ND	350	ug/kg
621-64-7	N-Nitrosodi-n-propylamine	ND	350	ug/kg
62-75-9	N-Nitrosodimethylamine	ND	350	ug/kg
86-30-6	N-Nitrosodiphenylamine	ND	350	ug/kg
87-86-5	Pentachlorophenol	ND	350	ug/kg
85-01-8	Phenanthrene	ND	350	ug/kg
108-95-2	Phenol	ND	350	ug/kg
129-00-0	Pyrene	ND	350	ug/kg
120-82-1	1,2,4-Trichlorobenzene	ND	350	ug/kg
95-95-4	2,4,5-Trichlorophenol	ND	350	ug/kg
88-06-2	2,4,6-Trichlorophenol	ND	350	ug/kg

Sample QC

Surrogate	Recovery	QC Limits
2,4,6-Tribromophenol	38%	18%-118%
2-Fluorobiphenyl	61%	24%-101%
2-Fluorophenol	53%	10%-94%
4-Terphenyl-d14	96%	20%-133%
Nitrobenzene-d5	56%	16%-98%
Phenol-d6	58%	15%-102%

Report No: E106J35 Sample No: 12 Sample Description: 841110628-12

Date Collected: 06/28/2011 15:00 Date Received: 06/29/2011 16:10 Date Extracted: 07/05/2011 09:00 By: DPR Date Analyzed: 07/07/2011 08:20 By: MRB Preparation Method: 8100 Analytical Method: 8100 Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 4.6 Sample Weight/Volume: 10.01 Dilution Factor: 1 Extract Volume: 1 Lab Data File: 6070643.D QC Batch#: 86265

CAS No. Parameter Rest			ts
C10-C28 Medium Petroleum Distillate N C16-C36 Heavy Petroleum Distillate N	ID 2 ID 2 ID 2 ID 2	21 mg 21 mg	/kg /kg /kg /kg

Report No: E106J35 Sample No: 12 Sample Description: 841110628-12

Date Collected: 06/28/2011 15:00 Date Received: 06/29/2011 16:10 Date Extracted: 07/07/2011 09:00 By: DPR Date Analyzed: 07/07/2011 22:01 By: MRB Preparation Method: 3500 Analytical Method: 8082 Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 4.6 Sample Weight/Volume: 30.10 Dilution Factor: 1 Extract Volume: 2 Lab Data File: 8070713.D QC Batch#: 86262

CAS No.	Parameter	Result	DL	Units
12674-11-2	Aroclor 1016	ND	14	ug/kg
11104-28-2	Aroclor 1221	ND	14	ug/kg
11141-16-5	Aroclor 1232	ND	14	ug/kg
53469-21-9	Aroclor 1242	ND	14	ug/kg
12672-29-6	Aroclor 1248	ND	14	ug/kg
11097-69-1	Aroclor 1254	ND	14	ug/kg
11096-82-5	Aroclor 1260	ND	14	ug/kg
Sample QC				
Surrogate		Recovery	QC Limits	
Tetrachloro-m-xylene		42%	10%-103%	
Decachlorobiphen		50%	10%-142%	o

Report No: E106J35 Sample No: 12 Sample Description: 841110628-12

Date Collected: 06/28/2011 15:00 Date Received: 06/29/2011 16:10 Date Analyzed: 07/01/2011 13:18 By: AMH Analytical Method: 8260B Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 4.6 Dilution Factor: 1 Lab Data File: J46029.D QC Batch#: 86156

CAS No.	Parameter	Result	DL	Units
67-64-1	Acetone	ND	11	ug/kg
107-13-1	Acrylonitrile	ND	5.6	ug/kg
71-43-2	Benzene	ND	5.6	ug/kg
108-86-1	Bromobenzene	ND	5.6	ug/kg
74-97-5	Bromochloromethane	ND	5.6	ug/kg
75-27-4	Bromodichloromethane	ND	5.6	ug/kg
75-25-2	Bromoform	ND	5.6	ug/kg
74-83-9	Bromomethane	ND	5.6	ug/kg
78-93-3	2-Butanone (MEK)	ND	11	ug/kg
104-51-8	n-Butylbenzene	ND	5.6	ug/kg
135-98-8	sec-Butylbenzene	ND	5.6	ug/kg
98-06-6	tert-Butylbenzene	ND	5.6	ug/kg
75-15-0	Carbon disulfide	ND	5.6	ug/kg
56-23-5	Carbon tetrachloride	ND	5.6	ug/kg
108-90-7	Chlorobenzene	ND	5.6	ug/kg
75-00-3	Chloroethane	ND	5.6	ug/kg
67-66-3	Chloroform	ND	5.6	ug/kg
74-87-3	Chloromethane	ND	5.6	ug/kg
95-49-8	2-Chlorotoluene	ND	5.6	ug/kg
106-43-4	4-Chlorotoluene	ND	5.6	ug/kg
96-12-8	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.6	ug/kg
124-48-1	Dibromochloromethane	ND	5.6	ug/kg
106-93-4	1,2-Dibromoethane (EDB)	ND	5.6	ug/kg
74-95-3	Dibromomethane	ND	5.6	ug/kg
95-50-1	1,2-Dichlorobenzene	ND	5.6	ug/kg
541-73-1	1,3-Dichlorobenzene	ND	5.6	ug/kg
106-46-7	1,4-Dichlorobenzene	ND	5.6	ug/kg
75-71-8	Dichlorodifluoromethane	ND	5.6	ug/kg
75-34-3	1,1-Dichloroethane	ND	5.6	ug/kg
107-06-2	1,2-Dichloroethane	ND	5.6	ug/kg
75-35-4	1,1-Dichloroethene	ND	5.6	ug/kg
156-59-2	cis-1,2-Dichloroethene	ND	5.6	ug/kg
156-60-5	trans-1,2-Dichloroethene	ND	5.6	ug/kg
78-87-5	1,2-Dichloropropane	ND	5.6	ug/kg
142-28-9	1,3-Dichloropropane	ND	5.6	ug/kg
594-20-7	2,2-Dichloropropane	ND	5.6	ug/kg
563-58-6	1,1-Dichloropropene	ND	5.6	ug/kg
10061-01-5	cis-1,3-Dichloropropene	ND	5.6	ug/kg
10061-02-6	trans-1,3-Dichloropropene	ND	5.6	ug/kg
60-29-7	Diethyl ether	ND	5.6	ug/kg

Report No: E106J35 Sample No: 12 Sample Description: 841110628-12

Date Collected: 06/28/2011 15:00 Date Received: 06/29/2011 16:10 Date Analyzed: 07/01/2011 13:18 By: AMH Analytical Method: 8260B Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 4.6 Dilution Factor: 1 Lab Data File: J46029.D QC Batch#: 86156

CAS No.	Parameter	Result	DL	Units
123-91-1	1,4-Dioxane	ND	22	ug/kg
100-41-4	Ethylbenzene	ND	5.6	ug/kg
87-68-3	Hexachlorobutadiene	ND	5.6	ug/kg
591-78-6	2-Hexanone	ND	11	ug/kg
98-82-8	Isopropylbenzene	ND	5.6	ug/kg
99-87-6	4-Isopropyltoluene	ND	5.6	ug/kg
1634-04-4	Methyl tert-butyl ether (MTBE)	ND	5.6	ug/kg
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	11	ug/kg
75-09-2	Methylene chloride	ND	5.6	ug/kg
91-20-3	Naphthalene	ND	5.6	ug/kg
103-65-1	n-Propylbenzene	ND	5.6	ug/kg
100-42-5	Styrene	ND	5.6	ug/kg
109-99-9	Tetrahydrofuran	ND	5.6	ug/kg
110-57-6	trans-1,4-Dichloro-2-butene	ND	5.6	ug/kg
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.6	ug/kg
96-18-4	1,2,3-Trichloropropane	ND	5.6	ug/kg
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.6	ug/kg
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.6	ug/kg
127-18-4	Tetrachloroethene (PCE)	ND	5.6	ug/kg
108-88-3	Toluene	ND	5.6	ug/kg
87-61-6	1,2,3-Trichlorobenzene	ND	5.6	ug/kg
120-82-1	1,2,4-Trichlorobenzene	ND	5.6	ug/kg
71-55-6	1,1,1-Trichloroethane	ND	5.6	ug/kg
79-00-5	1,1,2-Trichloroethane	ND	5.6	ug/kg
79-01-6	Trichloroethene (TCE)	ND	5.6	ug/kg
75-69-4	Trichlorofluoromethane	ND	5.6	ug/kg
95-63-6	1,2,4-Trimethylbenzene	ND	5.6	ug/kg
108-67-8	1,3,5-Trimethylbenzene	ND	5.6	ug/kg
75-01-4	Vinyl chloride	ND	5.6	ug/kg
95-47-6	o-Xylene	ND	5.6	ug/kg
108-38-3	m,p-Xylenes	ND	11	ug/kg
~ ~ ~				

Sample QC		
Surrogate	Recovery	QC Limits
1,2-Dichloroethane-d4	110%	82%-120%
Bromofluorobenzene	104%	70%-122%
Toluene-d8	102%	77%-126%

Report No: E106J35 Sample No: 13 Sample Description: 841110628-13

Date Collected: 06/28/2011 15:05 Date Received: 06/29/2011 16:10 Date Extracted: 07/06/2011 09:00 By: DPR Date Analyzed: 07/08/2011 17:18 By: GMP Preparation Method: 3500 Analytical Method: 8270C Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 4.7 Sample Weight/Volume: 30.00 Dilution Factor: 1 Extract Volume: 1 Lab Data File: L32846.D QC Batch#: 86268

CAS No.	Parameter	Result	DL	Units
103-33-3	Azobenzene	ND	170	ug/kg
83-32-9	Acenaphthene	ND	170	ug/kg
208-96-8	Acenaphthylene	ND	170	ug/kg
62-53-3	Aniline	ND	350	ug/kg
120-12-7	Anthracene	ND	170	ug/kg
92-52-4	Biphenyl	ND	170	ug/kg
56-55-3	Benzo[a]anthracene	ND	170	ug/kg
50-32-8	Benzo[a]pyrene	ND	170	ug/kg
205-99-2	Benzo[b]fluoranthene	ND	170	ug/kg
191-24-2	Benzo[g,h,i]perylene	ND	170	ug/kg
207-08-9	Benzo[k]fluoranthene	ND	170	ug/kg
65-85-0	Benzoic acid	ND	870	ug/kg
100-51-6	Benzyl alcohol	ND	350	ug/kg
85-68-7	Benzyl butyl phthalate	ND	170	ug/kg
111-91-1	Bis(2-chloroethoxy)methane	ND	170	ug/kg
111-44-4	Bis(2-chloroethyl)ether	ND	170	ug/kg
108-60-1	Bis(2-chloroisopropyl)ether	ND	350	ug/kg
117-81-7	Bis(2-ethylhexyl)phthalate	ND	170	ug/kg
101-55-3	4-Bromophenyl phenyl ether	ND	170	ug/kg
59-50-7	4-Chloro-3-methylphenol	ND	170	ug/kg
106-47-8	4-Chloroaniline	ND	350	ug/kg
91-58-7	2-Chloronaphthalene	ND	170	ug/kg
95-57-8	2-Chlorophenol	ND	170	ug/kg
7005-72-3	4-Chlorophenyl phenyl ether	ND	170	ug/kg
218-01-9	Chrysene	ND	170	ug/kg
53-70-3	Dibenz[a,h]anthracene	ND	170	ug/kg
84-74-2	Di-n-butyl phthalate	ND	170	ug/kg
117-84-0	Di-n-octyl phthalate	ND	170	ug/kg
132-64-9	Dibenzofuran	ND	350	ug/kg
95-50-1	1,2-Dichlorobenzene	ND	170	ug/kg
541-73-1	1,3-Dichlorobenzene	ND	170	ug/kg
106-46-7	1,4-Dichlorobenzene	ND	170	ug/kg
91-94-1	3,3-Dichlorobenzidine	ND	170	ug/kg
120-83-2	2,4-Dichlorophenol	ND	170	ug/kg
84-66-2	Diethyl phthalate	ND	170	ug/kg
131-11-3	Dimethyl phthalate	ND	170	ug/kg
105-67-9	2,4-Dimethylphenol	ND	170	ug/kg
51-28-5	2,4-Dinitrophenol	ND	170	ug/kg
121-14-2	2,4-Dinitrotoluene	ND	170	ug/kg
606-20-2	2,6-Dinitrotoluene	ND	170	ug/kg

Report No: E106J35 Sample No: 13 Sample Description: 841110628-13

Date Collected: 06/28/2011 15:05 Date Received: 06/29/2011 16:10 Date Extracted: 07/06/2011 09:00 By: DPR Date Analyzed: 07/08/2011 17:18 By: GMP Preparation Method: 3500 Analytical Method: 8270C Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 4.7 Sample Weight/Volume: 30.00 Dilution Factor: 1 Extract Volume: 1 Lab Data File: L32846.D QC Batch#: 86268

CAS No.	Parameter	Result	DL	Units
206-44-0	Fluoranthene	ND	170	ug/kg
86-73-7	Fluorene	ND	170	ug/kg
118-74-1	Hexachlorobenzene	ND	170	ug/kg
87-68-3	Hexachlorobutadiene	ND	170	ug/kg
77-47-4	Hexachlorocyclopentadiene	ND	170	ug/kg
67-72-1	Hexachloroethane	ND	170	ug/kg
193-39-5	Indeno[1,2,3-cd]pyrene	ND	170	ug/kg
78-59-1	Isophorone	ND	170	ug/kg
534-52-1	2-Methyl-4,6-dinitrophenol	ND	170	ug/kg
91-57-6	2-Methylnaphthalene	ND	170	ug/kg
95-48-7	2-Methylphenol	ND	170	ug/kg
108-39-4	3- & 4-Methylphenols	ND	350	ug/kg
91-20-3	Naphthalene	ND	170	ug/kg
88-74-4	2-Nitroaniline	ND	350	ug/kg
99-09-2	3-Nitroaniline	ND	350	ug/kg
100-01-6	4-Nitroaniline	ND	350	ug/kg
98-95-3	Nitrobenzene	ND	170	ug/kg
88-75-5	2-Nitrophenol	ND	170	ug/kg
100-02-1	4-Nitrophenol	ND	170	ug/kg
621-64-7	N-Nitrosodi-n-propylamine	ND	170	ug/kg
62-75-9	N-Nitrosodimethylamine	ND	170	ug/kg
86-30-6	N-Nitrosodiphenylamine	ND	170	ug/kg
87-86-5	Pentachlorophenol	ND	170	ug/kg
85-01-8	Phenanthrene	ND	170	ug/kg
108-95-2	Phenol	ND	170	ug/kg
129-00-0	Pyrene	ND	170	ug/kg
120-82-1	1,2,4-Trichlorobenzene	ND	170	ug/kg
95-95-4	2,4,5-Trichlorophenol	ND	170	ug/kg
88-06-2	2,4,6-Trichlorophenol	ND	170	ug/kg

Sample QC

Surrogate	Recovery	QC Limits
2,4,6-Tribromophenol	63%	18%-118%
2-Fluorobiphenyl	56%	24%-101%
2-Fluorophenol	50%	10%-94%
4-Terphenyl-d14	78%	20%-133%
Nitrobenzene-d5	54%	16%-98%
Phenol-d6	50%	15%-102%

Report No: E106J35 Sample No: 13 Sample Description: 841110628-13

Date Collected: 06/28/2011 15:05 Date Received: 06/29/2011 16:10 Date Extracted: 07/05/2011 09:00 By: DPR Date Analyzed: 07/07/2011 08:53 By: MRB Preparation Method: 8100 Analytical Method: 8100 Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 4.7 Sample Weight/Volume: 10.10 Dilution Factor: 1 Extract Volume: 1 Lab Data File: 6070644.D QC Batch#: 86265

CAS No.	Parameter	Result	DL	Units
	C6-C12 Light Petroleum Distillate C10-C28 Medium Petroleum Distillate C16-C36 Heavy Petroleum Distillate	ND ND ND	21 21 21 21	mg/kg mg/kg mg/kg
	Total PHC	ND	21	mg/kg

Report No: E106J35 Sample No: 13 Sample Description: 841110628-13

Date Collected: 06/28/2011 15:05 Date Received: 06/29/2011 16:10 Date Extracted: 07/07/2011 09:00 By: DPR Date Analyzed: 07/07/2011 22:20 By: MRB Preparation Method: 3500 Analytical Method: 8082 Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 4.7 Sample Weight/Volume: 30.00 Dilution Factor: 1 Extract Volume: 2 Lab Data File: 8070714.D QC Batch#: 86262

CAS No.	Parameter	Result	DL	Units
12674-11-2	Aroclor 1016	ND	14	ug/kg
11104-28-2	Aroclor 1221	ND	14	ug/kg
11141-16-5	Aroclor 1232	ND	14	ug/kg
53469-21-9	Aroclor 1242	ND	14	ug/kg
12672-29-6	Aroclor 1248	ND	14	ug/kg
11097-69-1	Aroclor 1254	ND	14	ug/kg
11096-82-5	Aroclor 1260	ND	14	ug/kg
Sample QC				
Surrogate		Recovery	QC Limits	
Tetrachloro-m-xylene		82%	10%-103%	6
Decachlorobiphen		83%	10%-142%	6

Report No: E106J35 Sample No: 13 Sample Description: 841110628-13

Date Collected: 06/28/2011 15:05 Date Received: 06/29/2011 16:10 Date Analyzed: 07/01/2011 13:45 By: AMH Analytical Method: 8260B Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 4.7 Dilution Factor: 1 Lab Data File: J46030.D QC Batch#: 86156

CAS No.	Parameter	Result	DL	Units
67-64-1	Acetone	ND	12	ug/kg
107-13-1	Acrylonitrile	ND	6.0	ug/kg
71-43-2	Benzene	ND	6.0	ug/kg
108-86-1	Bromobenzene	ND	6.0	ug/kg
74-97-5	Bromochloromethane	ND	6.0	ug/kg
75-27-4	Bromodichloromethane	ND	6.0	ug/kg
75-25-2	Bromoform	ND	6.0	ug/kg
74-83-9	Bromomethane	ND	6.0	ug/kg
78-93-3	2-Butanone (MEK)	ND	12	ug/kg
104-51-8	n-Butylbenzene	ND	6.0	ug/kg
135-98-8	sec-Butylbenzene	ND	6.0	ug/kg
98-06-6	tert-Butylbenzene	ND	6.0	ug/kg
75-15-0	Carbon disulfide	ND	6.0	ug/kg
56-23-5	Carbon tetrachloride	ND	6.0	ug/kg
108-90-7	Chlorobenzene	ND	6.0	ug/kg
75-00-3	Chloroethane	ND	6.0	ug/kg
67-66-3	Chloroform	ND	6.0	ug/kg
74-87-3	Chloromethane	ND	6.0	ug/kg
95-49-8	2-Chlorotoluene	ND	6.0	ug/kg
106-43-4	4-Chlorotoluene	ND	6.0	ug/kg
96-12-8	1,2-Dibromo-3-chloropropane (DBCP)	ND	6.0	ug/kg
124-48-1	Dibromochloromethane	ND	6.0	ug/kg
106-93-4	1,2-Dibromoethane (EDB)	ND	6.0	ug/kg
74-95-3	Dibromomethane	ND	6.0	ug/kg
95-50-1	1,2-Dichlorobenzene	ND	6.0	ug/kg
541-73-1	1,3-Dichlorobenzene	ND	6.0	ug/kg
106-46-7	1,4-Dichlorobenzene	ND	6.0	ug/kg
75-71-8	Dichlorodifluoromethane	ND	6.0	ug/kg
75-34-3	1,1-Dichloroethane	ND	6.0	ug/kg
107-06-2	1,2-Dichloroethane	ND	6.0	ug/kg
75-35-4	1,1-Dichloroethene	ND	6.0	ug/kg
156-59-2	cis-1,2-Dichloroethene	ND	6.0	ug/kg
156-60-5	trans-1,2-Dichloroethene	ND	6.0	ug/kg
78-87-5	1,2-Dichloropropane	ND	6.0	ug/kg
142-28-9	1,3-Dichloropropane	ND	6.0	ug/kg
594-20-7	2,2-Dichloropropane	ND	6.0	ug/kg
563-58-6	1,1-Dichloropropene	ND	6.0	ug/kg
10061-01-5	cis-1,3-Dichloropropene	ND	6.0	ug/kg
10061-02-6	trans-1,3-Dichloropropene	ND	6.0	ug/kg
60-29-7	Diethyl ether	ND	6.0	ug/kg

Report No: E106J35 Sample No: 13 Sample Description: 841110628-13

Date Collected: 06/28/2011 15:05 Date Received: 06/29/2011 16:10 Date Analyzed: 07/01/2011 13:45 By: AMH Analytical Method: 8260B Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 4.7 Dilution Factor: 1 Lab Data File: J46030.D QC Batch#: 86156

CAS No.	Parameter	Result	DL	Units
123-91-1	1,4-Dioxane	ND	24	ug/kg
100-41-4	Ethylbenzene	ND	6.0	ug/kg
87-68-3	Hexachlorobutadiene	ND	6.0	ug/kg
591-78-6	2-Hexanone	ND	12	ug/kg
98-82-8	Isopropylbenzene	ND	6.0	ug/kg
99-87-6	4-Isopropyltoluene	ND	6.0	ug/kg
1634-04-4	Methyl tert-butyl ether (MTBE)	ND	6.0	ug/kg
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	12	ug/kg
75-09-2	Methylene chloride	ND	6.0	ug/kg
91-20-3	Naphthalene	ND	6.0	ug/kg
103-65-1	n-Propylbenzene	ND	6.0	ug/kg
100-42-5	Styrene	ND	6.0	ug/kg
109-99-9	Tetrahydrofuran	ND	6.0	ug/kg
110-57-6	trans-1,4-Dichloro-2-butene	ND	6.0	ug/kg
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	ND	6.0	ug/kg
96-18-4	1,2,3-Trichloropropane	ND	6.0	ug/kg
630-20-6	1,1,1,2-Tetrachloroethane	ND	6.0	ug/kg
79-34-5	1,1,2,2-Tetrachloroethane	ND	6.0	ug/kg
127-18-4	Tetrachloroethene (PCE)	ND	6.0	ug/kg
108-88-3	Toluene	ND	6.0	ug/kg
87-61-6	1,2,3-Trichlorobenzene	ND	6.0	ug/kg
120-82-1	1,2,4-Trichlorobenzene	ND	6.0	ug/kg
71-55-6	1,1,1-Trichloroethane	ND	6.0	ug/kg
79-00-5	1,1,2-Trichloroethane	ND	6.0	ug/kg
79-01-6	Trichloroethene (TCE)	ND	6.0	ug/kg
75-69-4	Trichlorofluoromethane	ND	6.0	ug/kg
95-63-6	1,2,4-Trimethylbenzene	ND	6.0	ug/kg
108-67-8	1,3,5-Trimethylbenzene	ND	6.0	ug/kg
75-01-4	Vinyl chloride	ND	6.0	ug/kg
95-47-6	o-Xylene	ND	6.0	ug/kg
108-38-3	m,p-Xylenes	ND	12	ug/kg
Sample QC				

Sample QC			
Surrogate	Recovery	QC Limits	
1,2-Dichloroethane-d4	111%	82%-120%	
Bromofluorobenzene	105%	70%-122%	
Toluene-d8	102%	77%-126%	

Report No: E106J35 Sample No: 14 Sample Description: 841110628-14

Date Collected: 06/28/2011 15:20 Date Received: 06/29/2011 16:10 Date Extracted: 07/06/2011 09:00 By: DPR Date Analyzed: 07/08/2011 18:15 By: GMP Preparation Method: 3500 Analytical Method: 8270C Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 6.1 Sample Weight/Volume: 30.15 Dilution Factor: 2 Extract Volume: 1 Lab Data File: L32848.D QC Batch#: 86268

103-33-3 Azobenzene ND 350 ug/kg 83-32-9 Acenaphthylene ND 350 ug/kg 823-29 Acenaphthylene ND 350 ug/kg 62-53-3 Antinacene ND 350 ug/kg 120-12-7 Antinacene ND 350 ug/kg 252-4 Biphenyl ND 350 ug/kg 56-55-3 Benzo[a]phthacene ND 350 ug/kg 205-99-2 Benzo[a]phtrene ND 350 ug/kg 207-08-9 Benzo[k]fluoranthene ND 350 ug/kg 207-08-9 Benzo[k]fluoranthene ND 350 ug/kg 100-51-6 Benzyl alcohol ND 1800 ug/kg 111-91-1 Bis(2-chlorethylphthalatc ND 350 ug/kg 111-91-1 Bis(2-chlorethylphthalatc ND 350 ug/kg 108-60-1 Bis(2-chlorethylphthalatc ND 350 ug/kg 108-65-3 4-Bromophenyl phenyl ether ND 350 ug/kg 108-65-4	CAS No.	Parameter	Result	DL	Units
83-32-9 Acenaphthylene ND 350 ug/kg 208-96-8 Acenaphthylene ND 350 ug/kg 208-96-8 Aniline ND 710 ug/kg 120-12-7 Anthracene ND 350 ug/kg 26-52-3 Benzo(a)anthracene ND 350 ug/kg 50-52-8 Benzo(a)anthracene ND 350 ug/kg 205-99-2 Benzo(b)fluoranthene ND 350 ug/kg 207-08-9 Benzo(b)fluoranthene ND 350 ug/kg 207-08-9 Benzo(kj/luoranthene ND 350 ug/kg 207-08-9 Benzo(kj/luoranthene ND 350 ug/kg 100-51-6 Benzyl butyl phthalatc ND 350 ug/kg 100-51-6 Benzyl butyl phthalatc ND 350 ug/kg 111-91-1 Bis(2-chlorosenyropyl-pter) ND 350 ug/kg 108-60-1 Bis(2-chlorosenyropyl-pter) ND 350 $ug/$	103-33-3	Azobenzene	ND	350	ug/kg
208-96-8 Acenaphtlylene ND 350 ug/kg 62-53-3 Aniline ND 710 ug/kg 120-12-7 Anithracene ND 350 ug/kg 92-52-4 Biphenyl ND 350 ug/kg 50-32-8 Benzo[a]mthracene ND 350 ug/kg 205-99-2 Benzo[a]hthracene ND 350 ug/kg 207-08-9 Benzo[g,h]perylene ND 350 ug/kg 207-08-9 Benzo[k,h]perylene ND 350 ug/kg 100-51-6 Benzoic acid ND 710 ug/kg 100-51-6 Benzoic acid ND 350 ug/kg 111-91-1 Bis(2-chloroethyl)ether ND 350 ug/kg 111-91-1 Bis(2-chloroethyl)ether ND 350 ug/kg 111-91-1 Bis(2-chloroethyl)ether ND 350 ug/kg 114-44 Bis(2-chloroethyl)ether ND 350 ug/kg 108-60-1 <	83-32-9		ND	350	
62-53-3 Aniline ND 710 ug/kg 120-12-7 Anthracene ND 350 ug/kg 120-12-7 Anthracene ND 350 ug/kg 56-55-3 Benzo[a]nvtracene ND 350 ug/kg 50-32-8 Benzo[a]nvtracene ND 350 ug/kg 205-99-2 Benzo[b,1]perylene ND 350 ug/kg 207-08-9 Benzo[k,1]perylene ND 350 ug/kg 65-85-0 Benzol kaltonanthene ND 1800 ug/kg 100-51-6 Benzyl alcohol ND 710 ug/kg 111-91-1 Bis(2-chloroethoxy)methane ND 350 ug/kg 111-44-4 Bis(2-chlorostopropylether ND 350 ug/kg 111-44-4 Bis(2-chlorostopropylether ND 350 ug/kg 108-60-7 4-Chloroaniline ND 350 ug/kg 107-81-7 Bis(2-chlorostopropylether ND 350 ug/kg <t< td=""><td>208-96-8</td><td></td><td>ND</td><td>350</td><td></td></t<>	208-96-8		ND	350	
120-12-7 Anthracene ND 350 ug/kg 92-52-4 Biphenyl ND 350 ug/kg 92-52-4 Biphenyl ND 350 ug/kg 50-32-3 Benzolalanthracene ND 350 ug/kg 205-99-2 Benzolg.h.ilperylene ND 350 ug/kg 207-08-9 Benzolg.h.ilperylene ND 350 ug/kg 207-08-9 Benzolk.Iluoranthene ND 350 ug/kg 207-08-9 Benzolk Iluoranthene ND 1800 ug/kg 100-51-6 Benzyl alcohol ND 710 ug/kg 85-68-7 Benzyl alcohol ND 350 ug/kg 111-44-4 Bis(2-chloroethylpethare ND 350 ug/kg 108-60-1 Bis(2-chloroisopropylpether ND 350 ug/kg 101-55-3 4-Bromophenyl phenyl ether ND 350 ug/kg 104-55-3 4-Chloro-a-methylphonol ND 350 ug/kg 105-47-4 2-Chloronphenyl ether ND 350 ug/kg	62-53-3		ND	710	
$56-55-3$ Benzo[a]anthracene ND 350 w_2/k_g $50-32-8$ Benzo[b]fluoranthene ND 350 w_g/k_g $205-99-2$ Benzo[b]fluoranthene ND 350 w_g/k_g $207-98-9$ Benzo[b,i]perylene ND 350 w_g/k_g $207-98-9$ Benzo[k,i]horanthene ND 350 w_g/k_g $207-98-9$ Benzo[k,i]horanthene ND 350 w_g/k_g $100-51-6$ Benzol alcohol ND 710 w_g/k_g $100-51-6$ Benzol alcohol ND 350 w_g/k_g $111-91-1$ Bis(2-chlorethoxy)methane ND 350 w_g/k_g $111-44-4$ Bis(2-chlorethoxy)methane ND 710 w_g/k_g $117-81-7$ Bis(2-chlorosymoty)lether ND 710 w_g/k_g $101-55-3$ 4-Bromophenyl phenyl ether ND 350 w_g/k_g $106-47-8$ 4-Chloronaphthalene ND 350 w_g/k_g $91-58-7$ 2-Chlorophenol ND 350 w_g/k_g	120-12-7	Anthracene	ND	350	
50-32-8 Benzo[a]pyrene ND 350 ug/kg 205-99-2 Benzo[b]Huoranthene ND 350 ug/kg 207-08-9 Benzo[k]fluoranthene ND 350 ug/kg 207-08-9 Benzo[k]fluoranthene ND 350 ug/kg 65-85-0 Benzo[k]fluoranthene ND 1800 ug/kg 100-51-6 Benzyl alcohol ND 170 ug/kg 85-68-7 Benzyl alcohol ND 350 ug/kg 111-91-1 Bis(2-chloroethoxy)methane ND 350 ug/kg 118-62-1 Bis(2-chloroethyl)ether ND 710 ug/kg 108-60-1 Bis(2-chloroethyl)ether ND 350 ug/kg 108-62-1 Bis(2-chloroethyl)ether ND 350 ug/kg 108-62-1 Bis(2-chloroethyl)ether ND 350 ug/kg 104-67-3 4-Bromophenyl phenyl ether ND 350 ug/kg 104-57-3 4-Chlororaline ND 350<	92-52-4	Biphenyl	ND	350	ug/kg
205-99-2 Benzolbifuoranthene ND 350 ug/kg 191-24-2 Benzolg.h.iperylene ND 350 ug/kg 207-08-9 Benzolk.ifluoranthene ND 350 ug/kg 65-85-0 Benzolk.ifluoranthene ND 1800 ug/kg 85-68-7 Benzyl alcohol ND 1800 ug/kg 85-68-7 Benzyl butyl phthalate ND 350 ug/kg 111-91-1 Bis(2-chloroethoxy)methane ND 350 ug/kg 111-44-4 Bis(2-chloroethoxy)methane ND 350 ug/kg 117-81-7 Bis(2-chloroisopropyl)ether ND 350 ug/kg 101-55-3 4-Bromophenyl phenyl ether ND 350 ug/kg 106-47-8 4-Chloroanilhalene ND 350 ug/kg 91-56-7 2-Chlorophenol ND 350 ug/kg 91-58-7 2-Chlorophenol ND 350 ug/kg 91-58-7 2-Chlorophenol <t< td=""><td>56-55-3</td><td>Benzo[a]anthracene</td><td>ND</td><td>350</td><td>ug/kg</td></t<>	56-55-3	Benzo[a]anthracene	ND	350	ug/kg
191-24-2 Benzo[g,h,]perylene ND 350 ug/kg 207-08-9 Benzo[k]fluoranthene ND 350 ug/kg 100-51-6 Benzyl alcohol ND 1800 ug/kg 100-51-6 Benzyl alcohol ND 710 ug/kg 85-68-7 Benzyl alcohol ND 350 ug/kg 111-91-1 Bis(2-chloroethoxy)methane ND 350 ug/kg 111-44-4 Bis(2-chloroethyl)ether ND 350 ug/kg 117-81-7 Bis(2-chloroethyl)ether ND 350 ug/kg 101-55-3 4-Bromophenyl phenyl ether ND 350 ug/kg 59-50-7 4-Chloro-3-methylphenol ND 350 ug/kg 91-58-3 2-Chloronaphthalene ND 350 ug/kg 91-58-7 2-Chloronaphthalene ND 350 ug/kg 91-57-8 2-Chloronaphthalene ND 350 ug/kg 91-58-7 2-Chloronaphthalene ND 350 ug/kg 117-84-0 Din-n-octyl phthalate </td <td>50-32-8</td> <td>Benzo[a]pyrene</td> <td>ND</td> <td>350</td> <td>ug/kg</td>	50-32-8	Benzo[a]pyrene	ND	350	ug/kg
207-08-9 Benzo[k]thuranthene ND 350 ug/kg 65-85-0 Benzoic acid ND 1800 ug/kg 100-51-6 Benzyl alcohol ND 710 ug/kg 85-68-7 Benzyl butyl phthalate ND 350 ug/kg 111-91-1 Bis(2-chloroethoxy)methane ND 350 ug/kg 111-91-1 Bis(2-chloroethy)tehr ND 350 ug/kg 108-60-1 Bis(2-chloroethy)tehr ND 350 ug/kg 108-65-3 4-Bromophenyl phenyl ether ND 350 ug/kg 106-47-8 4-Chloro-3-methylphenol ND 350 ug/kg 91-58-7 2-Chlorophenol ND 350 ug/kg 91-58-7 2-Chlorophenol ND 350 ug/kg 91-58-7 2-Chlorophenyl phenyl ether ND 350 ug/kg 91-58-7 2-Chlorophenyl phenyl ether ND 350 ug/kg 153-70-3 Dibenz/a,hjanthracene ND <	205-99-2	Benzo[b]fluoranthene	ND	350	ug/kg
65-85-0 Benzoic acid ND 1800 ug/kg 100-51-6 Benzyl alcohol ND 710 ug/kg 85-68-7 Benzyl butyl phthalate ND 350 ug/kg 111-91-1 Bis(2-chloroethoxy) methane ND 350 ug/kg 111-44-4 Bis(2-chloroethoxy) methane ND 350 ug/kg 111-44-4 Bis(2-chloroethoxy) methane ND 350 ug/kg 108-60-1 Bis(2-chloroethoxy) phthalate ND 350 ug/kg 117-81-7 Bis(2-ethylhexyl) phthalate ND 350 ug/kg 59-50-7 4-Chloro-3-methylphenol ND 350 ug/kg 91-58-3 4-Chloroaniline ND 710 ug/kg 91-58-7 2-Chlorophenol ND 350 ug/kg 91-58-7 2-Chlorophenol ND 350 ug/kg 7005-72-3 4-Chloroanphthalene ND 350 ug/kg 91-58-7 Di-n-butyl phthalate ND 350 u	191-24-2	Benzo[g,h,i]perylene	ND	350	ug/kg
100-51-6Benzyl alcoholND710 ug/kg 85-68-7Benzyl butyl phthalateND350 ug/kg 111-91-1Bis(2-chloroethoxy)methaneND350 ug/kg 111-44-4Bis(2-chloroethoxy)methaneND350 ug/kg 108-60-1Bis(2-chloroethyl)betherND350 ug/kg 107-55-34-Bromophenyl phenyl etherND350 ug/kg 108-60-74-Chloro-3-methylphenolND350 ug/kg 106-47-84-Chloro-3-methylphenolND350 ug/kg 95-57-82-ChloronaphthaleneND350 ug/kg 95-57-82-ChlorophenolND350 ug/kg 7005-72-34-ChlorophenolND350 ug/kg 7005-72-34-Chlorophenol phenyl etherND350 ug/kg 84-74-2Di-n-butyl phthalateND350 ug/kg 117-84-0Di-n-octyl phthalateND350 ug/kg 117-84-0Di-n-octyl phthalateND350 ug/kg 12-6klorobenzeneND350 ug/kg 12-6klorobenzeneND350 ug/kg 12-83-22,4-DichlorobenzeneND350 ug/kg 12-84-9DibenzofuranND350 ug/kg 12-85-22,4-DichlorobenzeneND350 ug/kg 13-11-3Dimethyl phthalateND350 ug/kg 14-222,4-DichlorobenzidineND350 ug/kg 15-12	207-08-9	Benzo[k]fluoranthene	ND	350	ug/kg
85-68-7 Benzyl butyl phthalate ND 350 ug/kg 111-91-1 Bis(2-chloroethoxy)methane ND 350 ug/kg 111-44-4 Bis(2-chloroethyl)ether ND 350 ug/kg 111-44-4 Bis(2-chloroethyl)ether ND 350 ug/kg 108-60-1 Bis(2-chloroisopropyl)ether ND 350 ug/kg 107-81-7 Bis(2-chloroisopropyl)ether ND 350 ug/kg 101-55-3 4-Bromophenyl phenyl ether ND 350 ug/kg 91-58-7 4-Chloro-3-methylphenol ND 350 ug/kg 91-58-7 2-Chlorophenol ND 350 ug/kg 91-58-7 2-Chlorophenyl phenyl ether ND 350 ug/kg 91-50-1 Dibenz/a, hjanthracen	65-85-0	Benzoic acid	ND	1800	ug/kg
111-91-1Bis(2-chloroethoxy)methaneND 350 ug/kg 111-44-4Bis(2-chloroethyl)etherND 350 ug/kg 108-60-1Bis(2-chloroethyl)etherND 710 ug/kg 117-81-7Bis(2-chlylosyl)phthalateND 350 ug/kg 101-55-34-Bromophenyl phenyl etherND 350 ug/kg 106-47-84-Chloro-3-methylphenolND 350 ug/kg 106-47-84-ChloronaphthaleneND 350 ug/kg 91-58-72-ChloronaphthaleneND 350 ug/kg 95-57-82-ChlorophenolND 350 ug/kg 218-01-9ChryseneND 350 ug/kg 218-01-9Dibenz[a,h]anthraceneND 350 ug/kg 84-74-2Di-n-butyl phthalateND 350 ug/kg 117-84-0Di-n-octyl phthalateND 350 ug/kg 95-50-11,2-DichlorobenzeneND 350 ug/kg 541-73-11,3-DichlorobenzeneND 350 ug/kg 91-94-13,3-DichlorobenzeneND 350 ug/kg 91-94-13,3-DichlorobenzeneND 350 ug/kg 120-83-22,4-DichlorobenzeneND 350 ug/kg 131-11-3Dimethyl phthalateND 350 ug/kg 131-11-3Dimethyl phthalateND 350 ug/kg 131-11-22,4-DinitroplenolND 350 ug/kg	100-51-6	Benzyl alcohol	ND	710	ug/kg
111-91-1Bis(2-chloroethoxy)methaneND 350 ug/kg 111-44-4Bis(2-chloroethyl)etherND 350 ug/kg 108-60-1Bis(2-chloroethyl)etherND 710 ug/kg 117-81-7Bis(2-chlylosyl)phthalateND 350 ug/kg 101-55-34-Bromophenyl phenyl etherND 350 ug/kg 106-47-84-Chloro-3-methylphenolND 350 ug/kg 106-47-84-ChloronaphthaleneND 350 ug/kg 91-58-72-ChloronaphthaleneND 350 ug/kg 95-57-82-ChlorophenolND 350 ug/kg 218-01-9ChryseneND 350 ug/kg 218-01-9Dibenz[a,h]anthraceneND 350 ug/kg 84-74-2Di-n-butyl phthalateND 350 ug/kg 117-84-0Di-n-octyl phthalateND 350 ug/kg 95-50-11,2-DichlorobenzeneND 350 ug/kg 541-73-11,3-DichlorobenzeneND 350 ug/kg 91-94-13,3-DichlorobenzeneND 350 ug/kg 91-94-13,3-DichlorobenzeneND 350 ug/kg 120-83-22,4-DichlorobenzeneND 350 ug/kg 131-11-3Dimethyl phthalateND 350 ug/kg 131-11-3Dimethyl phthalateND 350 ug/kg 131-11-22,4-DinitroplenolND 350 ug/kg	85-68-7	Benzyl butyl phthalate	ND	350	
111-44-4Bis(2-chloroethyl)etherND 350 ug/kg 108-60-1Bis(2-chloroisopropyl)etherND710 ug/kg 117-81-7Bis(2-chloroisopropyl)etherND 350 ug/kg 101-55-34-Bromophenyl phenyl etherND 350 ug/kg 59-50-74-Chloro-3-methylphenolND 350 ug/kg 106-47-84-Chloroa-ItineND 350 ug/kg 91-58-72-ChlorophenolND 350 ug/kg 95-57-82-ChlorophenolND 350 ug/kg 218-01-9ChryseneND 350 ug/kg 218-01-9ChryseneND 350 ug/kg 117-84-0Dien-butyl phthalateND 350 ug/kg 117-84-0Di-n-butyl phthalateND 350 ug/kg 128-61-11,2-DichlorobenzeneND 350 ug/kg 541-73-11,3-DichlorobenzeneND 350 ug/kg 106-46-71,4-DichlorobenzeneND 350 ug/kg 120-83-22,4-DichlorobenzeneND 350 ug/kg 131-11-3Dimethyl phthalateND 350 ug/kg 131-11-3Dimethyl phthalateND 350 ug/kg 131-11-3Dimethyl phthalateND 350 ug/kg 131-11-3Dimethyl phthalateND 350 ug/kg 131-11-322,4-DinitrophenolND 350 ug/kg 131-11-322,4-DinitrophenolND<	111-91-1		ND	350	
108-60-1Bis(2-chloroisopropyl)etherND710 ug/kg 117-81-7Bis(2-cthylhexyl)phthalateND350 ug/kg 101-55-34-Bromophenyl phenyl etherND350 ug/kg 59-50-74-Chloro-3-methylphenolND350 ug/kg 91-58-72-ChloronaphthaleneND710 ug/kg 91-58-72-ChlorophenolND350 ug/kg 95-57-82-Chlorophenyl phenyl etherND350 ug/kg 7005-72-34-Chlorophenyl phenyl etherND350 ug/kg 218-01-9ChryseneND350 ug/kg 53-70-3Dibenz[a,h]anthraceneND350 ug/kg 117-84-0Di-n-octyl phthalateND350 ug/kg 132-64-9DibenzofuranND350 ug/kg 91-94-11,3-DichlorobenzeneND350 ug/kg 91-94-13,3-DichlorobenzeneND350 ug/kg 120-83-22,4-DichlorobenzeneND350 ug/kg 131-11-3Dimethyl phthalateND350 ug/kg 131-11-3Dimethyl phthalateND350 ug/kg 132-852,4-DinitrophenolND350 ug/kg 131-14-22,4-DinitrophenolND350 ug/kg	111-44-4	Bis(2-chloroethyl)ether	ND	350	
117-81-7 Bis(2-ethylhexyl)phthalate ND 350 ug/kg 101-55-3 4-Bromophenyl phenyl ether ND 350 ug/kg 59-50-7 4-Chloro-3-methylphenol ND 350 ug/kg 106-47-8 4-Chloro-3-methylphenol ND 350 ug/kg 106-47-8 4-Chloroaniline ND 350 ug/kg 91-58-7 2-Chloronaphthalene ND 350 ug/kg 95-57-8 2-Chlorophenol ND 350 ug/kg 7005-72-3 4-Chlorophenyl phenyl ether ND 350 ug/kg 53-70-3 Dibenz[a,h]anthracene ND 350 ug/kg 84-74-2 Di-n-butyl phthalate ND 350 ug/kg 117-84-0 Di-n-butyl phthalate ND 350 ug/kg 132-64-9 Dibenzofuran ND 350 ug/kg 95-50-1 1,2-Dichlorobenzene ND 350 ug/kg 91-94-11 3,3-Dichlorobenzene ND 350 ug/kg 91-94-1 3,3-Dichlorobenzene ND 350 ug/	108-60-1	Bis(2-chloroisopropyl)ether	ND	710	
59-50-74-Chloro-3-methylphenolND 350 ug/kg 106-47-84-ChloroanilineND710 ug/kg 91-58-72-ChloronaphthaleneND 350 ug/kg 95-57-82-ChlorophenolND 350 ug/kg 7005-72-34-Chlorophenyl phenyl etherND 350 ug/kg 218-01-9ChryseneND 350 ug/kg 53-70-3Dibenz[a,h]anthraceneND 350 ug/kg 84-74-2Di-n-butyl phthalateND 350 ug/kg 117-84-0Di-n-octyl phthalateND 350 ug/kg 95-50-11,2-DichlorobenzeneND 350 ug/kg 95-50-11,2-DichlorobenzeneND 350 ug/kg 106-46-71,4-DichlorobenzeneND 350 ug/kg 112-83-22,4-DichlorobenzeneND 350 ug/kg 120-83-22,4-DichlorobenzeneND 350 ug/kg 131-11-3Dimethyl phthalateND 350 ug/kg 105-67-92,4-DinethylphenolND 350 ug/kg 11-1-222,4-DinitrotolueneND 350 ug/kg	117-81-7	Bis(2-ethylhexyl)phthalate	ND	350	
59-50-7 4-Chloro-3-methylphenol ND 350 ug/kg 106-47-8 4-Chloroaniline ND 710 ug/kg 91-58-7 2-Chloronaphthalene ND 350 ug/kg 95-57-8 2-Chlorophenol ND 350 ug/kg 95-57-8 2-Chlorophenol ND 350 ug/kg 218-01-9 Chrysene ND 350 ug/kg 53-70-3 Dibenz[a,h]anthracene ND 350 ug/kg 84-74-2 Di-n-butyl phthalate ND 350 ug/kg 117-84-0 Di-n-octyl phthalate ND 350 ug/kg 95-50-1 1,2-Dichlorobenzene ND 350 ug/kg 91-94-1 3,3-Dichlorobenzene ND 350 ug/kg 106-46-7 1,4-Dichlorobenzene ND 350 ug/kg 112-83-2 2,4-Dichlorobenzene ND 350 ug/kg 120-83-2 2,4-Dichlorobenzene ND 350 ug/kg 131-11-3 Dimethyl phthalate ND 350 ug/kg 1	101-55-3	4-Bromophenyl phenyl ether	ND	350	ug/kg
91-58-7 2-Chloronaphthalene ND 350 ug/kg 95-57-8 2-Chlorophenol ND 350 ug/kg 7005-72-3 4-Chlorophenyl phenyl ether ND 350 ug/kg 218-01-9 Chrysene ND 350 ug/kg 53-70-3 Dibenz[a,h]anthracene ND 350 ug/kg 84-74-2 Di-n-butyl phthalate ND 350 ug/kg 117-84-0 Di-n-octyl phthalate ND 350 ug/kg 132-64-9 Dibenzofuran ND 350 ug/kg 95-50-1 1,2-Dichlorobenzene ND 350 ug/kg 541-73-1 1,3-Dichlorobenzene ND 350 ug/kg 91-94-1 3,3-Dichlorobenzene ND 350 ug/kg 91-94-1 3,3-Dichlorophenol ND 350 ug/kg 120-83-2 2,4-Dichlorophenol ND 350 ug/kg 131-11-3 Dimethyl phthalate ND 350 ug/kg 131-12 Dimethyl phthalate ND 350 ug/kg <t< td=""><td>59-50-7</td><td>4-Chloro-3-methylphenol</td><td>ND</td><td>350</td><td></td></t<>	59-50-7	4-Chloro-3-methylphenol	ND	350	
95-57-8 2-Chlorophenol ND 350 ug/kg 7005-72-3 4-Chlorophenyl phenyl ether ND 350 ug/kg 218-01-9 Chrysene ND 350 ug/kg 53-70-3 Dibenz[a,h]anthracene ND 350 ug/kg 84-74-2 Di-n-butyl phthalate ND 350 ug/kg 117-84-0 Di-n-octyl phthalate ND 350 ug/kg 132-64-9 Dibenzofuran ND 350 ug/kg 95-50-1 1,2-Dichlorobenzene ND 350 ug/kg 91-94-1 1,3-Dichlorobenzene ND 350 ug/kg 91-94-1 3,3-Dichlorobenzene ND 350 ug/kg 91-94-1 3,3-Dichlorobenzene ND 350 ug/kg 120-83-2 2,4-Dichlorophenol ND 350 ug/kg 131-11-3 Dimethyl phthalate ND 350 ug/kg 105-67-9 2,4-Dimethylphenol ND 350 ug/kg 105-67-9 2,4-Dimethylphenol ND 350 ug/kg	106-47-8	4-Chloroaniline	ND	710	ug/kg
7005-72-34-Chlorophenyl phenyl etherND350ug/kg218-01-9ChryseneND350ug/kg53-70-3Dibenz[a,h]anthraceneND350ug/kg84-74-2Di-n-butyl phthalateND350ug/kg117-84-0Di-n-octyl phthalateND350ug/kg132-64-9DibenzofuranND710ug/kg95-50-11,2-DichlorobenzeneND350ug/kg106-46-71,4-DichlorobenzeneND350ug/kg91-94-13,3-DichlorobenzidineND350ug/kg120-83-22,4-DichlorobenzidineND350ug/kg131-11-3Dimethyl phthalateND350ug/kg105-67-92,4-DimethylphenolND350ug/kg121-14-22,4-DinitrotolueneND350ug/kg	91-58-7	2-Chloronaphthalene	ND	350	ug/kg
218-01-9ChryseneND350ug/kg53-70-3Dibenz[a,h]anthraceneND350ug/kg84-74-2Di-n-butyl phthalateND350ug/kg117-84-0Di-n-octyl phthalateND350ug/kg132-64-9DibenzofuranND710ug/kg95-50-11,2-DichlorobenzeneND350ug/kg106-46-71,4-DichlorobenzeneND350ug/kg91-94-13,3-DichlorobenzeneND350ug/kg120-83-22,4-DichlorophenolND350ug/kg131-11-3Dimethyl phthalateND350ug/kg105-67-92,4-Dimethyl phenolND350ug/kg121-14-22,4-DinitroolueneND350ug/kg	95-57-8	2-Chlorophenol	ND	350	ug/kg
53-70-3 Dibenz[a,h]anthracene ND 350 ug/kg 84-74-2 Di-n-butyl phthalate ND 350 ug/kg 117-84-0 Di-n-octyl phthalate ND 350 ug/kg 132-64-9 Dibenzofuran ND 710 ug/kg 95-50-1 1,2-Dichlorobenzene ND 350 ug/kg 541-73-1 1,3-Dichlorobenzene ND 350 ug/kg 106-46-7 1,4-Dichlorobenzene ND 350 ug/kg 120-83-2 2,4-Dichlorobenzidine ND 350 ug/kg 131-11-3 Dimethyl phthalate ND 350 ug/kg 131-11-3 Dimethyl phthalate ND 350 ug/kg 105-67-9 2,4-Dimethylphenol ND 350 ug/kg 51-28-5 2,4-Dinitrophenol ND 350 ug/kg 51-28-5 2,4-Dinitrophenol ND 350 ug/kg 121-14-2 2,4-Dinitrotoluene ND 350 ug/kg	7005-72-3	4-Chlorophenyl phenyl ether	ND	350	ug/kg
84-74-2 Di-n-butyl phthalate ND 350 ug/kg 117-84-0 Di-n-octyl phthalate ND 350 ug/kg 132-64-9 Dibenzofuran ND 710 ug/kg 95-50-1 1,2-Dichlorobenzene ND 350 ug/kg 541-73-1 1,3-Dichlorobenzene ND 350 ug/kg 91-94-1 3,3-Dichlorobenzidine ND 350 ug/kg 120-83-2 2,4-Dichlorophenol ND 350 ug/kg 131-11-3 Dimethyl phthalate ND 350 ug/kg 105-67-9 2,4-Dimethylphenol ND 350 ug/kg 51-28-5 2,4-Dinitrophenol ND 350 ug/kg 121-14-2 2,4-Dinitrobuene ND 350 ug/kg	218-01-9	Chrysene	ND	350	ug/kg
84-74-2 Di-n-butyl phthalate ND 350 ug/kg 117-84-0 Di-n-octyl phthalate ND 350 ug/kg 132-64-9 Dibenzofuran ND 710 ug/kg 95-50-1 1,2-Dichlorobenzene ND 350 ug/kg 541-73-1 1,3-Dichlorobenzene ND 350 ug/kg 106-46-7 1,4-Dichlorobenzene ND 350 ug/kg 91-94-1 3,3-Dichlorobenzidine ND 350 ug/kg 120-83-2 2,4-Dichlorophenol ND 350 ug/kg 131-11-3 Dimethyl phthalate ND 350 ug/kg 105-67-9 2,4-Dimethylphenol ND 350 ug/kg 51-28-5 2,4-Dinitrophenol ND 350 ug/kg 12-14-2 2,4-Dinitrophenol ND 350 ug/kg	53-70-3	Dibenz[a,h]anthracene	ND	350	ug/kg
117-84-0Di-n-octyl phthalateND350ug/kg132-64-9DibenzofuranND710ug/kg95-50-11,2-DichlorobenzeneND350ug/kg541-73-11,3-DichlorobenzeneND350ug/kg106-46-71,4-DichlorobenzeneND350ug/kg91-94-13,3-DichlorobenzidineND350ug/kg120-83-22,4-DichlorophenolND350ug/kg84-66-2Diethyl phthalateND350ug/kg131-11-3Dimethyl phthalateND350ug/kg105-67-92,4-DimethylphenolND350ug/kg51-28-52,4-DinitrophenolND350ug/kg121-14-22,4-DinitrotolueneND350ug/kg	84-74-2	Di-n-butyl phthalate	ND	350	
132-64-9DibenzofuranND710ug/kg95-50-11,2-DichlorobenzeneND350ug/kg541-73-11,3-DichlorobenzeneND350ug/kg106-46-71,4-DichlorobenzeneND350ug/kg91-94-13,3-DichlorobenzidineND350ug/kg120-83-22,4-DichlorophenolND350ug/kg84-66-2Diethyl phthalateND350ug/kg131-11-3Dimethyl phthalateND350ug/kg105-67-92,4-DimethylphenolND350ug/kg51-28-52,4-DinitrophenolND350ug/kg121-14-22,4-DinitrotolueneND350ug/kg	117-84-0	Di-n-octyl phthalate	ND	350	
95-50-11,2-DichlorobenzeneND350ug/kg541-73-11,3-DichlorobenzeneND350ug/kg106-46-71,4-DichlorobenzeneND350ug/kg91-94-13,3-DichlorobenzidineND350ug/kg120-83-22,4-DichlorophenolND350ug/kg84-66-2Diethyl phthalateND350ug/kg131-11-3Dimethyl phthalateND350ug/kg51-28-52,4-DinitrophenolND350ug/kg121-14-22,4-DinitrotolueneND350ug/kg	132-64-9	Dibenzofuran	ND	710	
106-46-71,4-DichlorobenzeneND350ug/kg91-94-13,3-DichlorobenzidineND350ug/kg120-83-22,4-DichlorophenolND350ug/kg84-66-2Diethyl phthalateND350ug/kg131-11-3Dimethyl phthalateND350ug/kg105-67-92,4-DimethylphenolND350ug/kg51-28-52,4-DinitrophenolND350ug/kg121-14-22,4-DinitrotolueneND350ug/kg	95-50-1	1,2-Dichlorobenzene	ND	350	
106-46-71,4-DichlorobenzeneND350ug/kg91-94-13,3-DichlorobenzidineND350ug/kg120-83-22,4-DichlorophenolND350ug/kg84-66-2Diethyl phthalateND350ug/kg131-11-3Dimethyl phthalateND350ug/kg105-67-92,4-DimethylphenolND350ug/kg51-28-52,4-DinitrophenolND350ug/kg121-14-22,4-DinitrotolueneND350ug/kg	541-73-1	1,3-Dichlorobenzene	ND	350	ug/kg
91-94-13,3-DichlorobenzidineND350ug/kg120-83-22,4-DichlorophenolND350ug/kg84-66-2Diethyl phthalateND350ug/kg131-11-3Dimethyl phthalateND350ug/kg105-67-92,4-DimethylphenolND350ug/kg51-28-52,4-DinitrophenolND350ug/kg121-14-22,4-DinitrotolueneND350ug/kg	106-46-7	1,4-Dichlorobenzene	ND	350	
120-83-22,4-DichlorophenolND350ug/kg84-66-2Diethyl phthalateND350ug/kg131-11-3Dimethyl phthalateND350ug/kg105-67-92,4-DimethylphenolND350ug/kg51-28-52,4-DinitrophenolND350ug/kg121-14-22,4-DinitrotolueneND350ug/kg	91-94-1	3,3-Dichlorobenzidine	ND	350	
84-66-2 Diethyl phthalate ND 350 ug/kg 131-11-3 Dimethyl phthalate ND 350 ug/kg 105-67-9 2,4-Dimethylphenol ND 350 ug/kg 51-28-5 2,4-Dinitrophenol ND 350 ug/kg 121-14-2 2,4-Dinitrotoluene ND 350 ug/kg	120-83-2	2,4-Dichlorophenol	ND	350	ug/kg
131-11-3Dimethyl phthalateND350ug/kg105-67-92,4-DimethylphenolND350ug/kg51-28-52,4-DinitrophenolND350ug/kg121-14-22,4-DinitrotolueneND350ug/kg	84-66-2	Diethyl phthalate	ND	350	
105-67-92,4-DimethylphenolND350ug/kg51-28-52,4-DinitrophenolND350ug/kg121-14-22,4-DinitrotolueneND350ug/kg	131-11-3	Dimethyl phthalate	ND	350	
51-28-52,4-DinitrophenolND350ug/kg121-14-22,4-DinitrotolueneND350ug/kg					
121-14-2 2,4-Dinitrotoluene ND 350 ug/kg	51-28-5				
	121-14-2				
606-20-2 2,6-Dinitrotoluene ND 350 ug/kg	606-20-2				

Report No: E106J35 Sample No: 14 Sample Description: 841110628-14

Date Collected: 06/28/2011 15:20 Date Received: 06/29/2011 16:10 Date Extracted: 07/06/2011 09:00 By: DPR Date Analyzed: 07/08/2011 18:15 By: GMP Preparation Method: 3500 Analytical Method: 8270C Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 6.1 Sample Weight/Volume: 30.15 Dilution Factor: 2 Extract Volume: 1 Lab Data File: L32848.D QC Batch#: 86268

CAS No.	Parameter	Result	DL	Units
206-44-0	Fluoranthene	400	350	ug/kg
86-73-7	Fluorene	ND	350	ug/kg
118-74-1	Hexachlorobenzene	ND	350	ug/kg
87-68-3	Hexachlorobutadiene	ND	350	ug/kg
77-47-4	Hexachlorocyclopentadiene	ND	350	ug/kg
67-72-1	Hexachloroethane	ND	350	ug/kg
193-39-5	Indeno[1,2,3-cd]pyrene	ND	350	ug/kg
78-59-1	Isophorone	ND	350	ug/kg
534-52-1	2-Methyl-4,6-dinitrophenol	ND	350	ug/kg
91-57-6	2-Methylnaphthalene	ND	350	ug/kg
95-48-7	2-Methylphenol	ND	350	ug/kg
108-39-4	3- & 4-Methylphenols	ND	710	ug/kg
91-20-3	Naphthalene	ND	350	ug/kg
88-74-4	2-Nitroaniline	ND	710	ug/kg
99-09-2	3-Nitroaniline	ND	710	ug/kg
100-01-6	4-Nitroaniline	ND	710	ug/kg
98-95-3	Nitrobenzene	ND	350	ug/kg
88-75-5	2-Nitrophenol	ND	350	ug/kg
100-02-1	4-Nitrophenol	ND	350	ug/kg
621-64-7	N-Nitrosodi-n-propylamine	ND	350	ug/kg
62-75-9	N-Nitrosodimethylamine	ND	350	ug/kg
86-30-6	N-Nitrosodiphenylamine	ND	350	ug/kg
87-86-5	Pentachlorophenol	ND	350	ug/kg
85-01-8	Phenanthrene	ND	350	ug/kg
108-95-2	Phenol	ND	350	ug/kg
129-00-0	Pyrene	ND	350	ug/kg
120-82-1	1,2,4-Trichlorobenzene	ND	350	ug/kg
95-95-4	2,4,5-Trichlorophenol	ND	350	ug/kg
88-06-2	2,4,6-Trichlorophenol	ND	350	ug/kg

Sample QC

Surrogate	Recovery	QC Limits
2,4,6-Tribromophenol	90%	18%-118%
2-Fluorobiphenyl	75%	24%-101%
2-Fluorophenol	60%	10%-94%
4-Terphenyl-d14	96%	20%-133%
Nitrobenzene-d5	60%	16%-98%
Phenol-d6	67%	15%-102%

Report No: E106J35 Sample No: 14 Sample Description: 841110628-14

Date Collected: 06/28/2011 15:20 Date Received: 06/29/2011 16:10 Date Extracted: 07/05/2011 09:00 By: DPR Date Analyzed: 07/07/2011 09:27 By: MRB Preparation Method: 8100 Analytical Method: 8100 Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 6.1 Sample Weight/Volume: 10.10 Dilution Factor: 1 Extract Volume: 1 Lab Data File: 6070645.D QC Batch#: 86265

CAS No. Parameter Ro			Units
	ND ND 23 23	21 21	mg/kg mg/kg mg/kg mg/kg

Report No: E106J35 Sample No: 14 Sample Description: 841110628-14

Date Collected: 06/28/2011 15:20 Date Received: 06/29/2011 16:10 Date Extracted: 07/07/2011 09:00 By: DPR Date Analyzed: 07/07/2011 22:39 By: MRB Preparation Method: 3500 Analytical Method: 8082 Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 6.1 Sample Weight/Volume: 30.00 Dilution Factor: 1 Extract Volume: 2 Lab Data File: 8070715.D QC Batch#: 86262

CAS No.	Parameter	Result	DL	Units
12674-11-2	Aroclor 1016	ND	14	ug/kg
11104-28-2	Aroclor 1221	ND	14	ug/kg
11141-16-5	Aroclor 1232	ND	14	ug/kg
53469-21-9	Aroclor 1242	ND	14	ug/kg
12672-29-6	Aroclor 1248	ND	14	ug/kg
11097-69-1	Aroclor 1254	ND	14	ug/kg
11096-82-5	Aroclor 1260	ND	14	ug/kg
Sample QC				
Surrogate		Recovery	QC Limits	
Tetrachloro-m-xylene		71%	10%-103%	6
Decachlorobiphen		101%	10%-142%	6

Report No: E106J35 Sample No: 14 Sample Description: 841110628-14

Date Collected: 06/28/2011 15:20 Date Received: 06/29/2011 16:10 Date Analyzed: 07/01/2011 14:12 By: AMH Analytical Method: 8260B Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 6.1 Dilution Factor: 1 Lab Data File: J46031.D QC Batch#: 86156

CAS No.	Parameter	Result	DL	Units
67-64-1	Acetone	ND	10	ug/kg
107-13-1	Acrylonitrile	ND	5.1	ug/kg
71-43-2	Benzene	ND	5.1	ug/kg
108-86-1	Bromobenzene	ND	5.1	ug/kg
74-97-5	Bromochloromethane	ND	5.1	ug/kg
75-27-4	Bromodichloromethane	ND	5.1	ug/kg
75-25-2	Bromoform	ND	5.1	ug/kg
74-83-9	Bromomethane	ND	5.1	ug/kg
78-93-3	2-Butanone (MEK)	ND	10	ug/kg
104-51-8	n-Butylbenzene	ND	5.1	ug/kg
135-98-8	sec-Butylbenzene	ND	5.1	ug/kg
98-06-6	tert-Butylbenzene	ND	5.1	ug/kg
75-15-0	Carbon disulfide	ND	5.1	ug/kg
56-23-5	Carbon tetrachloride	ND	5.1	ug/kg
108-90-7	Chlorobenzene	ND	5.1	ug/kg
75-00-3	Chloroethane	ND	5.1	ug/kg
67-66-3	Chloroform	ND	5.1	ug/kg
74-87-3	Chloromethane	ND	5.1	ug/kg
95-49-8	2-Chlorotoluene	ND	5.1	ug/kg
106-43-4	4-Chlorotoluene	ND	5.1	ug/kg
96-12-8	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.1	ug/kg
124-48-1	Dibromochloromethane	ND	5.1	ug/kg
106-93-4	1,2-Dibromoethane (EDB)	ND	5.1	ug/kg
74-95-3	Dibromomethane	ND	5.1	ug/kg
95-50-1	1,2-Dichlorobenzene	ND	5.1	ug/kg
541-73-1	1,3-Dichlorobenzene	ND	5.1	ug/kg
106-46-7	1,4-Dichlorobenzene	ND	5.1	ug/kg
75-71-8	Dichlorodifluoromethane	ND	5.1	ug/kg
75-34-3	1,1-Dichloroethane	ND	5.1	ug/kg
107-06-2	1,2-Dichloroethane	ND	5.1	ug/kg
75-35-4	1,1-Dichloroethene	ND	5.1	ug/kg
156-59-2	cis-1,2-Dichloroethene	ND	5.1	ug/kg
156-60-5	trans-1,2-Dichloroethene	ND	5.1	ug/kg
78-87-5	1,2-Dichloropropane	ND	5.1	ug/kg
142-28-9	1,3-Dichloropropane	ND	5.1	ug/kg
594-20-7	2,2-Dichloropropane	ND	5.1	ug/kg
563-58-6	1,1-Dichloropropene	ND	5.1	ug/kg
10061-01-5	cis-1,3-Dichloropropene	ND	5.1	ug/kg
10061-02-6	trans-1,3-Dichloropropene	ND	5.1	ug/kg
60-29-7	Diethyl ether	ND	5.1	ug/kg
	-			

Report No: E106J35 Sample No: 14 Sample Description: 841110628-14

Date Collected: 06/28/2011 15:20 Date Received: 06/29/2011 16:10 Date Analyzed: 07/01/2011 14:12 By: AMH Analytical Method: 8260B Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 6.1 Dilution Factor: 1 Lab Data File: J46031.D QC Batch#: 86156

CAS No.	Parameter	Result	DL	Units
123-91-1	1,4-Dioxane	ND	20	ug/kg
100-41-4	Ethylbenzene	ND	5.1	ug/kg
87-68-3	Hexachlorobutadiene	ND	5.1	ug/kg
591-78-6	2-Hexanone	ND	10	ug/kg
98-82-8	Isopropylbenzene	ND	5.1	ug/kg
99-87-6	4-Isopropyltoluene	ND	5.1	ug/kg
1634-04-4	Methyl tert-butyl ether (MTBE)	ND	5.1	ug/kg
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	10	ug/kg
75-09-2	Methylene chloride	ND	5.1	ug/kg
91-20-3	Naphthalene	ND	5.1	ug/kg
103-65-1	n-Propylbenzene	ND	5.1	ug/kg
100-42-5	Styrene	ND	5.1	ug/kg
109-99-9	Tetrahydrofuran	ND	5.1	ug/kg
110-57-6	trans-1,4-Dichloro-2-butene	ND	5.1	ug/kg
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.1	ug/kg
96-18-4	1,2,3-Trichloropropane	ND	5.1	ug/kg
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.1	ug/kg
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.1	ug/kg
127-18-4	Tetrachloroethene (PCE)	ND	5.1	ug/kg
108-88-3	Toluene	ND	5.1	ug/kg
87-61-6	1,2,3-Trichlorobenzene	ND	5.1	ug/kg
120-82-1	1,2,4-Trichlorobenzene	ND	5.1	ug/kg
71-55-6	1,1,1-Trichloroethane	ND	5.1	ug/kg
79-00-5	1,1,2-Trichloroethane	ND	5.1	ug/kg
79-01-6	Trichloroethene (TCE)	ND	5.1	ug/kg
75-69-4	Trichlorofluoromethane	ND	5.1	ug/kg
95-63-6	1,2,4-Trimethylbenzene	ND	5.1	ug/kg
108-67-8	1,3,5-Trimethylbenzene	ND	5.1	ug/kg
75-01-4	Vinyl chloride	ND	5.1	ug/kg
95-47-6	o-Xylene	ND	5.1	ug/kg
108-38-3	m,p-Xylenes	ND	10	ug/kg
~				

Sample QC		
Surrogate	Recovery	QC Limits
1,2-Dichloroethane-d4	111%	82%-120%
Bromofluorobenzene	105%	70%-122%
Toluene-d8	104%	77%-126%

Report No: E106J35 Sample No: 15 Sample Description: 841110628-15

Date Collected: 06/28/2011 15:30 Date Received: 06/29/2011 16:10 Date Extracted: 07/06/2011 09:00 By: DPR Date Analyzed: 07/08/2011 17:46 By: GMP Preparation Method: 3500 Analytical Method: 8270C Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 5.2 Sample Weight/Volume: 30.05 Dilution Factor: 1 Extract Volume: 1 Lab Data File: L32847.D QC Batch#: 86268

CAS No.	Parameter	Result	DL	Units
103-33-3	Azobenzene	ND	180	ug/kg
83-32-9	Acenaphthene	ND	180	ug/kg
208-96-8	Acenaphthylene	ND	180	ug/kg
62-53-3	Aniline	ND	350	ug/kg
120-12-7	Anthracene	ND	180	ug/kg
92-52-4	Biphenyl	ND	180	ug/kg
56-55-3	Benzo[a]anthracene	ND	180	ug/kg
50-32-8	Benzo[a]pyrene	ND	180	ug/kg
205-99-2	Benzo[b]fluoranthene	ND	180	ug/kg
191-24-2	Benzo[g,h,i]perylene	ND	180	ug/kg
207-08-9	Benzo[k]fluoranthene	ND	180	ug/kg
65-85-0	Benzoic acid	ND	880	ug/kg
100-51-6	Benzyl alcohol	ND	350	ug/kg
85-68-7	Benzyl butyl phthalate	ND	180	ug/kg
111-91-1	Bis(2-chloroethoxy)methane	ND	180	ug/kg
111-44-4	Bis(2-chloroethyl)ether	ND	180	ug/kg
108-60-1	Bis(2-chloroisopropyl)ether	ND	350	ug/kg
117-81-7	Bis(2-ethylhexyl)phthalate	ND	180	ug/kg
101-55-3	4-Bromophenyl phenyl ether	ND	180	ug/kg
59-50-7	4-Chloro-3-methylphenol	ND	180	ug/kg
106-47-8	4-Chloroaniline	ND	350	ug/kg
91-58-7	2-Chloronaphthalene	ND	180	ug/kg
95-57-8	2-Chlorophenol	ND	180	ug/kg
7005-72-3	4-Chlorophenyl phenyl ether	ND	180	ug/kg
218-01-9	Chrysene	ND	180	ug/kg
53-70-3	Dibenz[a,h]anthracene	ND	180	ug/kg
84-74-2	Di-n-butyl phthalate	ND	180	ug/kg
117-84-0	Di-n-octyl phthalate	ND	180	ug/kg
132-64-9	Dibenzofuran	ND	350	ug/kg
95-50-1	1,2-Dichlorobenzene	ND	180	ug/kg
541-73-1	1,3-Dichlorobenzene	ND	180	ug/kg
106-46-7	1,4-Dichlorobenzene	ND	180	ug/kg
91-94-1	3,3-Dichlorobenzidine	ND	180	ug/kg
120-83-2	2,4-Dichlorophenol	ND	180	ug/kg
84-66-2	Diethyl phthalate	ND	180	ug/kg
131-11-3	Dimethyl phthalate	ND	180	ug/kg
105-67-9	2,4-Dimethylphenol	ND	180	ug/kg
51-28-5	2,4-Dinitrophenol	ND	180	ug/kg
121-14-2	2,4-Dinitrotoluene	ND	180	ug/kg
606-20-2	2,6-Dinitrotoluene	ND	180	ug/kg

Report No: E106J35 Sample No: 15 Sample Description: 841110628-15

Date Collected: 06/28/2011 15:30 Date Received: 06/29/2011 16:10 Date Extracted: 07/06/2011 09:00 By: DPR Date Analyzed: 07/08/2011 17:46 By: GMP Preparation Method: 3500 Analytical Method: 8270C Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 5.2 Sample Weight/Volume: 30.05 Dilution Factor: 1 Extract Volume: 1 Lab Data File: L32847.D QC Batch#: 86268

CAS No.	Parameter	Result	DL	Units
206-44-0	Fluoranthene	ND	180	ug/kg
86-73-7	Fluorene	ND	180	ug/kg
118-74-1	Hexachlorobenzene	ND	180	ug/kg
87-68-3	Hexachlorobutadiene	ND	180	ug/kg
77-47-4	Hexachlorocyclopentadiene	ND	180	ug/kg
67-72-1	Hexachloroethane	ND	180	ug/kg
193-39-5	Indeno[1,2,3-cd]pyrene	ND	180	ug/kg
78-59-1	Isophorone	ND	180	ug/kg
534-52-1	2-Methyl-4,6-dinitrophenol	ND	180	ug/kg
91-57-6	2-Methylnaphthalene	ND	180	ug/kg
95-48-7	2-Methylphenol	ND	180	ug/kg
108-39-4	3- & 4-Methylphenols	ND	350	ug/kg
91-20-3	Naphthalene	ND	180	ug/kg
88-74-4	2-Nitroaniline	ND	350	ug/kg
99-09-2	3-Nitroaniline	ND	350	ug/kg
100-01-6	4-Nitroaniline	ND	350	ug/kg
98-95-3	Nitrobenzene	ND	180	ug/kg
88-75-5	2-Nitrophenol	ND	180	ug/kg
100-02-1	4-Nitrophenol	ND	180	ug/kg
621-64-7	N-Nitrosodi-n-propylamine	ND	180	ug/kg
62-75-9	N-Nitrosodimethylamine	ND	180	ug/kg
86-30-6	N-Nitrosodiphenylamine	ND	180	ug/kg
87-86-5	Pentachlorophenol	ND	180	ug/kg
85-01-8	Phenanthrene	ND	180	ug/kg
108-95-2	Phenol	ND	180	ug/kg
129-00-0	Pyrene	ND	180	ug/kg
120-82-1	1,2,4-Trichlorobenzene	ND	180	ug/kg
95-95-4	2,4,5-Trichlorophenol	ND	180	ug/kg
88-06-2	2,4,6-Trichlorophenol	ND	180	ug/kg
a 1.65				

Sample	Q
--------	---

Surrogate	Recovery	QC Limits
2,4,6-Tribromophenol	63%	18%-118%
2-Fluorobiphenyl	48%	24%-101%
2-Fluorophenol	33%	10%-94%
4-Terphenyl-d14	75%	20%-133%
Nitrobenzene-d5	42%	16%-98%
Phenol-d6	33%	15%-102%

Report No: E106J35 Sample No: 15 Sample Description: 841110628-15

Date Collected: 06/28/2011 15:30 Date Received: 06/29/2011 16:10 Date Extracted: 07/05/2011 09:00 By: DPR Date Analyzed: 07/07/2011 10:01 By: MRB Preparation Method: 8100 Analytical Method: 8100 Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 5.2 Sample Weight/Volume: 10.10 Dilution Factor: 1 Extract Volume: 1 Lab Data File: 6070646.D QC Batch#: 86265

CAS No.	Parameter	Result	DL	Units
	C6-C12 Light Petroleum Distillate	ND	21	mg/kg
	C10-C28 Medium Petroleum Distillate C16-C36 Heavy Petroleum Distillate	ND ND	21 21	mg/kg mg/kg
	Total PHC	ND	21	mg/kg

Report No: E106J35 Sample No: 15 Sample Description: 841110628-15

Date Collected: 06/28/2011 15:30 Date Received: 06/29/2011 16:10 Date Extracted: 07/07/2011 09:00 By: DPR Date Analyzed: 07/07/2011 22:58 By: MRB Preparation Method: 3500 Analytical Method: 8082 Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 5.2 Sample Weight/Volume: 30.05 Dilution Factor: 1 Extract Volume: 2 Lab Data File: 8070716.D QC Batch#: 86262

CAS No.	Parameter	Result	DL	Units
12674-11-2	Aroclor 1016	ND	14	ug/kg
11104-28-2	Aroclor 1221	ND	14	ug/kg
11141-16-5	Aroclor 1232	ND	14	ug/kg
53469-21-9	Aroclor 1242	ND	14	ug/kg
12672-29-6	Aroclor 1248	ND	14	ug/kg
11097-69-1	Aroclor 1254	ND	14	ug/kg
11096-82-5	Aroclor 1260	ND	14	ug/kg
Sample QC				
Surrogate		Recovery	QC Limits	
Tetrachloro-m-xylene		81%	10%-103%	6
Decachlorobiphen		83%	10%-142%	6

Report No: E106J35 Sample No: 15 Sample Description: 841110628-15

Date Collected: 06/28/2011 15:30 Date Received: 06/29/2011 16:10 Date Analyzed: 07/01/2011 14:40 By: AMH Analytical Method: 8260B Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 5.2 Dilution Factor: 1 Lab Data File: J46032.D QC Batch#: 86156

CAS No.	Parameter	Result	DL	Units
67-64-1	Acetone	ND	10	ug/kg
107-13-1	Acrylonitrile	ND	5.0	ug/kg
71-43-2	Benzene	ND	5.0	ug/kg
108-86-1	Bromobenzene	ND	5.0	ug/kg
74-97-5	Bromochloromethane	ND	5.0	ug/kg
75-27-4	Bromodichloromethane	ND	5.0	ug/kg
75-25-2	Bromoform	ND	5.0	ug/kg
74-83-9	Bromomethane	ND	5.0	ug/kg
78-93-3	2-Butanone (MEK)	ND	10	ug/kg
104-51-8	n-Butylbenzene	ND	5.0	ug/kg
135-98-8	sec-Butylbenzene	ND	5.0	ug/kg
98-06-6	tert-Butylbenzene	ND	5.0	ug/kg
75-15-0	Carbon disulfide	ND	5.0	ug/kg
56-23-5	Carbon tetrachloride	ND	5.0	ug/kg
108-90-7	Chlorobenzene	ND	5.0	ug/kg
75-00-3	Chloroethane	ND	5.0	ug/kg
67-66-3	Chloroform	ND	5.0	ug/kg
74-87-3	Chloromethane	ND	5.0	ug/kg
95-49-8	2-Chlorotoluene	ND	5.0	ug/kg
106-43-4	4-Chlorotoluene	ND	5.0	ug/kg
96-12-8	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	ug/kg
124-48-1	Dibromochloromethane	ND	5.0	ug/kg
106-93-4	1,2-Dibromoethane (EDB)	ND	5.0	ug/kg
74-95-3	Dibromomethane	ND	5.0	ug/kg
95-50-1	1,2-Dichlorobenzene	ND	5.0	ug/kg
541-73-1	1,3-Dichlorobenzene	ND	5.0	ug/kg
106-46-7	1,4-Dichlorobenzene	ND	5.0	ug/kg
75-71-8	Dichlorodifluoromethane	ND	5.0	ug/kg
75-34-3	1,1-Dichloroethane	ND	5.0	ug/kg
107-06-2	1,2-Dichloroethane	ND	5.0	ug/kg
75-35-4	1,1-Dichloroethene	ND	5.0	ug/kg
156-59-2	cis-1,2-Dichloroethene	ND	5.0	ug/kg
156-60-5	trans-1,2-Dichloroethene	ND	5.0	ug/kg
78-87-5	1,2-Dichloropropane	ND	5.0	ug/kg
142-28-9	1,3-Dichloropropane	ND	5.0	ug/kg
594-20-7	2,2-Dichloropropane	ND	5.0	ug/kg
563-58-6	1,1-Dichloropropene	ND	5.0	ug/kg
10061-01-5	cis-1,3-Dichloropropene	ND	5.0	ug/kg
10061-02-6	trans-1,3-Dichloropropene	ND	5.0	ug/kg
60-29-7	Diethyl ether	ND	5.0	ug/kg

Report No: E106J35 Sample No: 15 Sample Description: 841110628-15

Date Collected: 06/28/2011 15:30 Date Received: 06/29/2011 16:10 Date Analyzed: 07/01/2011 14:40 By: AMH Analytical Method: 8260B Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Solid Percent Moisture: 5.2 Dilution Factor: 1 Lab Data File: J46032.D QC Batch#: 86156

CAS No.	Parameter	Result	DL	Units
123-91-1	1,4-Dioxane	ND	20	ug/kg
100-41-4	Ethylbenzene	ND	5.0	ug/kg
87-68-3	Hexachlorobutadiene	ND	5.0	ug/kg
591-78-6	2-Hexanone	ND	10	ug/kg
98-82-8	Isopropylbenzene	ND	5.0	ug/kg
99-87-6	4-Isopropyltoluene	ND	5.0	ug/kg
1634-04-4	Methyl tert-butyl ether (MTBE)	ND	5.0	ug/kg
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	10	ug/kg
75-09-2	Methylene chloride	ND	5.0	ug/kg
91-20-3	Naphthalene	ND	5.0	ug/kg
103-65-1	n-Propylbenzene	ND	5.0	ug/kg
100-42-5	Styrene	ND	5.0	ug/kg
109-99-9	Tetrahydrofuran	ND	5.0	ug/kg
110-57-6	trans-1,4-Dichloro-2-butene	ND	5.0	ug/kg
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.0	ug/kg
96-18-4	1,2,3-Trichloropropane	ND	5.0	ug/kg
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	ug/kg
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.0	ug/kg
127-18-4	Tetrachloroethene (PCE)	ND	5.0	ug/kg
108-88-3	Toluene	ND	5.0	ug/kg
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	ug/kg
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	ug/kg
71-55-6	1,1,1-Trichloroethane	ND	5.0	ug/kg
79-00-5	1,1,2-Trichloroethane	ND	5.0	ug/kg
79-01-6	Trichloroethene (TCE)	ND	5.0	ug/kg
75-69-4	Trichlorofluoromethane	ND	5.0	ug/kg
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	ug/kg
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	ug/kg
75-01-4	Vinyl chloride	ND	5.0	ug/kg
95-47-6	o-Xylene	ND	5.0	ug/kg
108-38-3	m,p-Xylenes	ND	10	ug/kg
~ ~ ~				

Sample QC		
Surrogate	Recovery	QC Limits
1,2-Dichloroethane-d4	117%	82%-120%
Bromofluorobenzene	106%	70%-122%
Toluene-d8	100%	77%-126%

Report No: E106J35 Sample No: 16 Sample Description: 841110628-16

Date Collected: 06/28/2011 15:50 Date Received: 06/29/2011 16:10 Date Extracted: 07/01/2011 13:51 By: AMH Date Analyzed: 07/01/2011 18:03 By: AMH Preparation Method: Methanol Preserved Analytical Method: 8260B Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Other Percent Moisture: N/A Sample Weight/Volume: 10.00 Dilution Factor: 50 Extract Volume: 20 Lab Data File: Q20749.D QC Batch#: 86106

CAS No.	Parameter	Result	DL	Units
67-64-1	Acetone	ND	1000	ug/kg
107-13-1	Acrylonitrile	ND	1200	ug/kg
71-43-2	Benzene	ND	250	ug/kg
108-86-1	Bromobenzene	ND	250	ug/kg
74-97-5	Bromochloromethane	ND	250	ug/kg
75-27-4	Bromodichloromethane	ND	250	ug/kg
75-25-2	Bromoform	ND	250	ug/kg
74-83-9	Bromomethane	ND	250	ug/kg
78-93-3	2-Butanone (MEK)	ND	500	ug/kg
104-51-8	n-Butylbenzene	ND	250	ug/kg
135-98-8	sec-Butylbenzene	ND	250	ug/kg
98-06-6	tert-Butylbenzene	ND	250	ug/kg
75-15-0	Carbon disulfide	ND	250	ug/kg
56-23-5	Carbon tetrachloride	ND	250	ug/kg
108-90-7	Chlorobenzene	ND	250	ug/kg
75-00-3	Chloroethane	ND	250	ug/kg
67-66-3	Chloroform	ND	250	ug/kg
74-87-3	Chloromethane	ND	250	ug/kg
95-49-8	2-Chlorotoluene	ND	250	ug/kg
106-43-4	4-Chlorotoluene	ND	250	ug/kg
96-12-8	1,2-Dibromo-3-chloropropane (DBCP)	ND	250	ug/kg
124-48-1	Dibromochloromethane	ND	250	ug/kg
106-93-4	1,2-Dibromoethane (EDB)	ND	250	ug/kg
74-95-3	Dibromomethane	ND	250	ug/kg
95-50-1	1,2-Dichlorobenzene	ND	250	ug/kg
541-73-1	1,3-Dichlorobenzene	ND	250	ug/kg
106-46-7	1,4-Dichlorobenzene	ND	250	ug/kg
75-71-8	Dichlorodifluoromethane	ND	250	ug/kg
75-34-3	1,1-Dichloroethane	ND	250	ug/kg
107-06-2	1,2-Dichloroethane	ND	250	ug/kg
75-35-4	1,1-Dichloroethene	ND	250	ug/kg
156-59-2	cis-1,2-Dichloroethene	ND	250	ug/kg
156-60-5	trans-1,2-Dichloroethene	ND	250	ug/kg
78-87-5	1,2-Dichloropropane	ND	250	ug/kg
142-28-9	1,3-Dichloropropane	ND	250	ug/kg
594-20-7	2,2-Dichloropropane	ND	250	ug/kg
563-58-6	1,1-Dichloropropene	ND	250	ug/kg
10061-01-5	cis-1,3-Dichloropropene	ND	250	ug/kg
10061-02-6	trans-1,3-Dichloropropene	ND	250	ug/kg
60-29-7	Diethyl ether	ND	500	ug/kg

Report No: E106J35 Sample No: 16 Sample Description: 841110628-16

Date Collected: 06/28/2011 15:50 Date Received: 06/29/2011 16:10 Date Extracted: 07/01/2011 13:51 By: AMH Date Analyzed: 07/01/2011 18:03 By: AMH Preparation Method: Methanol Preserved Analytical Method: 8260B Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Other Percent Moisture: N/A Sample Weight/Volume: 10.00 Dilution Factor: 50 Extract Volume: 20 Lab Data File: Q20749.D QC Batch#: 86106

CAS No.	Parameter	Result	DL	Units
123-91-1	1,4-Dioxane	ND	2500	ug/kg
100-41-4	Ethylbenzene	ND	250	ug/kg
87-68-3	Hexachlorobutadiene	ND	250	ug/kg
591-78-6	2-Hexanone	ND	500	ug/kg
98-82-8	Isopropylbenzene	ND	250	ug/kg
99-87-6	4-Isopropyltoluene	ND	250	ug/kg
1634-04-4	Methyl tert-butyl ether (MTBE)	ND	250	ug/kg
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	500	ug/kg
75-09-2	Methylene chloride	ND	250	ug/kg
91-20-3	Naphthalene	ND	250	ug/kg
103-65-1	n-Propylbenzene	ND	250	ug/kg
100-42-5	Styrene	ND	250	ug/kg
109-99-9	Tetrahydrofuran	ND	250	ug/kg
110-57-6	trans-1,4-Dichloro-2-butene	ND	250	ug/kg
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	ND	250	ug/kg
96-18-4	1,2,3-Trichloropropane	ND	250	ug/kg
630-20-6	1,1,1,2-Tetrachloroethane	ND	250	ug/kg
79-34-5	1,1,2,2-Tetrachloroethane	ND	250	ug/kg
127-18-4	Tetrachloroethene (PCE)	ND	250	ug/kg
108-88-3	Toluene	ND	250	ug/kg
87-61-6	1,2,3-Trichlorobenzene	ND	250	ug/kg
120-82-1	1,2,4-Trichlorobenzene	ND	250	ug/kg
71-55-6	1,1,1-Trichloroethane	ND	250	ug/kg
79-00-5	1,1,2-Trichloroethane	ND	250	ug/kg
79-01-6	Trichloroethene (TCE)	ND	250	ug/kg
75-69-4	Trichlorofluoromethane	ND	250	ug/kg
95-63-6	1,2,4-Trimethylbenzene	ND	250	ug/kg
108-67-8	1,3,5-Trimethylbenzene	ND	250	ug/kg
75-01-4	Vinyl chloride	ND	250	ug/kg
95-47-6	o-Xylene	ND	250	ug/kg
108-38-3	m,p-Xylenes	ND	500	ug/kg

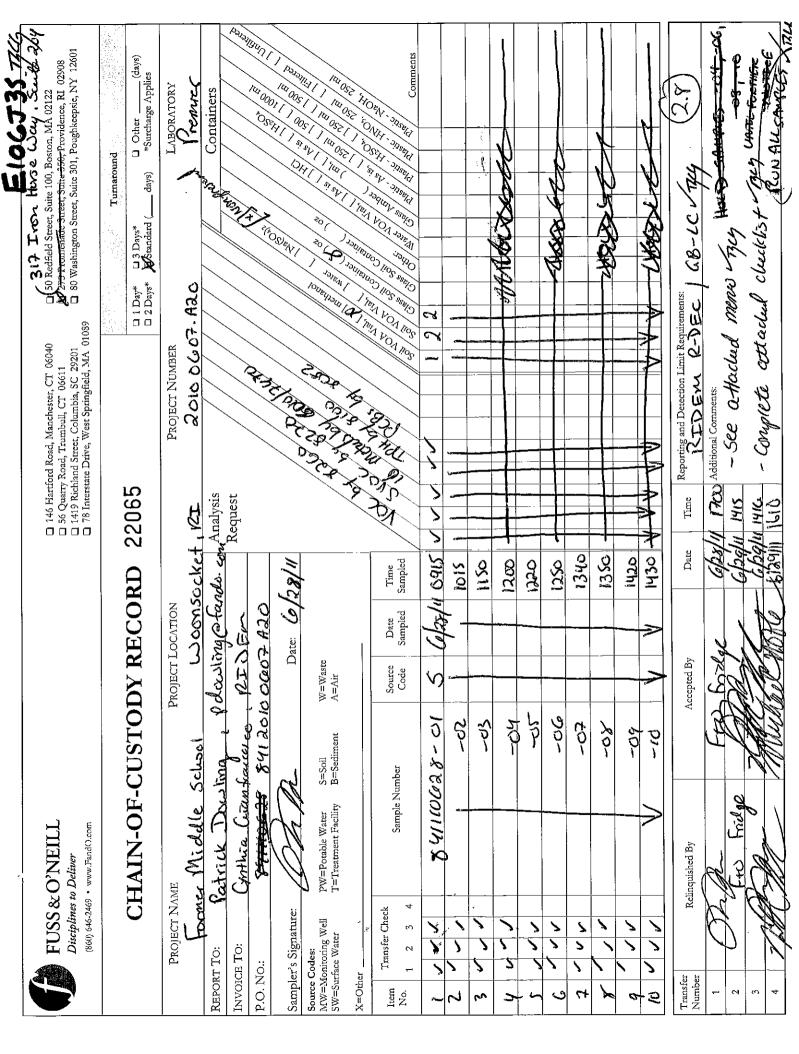
Sample QC			
Surrogate	Recovery	QC Limits	_
Bromofluorobenzene	99%	92%-110%	
1,2-Dichloroethane-d4	106%	88%-111%	
Toluene-d8	102%	90%-118%	

Report No: E106J35 Sample No: 17 Sample Description: 841110628-17

Date Collected: 06/28/2011 15:50 Date Received: 06/29/2011 16:10 Date Analyzed: 07/01/2011 17:40 By: AMH Analytical Method: 8260B Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Aqueous Percent Moisture: N/A Dilution Factor: 1 Lab Data File: Q20748.D QC Batch#: 86106

CAS No.	Parameter	Result	DL	Units
67-64-1	Acetone	ND	10	ug/L
107-13-1	Acrylonitrile	ND	0.50	ug/L
71-43-2	Benzene	ND	1.0	ug/L
108-86-1	Bromobenzene	ND	1.0	ug/L
74-97-5	Bromochloromethane	ND	1.0	ug/L
75-27-4	Bromodichloromethane	ND	1.0	ug/L
75-25-2	Bromoform	ND	1.0	ug/L
74-83-9	Bromomethane	ND	1.0	ug/L
78-93-3	2-Butanone (MEK)	ND	5.0	ug/L
104-51-8	n-Butylbenzene	ND	1.0	ug/L
135-98-8	sec-Butylbenzene	ND	1.0	ug/L
98-06-6	tert-Butylbenzene	ND	1.0	ug/L
75-15-0	Carbon disulfide	ND	1.0	ug/L
56-23-5	Carbon tetrachloride	ND	1.0	ug/L
108-90-7	Chlorobenzene	ND	1.0	ug/L
75-00-3	Chloroethane	ND	1.0	ug/L
67-66-3	Chloroform	ND	1.0	ug/L
74-87-3	Chloromethane	ND	1.0	ug/L
95-49-8	2-Chlorotoluene	ND	1.0	ug/L
106-43-4	4-Chlorotoluene	ND	1.0	ug/L
96-12-8	1,2-Dibromo-3-chloropropane (DBCP)	ND	0.50	ug/L
124-48-1	Dibromochloromethane	ND	0.50	ug/L
106-93-4	1,2-Dibromoethane (EDB)	ND	0.50	ug/L
74-95-3	Dibromomethane	ND	1.0	ug/L
95-50-1	1,2-Dichlorobenzene	ND	1.0	ug/L
541-73-1	1,3-Dichlorobenzene	ND	1.0	ug/L
106-46-7	1,4-Dichlorobenzene	ND	1.0	ug/L
75-71-8	Dichlorodifluoromethane	ND	1.0	ug/L
75-34-3	1,1-Dichloroethane	ND	1.0	ug/L
107-06-2	1,2-Dichloroethane	ND	1.0	ug/L
75-35-4	1,1-Dichloroethene	ND	1.0	ug/L
156-59-2	cis-1,2-Dichloroethene	ND	1.0	ug/L
156-60-5	trans-1,2-Dichloroethene	ND	1.0	ug/L
78-87-5	1,2-Dichloropropane	ND	1.0	ug/L
142-28-9	1,3-Dichloropropane	ND	1.0	ug/L
594-20-7	2,2-Dichloropropane	ND	1.0	ug/L
563-58-6	1,1-Dichloropropene	ND	1.0	ug/L
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	ug/L
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	ug/L
60-29-7	Diethyl ether	ND	1.0	ug/L
	2			6


Report No: E106J35 Sample No: 17 Sample Description: 841110628-17

Date Collected: 06/28/2011 15:50 Date Received: 06/29/2011 16:10 Date Analyzed: 07/01/2011 17:40 By: AMH Analytical Method: 8260B Customer: Fuss & O'Neill Project: 20100607.A20/ Former Middle School

Matrix: Aqueous Percent Moisture: N/A Dilution Factor: 1 Lab Data File: Q20748.D QC Batch#: 86106

CAS No.	Parameter	Result	DL	Units
123-91-1	1,4-Dioxane	ND	20	ug/L
100-41-4	Ethylbenzene	ND	1.0	ug/L
87-68-3	Hexachlorobutadiene	ND	0.50	ug/L
591-78-6	2-Hexanone	ND	5.0	ug/L
98-82-8	Isopropylbenzene	ND	1.0	ug/L
99-87-6	4-Isopropyltoluene	ND	1.0	ug/L
1634-04-4	Methyl tert-butyl ether (MTBE)	ND	1.0	ug/L
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	ug/L
75-09-2	Methylene chloride	ND	5.0	ug/L
91-20-3	Naphthalene	ND	1.0	ug/L
103-65-1	n-Propylbenzene	ND	1.0	ug/L
100-42-5	Styrene	ND	1.0	ug/L
109-99-9	Tetrahydrofuran	ND	1.0	ug/L
110-57-6	trans-1,4-Dichloro-2-butene	ND	5.0	ug/L
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	ug/L
96-18-4	1,2,3-Trichloropropane	ND	1.0	ug/L
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	ug/L
127-18-4	Tetrachloroethene (PCE)	ND	1.0	ug/L
108-88-3	Toluene	ND	1.0	ug/L
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	ug/L
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	ug/L
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/L
79-00-5	1,1,2-Trichloroethane	ND	1.0	ug/L
79-01-6	Trichloroethene (TCE)	ND	1.0	ug/L
75-69-4	Trichlorofluoromethane	ND	1.0	ug/L
95-63-6	1,2,4-Trimethylbenzene	ND	1.0	ug/L
108-67-8	1,3,5-Trimethylbenzene	ND	1.0	ug/L
75-01-4	Vinyl chloride	ND	1.0	ug/L
95-47-6	o-Xylene	ND	1.0	ug/L
108-38-3	m,p-Xylenes	ND	1.0	ug/L

Sample QC		
Surrogate	Recovery	QC Limits
1,2-Dichloroethane-d4	106%	88%-111%
Bromofluorobenzene	99%	92%-110%
Toluene-d8	103%	90%-118%

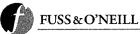
Elocitizs 1 Securat Scutt 264 Boston, MA 02122 540, Providence, R1 02908 01, Poughkeepsie, NY 12601	und Dether (days) *Surcharge Applies	LABORATORY	Containers	Posonia (100 1000 000 000 000 1000 000 000 000 1000 000	List L Comments			Trip Blenk Soil	Top Blank Wota	(k. Y.	How shuted - 3 and -13	RUN ALL SAMTES
BID Control BID Contro BID Control	Day* Days* Days* D 2 Days* Standard (17- 420		A CONTRACT OF CONTRACTO OF CONTRACTO OF CONTRACTO OF CONTRACT OF CONTRACT.	Soil VOA VIEW CAR Soil VASSA			A A AREA		Ec / CB-1		Complete attached alectedist
 146 Hartford Road, Manchester, CT 06040 56 Quarry Road, Trumbull, CT 06611 1419 Richland Street, Columbia, SC 29201 78 Interstate Drive, West Springfield, MA 01089 	22066	Project Number	Analysis Request		A A A A A A A A A A A A A A A A A A A	2 - 3 3 3 3 3 3 3 3 3 3	123	> > > > > > > > >		Time		1/10 -
	RD	PROJECT LOCATION	P. I	e Date: Celasti W=Waste A=Air	Source Date Time Code Sampled Sampled	5 (c/28/11 1 540				Accepted By Date	in the classifi	Lield 10 Constant
FUSS & O'NEILL Disciplines to Deliver (860) 546-2469 • www.FandO.com	CHAIN-OF-CUSTODY RECO	PROJECT NAME Former Middle Sclenel		Sampler's Signature: Source Codes: MW=Monitoring Well PW=Potable Water S=Soil SW=Surface Water T=Treatment Facility B=Sediment	X=Other Ising Bluuk. Item Transfer Check No. 1 2 3	11 1 841110628-11				Transfer Relinquished By Number	2 CH BU	* 700 30°

MEMORANDUM

TO:	Premier Laboratory
FROM:	Steve Hubbs
DATE:	June 28, 2011
RE:	Former Middle School Woonsocket, Rhode Island F&O Project #: 20100607.A20

Please note the following requirements for the analysis of samples from the Former Middle School site assessment.

- 1. Please provide analytical data in GIS/Key electronic data deliverable format to Patrick Dowling at <u>pdowling@fando.com</u>.
- 2. Please provide "pdf" versions of laboratory reports via email as soon as data becomes available.
- 3. Final hardcopy laboratory reports should be mailed to Cynthia Gianfrancesco, Rhode Island Department of Environmental Management, 235 Promenade Street, Providence, RI 02908.
- 4. Bill should be in accordance with the rates in your Master Price Agreement with RIDEM. Invoices should be mailed to Cynthia Gianfrancesco, Rhode Island Department of Environmental Management, 235 Promenade Street, Providence, RI 02908.
- 5. Please complete and provide the attached data validation/completeness checklist for each sample delivery group for this project.
- 6. Laboratory reporting limits must meet the RIDEM Residential Direct Exposure Criteria and GB Leachability Criteria for soil and the GA Groundwater Objectives for groundwater. Please report results as "J values" where required to meet these regulatory standards.
- 7. 16 Total Metals include antimony, arsenic, barium, beryllium, cadmium, chromium, copper, lead, manganese, mercury, nickel, selenium, silver, thallium, vanadium, and zinc.
- 8. Please report labor hours expended for ARRA reporting requirements.


E106J35

INITIAL DATE: JULY 2007 REVISION DATE: JULY 2007 REVISION: 0.0

GENERIC QUALITY ASSURANCE PROJECT PLAN FOR PROJECTS IN RHODE ISLAND LABORATORY MODIFIED TIER II DATA VALIDATION CHECKLIST ORGANIC COMPOUNDS

PERFORMED AND, WHERE APPLICABLE, WITHIN ACCEPTABLE LIMTS?**

			<u>YES</u>	<u>NO</u>	COMMENTS
1. 2. 3.		SDG Project Narratives Traffic Report Volatiles Data	¢ ≮ □		M
	a.	Sample Data Target Compound List (TCL) Results Reconstructed total ion chromatograms (RIC) for each sam For each sample:	K nple K		
		Raw spectra and background-subtracted mass spectra of target compounds identified Mass spectra of all reported TICs with three best library	×		
		matches Percent solids calculations	□ Ø 、		
	b.	Standards Data (all instruments) Initial Calibration Data RICs and Quan Reports for all Standards Continuing Calibration RICs and Quan Reports for all Standards Internal Standard Area Summary	X N N X X X		
	c.	Raw QC Data Blank Data Matrix Spike Data Matrix Spike Duplicate Data			A
4.	a.	Semivolatiles Data QC Summary Surrogate Percent Recovery Summary MS/MSD Summary Method Blank Summary	⋉ □		A-
		Tuning and Mass Calibration	X		

F101135

INITIAL DATE: JULY 2007 REVISION DATE: JULY 2007 REVISION: 0.0

GENERIC QUALITY ASSURANCE PROJECT PLAN FOR PROJECT IN RHODE ISLAND LABORATORY MODIFIED TIER II DATA VALIDATION CHECKLIST ORGANIC COMPOUNDS (Continued)

PERFORMED AND, WHERE APPLICABLE, WITHIN ACCEPTABLE LIMTS?**

		<u>YES</u>	<u>NO</u>	COMMENTS
b.	Sample Data TCL Results Tentatively Identified Compounds Reconstructed total ion chromatograms (RIC) for each Sample For each sample:	R □ ▼		∧⁄₽-
	Raw spectra and background-subtracted mass spectra of TCL compounds Mass spectra of TICs with 3 best library matches GPC chromatograms (if GPC performed)			AND MA
c.	Standards Data (all instruments) Initial Calibration Data RICs and Quan Reports for all Standards Continuing Calibration RICs and Quan Reports for all Standards Internal Standard Areas Summary Internal Standard Areas Summary	A B B B B B		
d.	Raw QC Data Decafluorotripbenylphosphine (DFTPP) Blank Data Matrix Spike Data Matrix Spike Duplicate Data	K K		NA NA
5.	Miscellaneous Data Original preparation and analysis forms or copies of prepara and analysis log book pages Internal sample & sample extract transfer chain-of custody records Screening Records All instrument output, including strip charts from screening activities (describe or list)			ADA MAA-

F:\pad\ADEA&R\Basedocs\Report_Templates\QAPPs\Generic QAPP_RI\Final Generic QAPP\Appendices Generic QAPP\E - Completeness Checklist.doc

6.

INITIAL DATE: JULY 2007 REVISION DATE: JULY 2007 REVISION: 0.0

GENERIC QUALITY ASSURANCE PROJECT PLAN FOR PROJECTS IN RHODE ISLAND LABORATORY MODIFIED TIER II DATA VALIDATION CHECKLIST ORGANIC COMPOUNDS (Continued)

PERFORMED AND, WHERE APPLICABLE, WITHIN ACCEPTABLE LIMTS?**

		<u>YES</u>	<u>NO</u>	COMMENTS
Chair	1-of-Custody Records	k		
	le Log-in Sheet (Lab & DC1)			
_	ellaneous Shipping/Receiving Records (describe or list)			
7.	Internal Lab Sample Transfer Records and Tracking	5		
	Sheets (describe or list)			
8.	Other Records (describe or list)			
	· · · · · · · · · · · · · · · · · · ·	· · · · ·		
9.	Comments:			
				<u> </u>

** See laboratory Quality Assurance Plan for limits.

10 MOK Completed by (Printed Name/Title) (Lab) (Signature)

I certify that the above information is true and accurate. I further certify that all laboratory results associated with the above analyses will be made available for review for seven (7) years following certification of this document.

Certified by: (Lab) (Signature)

M3A Mon Bowlery (Printed Name/Title) <u>| u</u>

F:\P2009\1532\A20\Lab-Data\E - Completeness Checklist.doc

ETULAT35

INITIAL DATE: JULY 2007 REVISION DATE: JULY 2007 REVISION: 0.0

GENERIC QUALITY ASSURANCE PROJECT PLAN FOR PROJECTS IN RHODE ISLAND LABORATORY MODIFIED TIER II DATA VALIDATION CHECKLIST INORGANIC COMPOUNDS

PERFORMED AND, WHERE APPLICABLE, WITHIN ACCEPTABLE LIMTS?**

			<u>YES</u>	<u>NO</u>	COMMENTS
	SDG Project Narratives		M		
	Inorganic Analysis Data Sheet		\checkmark		
	Initial and Continuing Calibration Verification		\checkmark		
	CRDL Standard for AA and ICP		\checkmark		
	Blanks	•	\checkmark		
	ICP Interference Check Sample		\checkmark		
	Spike Sample Recovery		Y		,
	Post Digest Spike Sample Recovery			V	
	Duplicates		T		
	Laboratory Control Sample		\mathbf{M}		
	Standard Addition Results		\mathbf{Y}	V	NIA
	ICP Serial Dilutions			\checkmark	NIA
	Instrument Detection Limits, Quarterly		\mathbf{M}		Annual
	ICP Interelement Correction Factors, Annually		$\mathbf{\nabla}$		
	ICP Linear Ranges Quarterly				
	Preparation Log		\checkmark		
	Apolyois Pup Log				
	Analysis Run Log ICP Raw Data		2		
	Furnace AA Raw Data			□ ▼	
			M		
	Mercury Raw Data Percent Solids Calculations		M	Π	
			⊡ 1∕2		
	Digestion Logs EPA Shipping/Receiving Records				<u> </u>
	(List all individual records)				
	Chain-of Custody Records		V	Π	
	Sample Log-In sheet		4		LIMS
	Miscellaneous Shipping/Receiving Records				
•	(List all individual records)		<u> </u>	ىت	

INITIAL DATE: JULY 2007 REVISION DATE: JULY 2007 REVISION: 0.0

GENERIC QUALITY ASSURANCE PROJECT PLAN FOR PROJECTS IN RHODE ISLAND LABORATORY MODIFIED TIER II DATA VALIDATION CHECKLIST INORGANIC COMPOUNDS (Continued)

PERFORMED AND, WHERE APPLICABLE, WITHIN ACCEPTABLE LIMTS?**

YES NO COMMENTS

_		
\mathbf{V}		logbook
\checkmark		electroni
-	_	

** See laboratory Quality Assurance Plan for limits.

Completed by:	Kidoliberte	K. Laliberte	09-09-11
(Lab)	(Signature)	(Printed Name/Title)	Date

I certify that the above information is true and accurate. I further certify that all laboratory results associated with the above analyses will be made available for review for seven (7) years following certification of this document.

Certified by: <u>M</u> Ame (Lab)

Unizmer/ (Printed Name/Title)

1u

Modified Tier II Data Validation Narrative

Project: 20100607.A20 Site Investigation/Targeted Brownfields Assessment Former Woonsocket Middle School

Con-Test Analytical Laboratory Project Number:	MC3739
Date Samples Received at Laboratory:	September 20, 2011
Date of Review:	October 2011

Seven primary soil-gas samples and one duplicate sample were collected and submitted to Accutest Laboratories (Accutest). The primary and duplicate samples were analyzed for:

• Volatile organic compounds (VOC) via USEPA TO-15

Samples were extracted and analyzed by the Accutest within the holding times specified in USEPA Method TO-15.

Analytical results were compared to the Residential Soil Vapor Volatilization Criteria (R-SVVC) promulgated by the Connecticut Department of Energy and Environmental Protection (CTDEEP 2003). The laboratory reporting limits were low enough to allow direct comparison to these criteria.

Analysis of laboratory blank samples indicated that recoveries of several target analytes were outside of QC limits. However, the affected analytes were reported below laboratory reporting limits. Potential bias, low or high, in the results is therefore not anticipated to affect the usability of the analytical results.

Results of the primary and duplicate soil-gas sample exhibited relative percent differences (RPD) less than 30%, except for methylene chloride (RPD 75%) and Tetrachloroethene (RPD 43%). The elevated RPDs may be attributed to matrix interference or sample heterogeneity. However, the reported concentrations of methylene chloride and tetrachloroethene were below laboratory reporting limits, or several orders of magnitude below the R-SVVC. The elevated RPDs are therefore not anticipated to affect the usability of the analytical results.

The field and laboratory data associated with the above referenced project are compliant with the May 2011 *Site-Specific QAPP Addendum* for the Former Woonsocket Middle School site.

INITIAL DATE: OCTOBER 2011 REVISION DATE: FEBRUARY 2012 REVISION: 1.0

MC3739

GENERIC QUALITY ASSURANCE PROJECT PLAN FOR PROJECTS IN CONNECTICUT, MASSACHUSETTS AND RHODE ISLAND MODIFIED TIER I COMPLETENESS CHECKLIST

	YES	NO
1. SAMPLING AND FIELD MEASUREMENTS:		
Field measurement calibration records		0 NIA
Groundwater field measurements (if applicable)		
Soil sampling field measurements (if applicable)		
Sediment sampling field measurements (if applicable)		
Surface water sampling field measurements (if applicable)		
Low-flow sampling field measurements (if applicable)		
Documentation of field activities	X	
Sample numbering and labeling	实	
Chain-of-Custody records	X	
Trip blanks		ONIA
Duplicate samples	DK.	
Equipment blanks		DNA
Split samples (if any)		$\Box \gamma$
2. LABORATORY MEASUREMENTS:		
Trip blanks		D NIA.
Instrument blanks	VX	
Laboratory control samples	DX-	
Duplicates samples	DX.	
Equipment blanks		DNIA
Matrix spike/matrix spike duplicates		$\neg \neg$
Analysis type	X	
Chain-of-Custody records	X	
Surrogate recoveries	X	
Sample Project Narratives	₹¥	
Split samples (if any)		DNIA
TOTAL:		
PERCENT	COMPLETE:	100 %

F:\pad\ADEA&R\Basedocs\Report_Templates\QAPPs\Generic-QAPPs\CT-MA-RI\Rev-1\Appendicies\Appendix-I-Completeness-Checklist.doc

INITIAL DATE: OCTOBER 2011 REVISION DATE: FEBRUARY 2012 REVISION: 1.0

GENERIC QUALITY ASSURANCE PROJECT PLAN FOR PROJECTS IN CONNECTICUT, MASSACHUSETTS AND RHODE ISLAND FUSS & O'NEILL MODIFIED TIER II DATA VALIDATION CHECKLIST

PERFORMED AND, WHERE APPLICABLE, WITHIN ACCEPTABLE LIMITS?

	YES	NO	COMMENTS
1. SAMPLING AND FIELD MEASUREMENTS:			
Field measurement calibration records			
pH - ± 0.3 pH units			NIA
S.C \pm 5% of calibration solution, within?		-	1
calibration range			
Temperature - \pm 0.5 °C			
D.O \pm 5% of calibration solution			
Groundwater field measurements (if applicable)			
Water depth measured to within 0.01 ft.?			
Soil sampling field measurements (if applicable)			
OVM - ± 2 ppm			
OVA - ± 2 ppm			
Sediment sampling field measurements (if applicable)			
Descriptive information recorded?			
Surface water sampling field measurements (if applicable)			
Water depth measured to within 0.01 ft.?			
Low-flow sampling field measurements (if applicable)			
S.C ± 10%			
$pH - \pm 0.2 pH$ units			
Temperature - \pm 10%			
Turbidity - ±5 NTU			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Documentation of field activities			
Site-specific information documented in field notebook?	R		
Field data sheets completed?	K		
Sample numbering and labeling			
Sample numbering conforms to sample I.D. system			
identified in QAPP?	DK		
Chain-of-Custody records	-1		
Chain-of-Custody forms completed?	R		

INITIAL DATE: OCTOBER 2011 REVISION DATE: FEBRUARY 2012 REVISION: 1.0

GENERIC QUALITY ASSURANCE PROJECT PLAN FOR PROJECTS IN CONNECTICUT, MASSACHUSETTS AND RHODE ISLAND FUSS & O'NEILL MODIFIED TIER II DATA VALIDATION CHECKLIST (Continued)

PERFORMED AND, WHERE APPLICABLE, WITHIN ACCEPTABLE LIMITS?

	YES	NO	COMMENTS
Trip blanks			
Trip blanks submitted, one per day?			NIA
Any compounds detected in trip blanks?			
Duplicate samples			
Field duplicates performed, 1/20 samples?	DX		and a local second second second
Duplicates performed on 10% of samples screened			NIA
for explosives?			
Is percent difference within 30% for all field parameters?			
Equipment blanks			
Equipment blanks submitted, one per sampling day?			
Any compounds detected in equipment blank?			
Split samples (if any)			
Split samples collected?			
Is percent difference within 30% for split samples?			
2. LABORATORY MEASUREMENTS: Trip blanks			
Trip blanks submitted, one per day?			NIA
Any compounds detected in trip blanks?			L
Instrument blanks**	X		
Laboratory control samples**	X		
Duplicates samples**	K		
Equipment blanks**			NIA
Matrix spike/matrix spike duplicates**			V
Analysis type	VA		
Chain-of-Custody records	SX.		
Surrogate recoveries**	\boxtimes		
Sample Project Narratives	×		
Split samples (if any)**			NIA
Most recent EPA WP-PE sample results**			L

.

10/07/11

Technical Report for

Fuss & O'Neill RI

Former Woonsocket M.S. Woonsocket, RI

20100607.A20

Accutest Job Number: MC3739

Sampling Date: 09/19/11

Report to:

Fuss & O'Neill RI 317 Iron Horse Way Suite 204 Providence, RI 02908 pdowling@fando.com

ATTN: Patrick Dowling

Total number of pages in report: 70

Reza Fand Lab D'

Lab Director

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Client Service contact: Frank DAgostino 508-481-6200

Certifications: MA (M-MA136,SW846 NELAC) CT (PH-0109) NH (250210) RI (00071) ME (MA00136) FL (E87579) NY (11791) NJ (MA926) PA (6801121) ND (R-188) CO MN (11546AA) NC (653) IL (002337) ISO 17025:2005 (L2235) This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

New England • 495 Tech Center West • Building 1 • Marlborough, MA 01752 • tel: 508-481-6200 • fax: 508-481-7753 • http://www.accutest.com

Table of Contents

N
ယ
4

G

_

-1-

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	4
Section 3: Sample Results	5
3.1: MC3739-1: 841110919-01	6
3.2: MC3739-2: 841110919-02	8
3.3: MC3739-3: 841110919-03	10
3.4: MC3739-4: 841110919-04	13
3.5: MC3739-5: 841110919-05	16
3.6: MC3739-6: 841110919-06	18
3.7: MC3739-7: 841110919-07	21
3.8: MC3739-8: 841110919-08	23
Section 4: Misc. Forms	25
4.1: Certification Exceptions	26
4.2: Chain of Custody	27
4.3: Summa Canister and Flow Controller Log	38
Section 5: GC/MS Volatiles - QC Data Summaries	39
5.1: Method Blank Summary	40
5.2: Blank Spike Summary	48
5.4: Summa Cleaning Certification	68
5.5: Surrogate Recovery Summaries	70

Sample Summary

Fuss & O'Neill RI

Job No: MC3739

Former Woonsocket M.S. Woonsocket, RI Project No: 20100607.A20

Sample Number	Collected Date T	Time By		Matrix Code Type	Client Sample ID
MC3739-1	09/19/11 10	0:20 PD	09/20/11	AIR Air	841110919-01
MC3739-2	09/19/11 10	0:50 PD	09/20/11	AIR Air	841110919-02
MC3739-3	09/19/11 1	1:50 PD	09/20/11	AIR Air	841110919-03
MC3739-4	09/19/11 12	2:15 PD	09/20/11	AIR Air	841110919-04
MC3739-5	09/19/11 12	2:55 PD	09/20/11	AIR Air	841110919-05
MC3739-6	09/19/11 13	3:40 PD	09/20/11	AIR Air	841110919-06
MC3739-7	09/19/11 14	4:30 PD	09/20/11	AIR Air	841110919-07
MC3739-8	09/19/11 14	4:30 PD	09/20/11	AIR Air	841110919-08

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client:	Fuss & O'Neill RI	Job No	MC3739
Site:	Former Woonsocket M.S. Woonsocket, RI	Report Date	10/5/2011 4:06:17 PM

Site: Former Woonsocket M.S. Woonsocket, RI

8 Samples were collected on 09/19/2011 and were received at Accutest on 09/20/2011 and intact. These Samples received an Accutest job number of MC3739. A listing of the Laboratory Sample ID, Client Sample ID and dates of collection are presented in the Results Summary Section of this report.

Except as noted below, all method specified calibrations and quality control performance criteria were met for this job. For more information, please refer to QC summary pages.

Volatiles by GCMS By Method TO-15

Matrix AIR Batch ID: MSJ1059

All samples were analyzed within the recommended method holding time.

- All method blanks for this batch meet method specific criteria.
- Sample(s) MC3944-1DUP were used as the QC samples indicated.
- Blank Spike Recovery(s) for 1,2,4-Trichlorobenzene, Benzyl Chloride, trans-1,3-Dichloropropene are outside control limits. Associated samples are non-detect for this compound.

Matrix AIR	Batch ID: MSJ1060	
All samples were analyzed w	hin the recommended method holding time.	

- All method blanks for this batch meet method specific criteria.
- Sample(s) MC3739-7DUP were used as the QC samples indicated. .
- Blank Spike Recovery(s) for 1,2,4-Trichlorobenzene, Benzyl Chloride, Hexachlorobutadiene, m-Dichlorobenzene, pн. Dichlorobenzene are outside control limits. Associated samples are non-detect for this compound.
- RPD(s) for Duplicate for Ethanol, Isopropyl Alcohol, m,p-Xylene, o-Xylene, Tetrachloroethylene, Toluene are outside control limits for sample MC3739-7DUP. High RPD due to possible matrix interference and/or sample non-homogeneity.
- MC3739-3, 4: Confirmation run for internal standard areas.

Matrix AIR Batch ID: MSJ1061

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- ш÷. Sample(s) MC4112-3DUP were used as the QC samples indicated.
- Blank Spike Recovery(s) for 1,2,4-Trichlorobenzene, Benzyl Chloride are outside control limits. Associated samples are nonн. detect for this compound.
- RPD(s) for Duplicate for Acetone, Chloromethane, Ethanol are outside control limits for sample MC4112-3DUP. High RPD due to possible matrix interference and/or sample non-homogeneity.

The Accutest Laboratories of New England certifies that all analysis were performed within method specification. It is further recommended that this report to be used in its entirety. The Accutest Laboratories of NE, Laboratory Director or assignee as verified by the signature on the cover page has authorized the release of this report(MC3739).

MC3730

Page 1 of 1

ω

Sample Results

Report of Analysis

			•		v				-
Client Sam Lab Sample Matrix: Method: Project:	-	841110919-01 MC3739-1 Date Sampled: 09/19/11 AIR - Air Summa ID: M229 Date Received: 09/20/11 TO-15 Percent Solids: n/a Former Woonsocket M.S. Woonsocket, RI							
Run #1 Run #2	File ID J20011.	DF D 1	Analyzed 10/04/11	By AA	Prej n/a	o Date	Prep Bat n/a		nalytical Batch SJ1061
Run #1 Run #2	Initial V 400 ml	Volume							
CAS No.	MW	Compound		Result	RL	Units Q	Result	RL	Units
67-64-1 106-99-0 71-43-2 75-27-4 75-25-2 74-83-9 593-60-2 100-44-7 75-15-0 108-90-7 75-00-3 67-66-3 74-87-3 107-05-1 95-49-8 56-23-5 110-82-7 75-34-3 75-35-4 106-93-4	58.08 54.09 78.11 163.8 252.8 94.94 106.9 126 76.14 112.6 64.52 119.4 50.49 76.53 126.6 153.8 84.16 98.96 96.94 187.9	Acetone 1,3-Butadiene Benzene Bromodichlorom Bromoform Bromoethane Bromoethane Benzyl Chloride Carbon disulfide Chlorobenzene Chlorothane Chloroform Chloropropene 2-Chlorotoluene Carbon tetrachlor Cyclohexane 1,1-Dichloroetha 1,2-Dibromoetha	ride ne lene	14.1 ND 0.62 ND ND ND ND ND ND ND ND ND ND ND ND ND	0.50 0.50	ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv	33.5 ND 2.0 ND ND ND ND ND ND ND ND ND ND ND ND ND	$\begin{array}{c} 1.2 \\ 1.1 \\ 1.6 \\ 3.3 \\ 5.2 \\ 1.9 \\ 2.2 \\ 2.6 \\ 1.6 \\ 2.3 \\ 0.53 \\ 2.4 \\ 1.0 \\ 1.6 \\ 2.6 \\ 1.3 \\ 1.7 \\ 0.81 \\ 0.79 \\ 3.8 \end{array}$	ug/m3 ug/m3
100-93-4 107-06-2 78-87-5 123-91-1 75-71-8 124-48-1 156-60-5 156-59-2 10061-01-5 541-73-1 95-50-1 106-46-7 10061-02-6	98.96 113 88 120.9 208.3 96.94 96.94 111 147 147 147 147 111	1,2-Dichloroetha 1,2-Dichloroetha 1,2-Dichloroprop 1,4-Dioxane Dichlorodifluoro Dibromochlorom trans-1,2-Dichloro cis-1,3-Dichloro m-Dichlorobenzer p-Dichlorobenzer trans-1,3-Dichlor	ne pane methane ethane roethylene ethylene propene ne ne ne ne	ND ND ND ND ND ND ND ND ND ND ND ND	$\begin{array}{c} 0.30\\ 0.20\\ 0.50\\ 0.50\\ 0.50\\ 0.20\\ 0.20\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ \end{array}$	ррбv ррбv ррбv ррбv ррбv ррбv ррбv ррбv	ND ND ND ND ND ND ND ND ND ND ND ND	0.81 2.3 1.8 2.5 4.3 0.79 0.79 2.3 3.0 3.0 3.0 2.3	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 2

<u>ω</u>

ω

ACCUTEST MC3739

Client Sample ID: Lab Sample ID: Matrix: Method: Project:		841110919-01 MC3739-1 AIR - Air Summa ID: M TO-15 Former Woonsocket M.S.	Date	Sampled: Received: ent Solids:	09/19/11 09/20/11 n/a			
CAS No.	MW	Compound	Result	RL	Units Q	Result	RL	Units
64-17-5 100-41-4 141-78-6 622-96-8 76-13-1 76-14-2 142-82-5 87-68-3 110-54-3 591-78-6 67-63-0 75-09-2 78-93-3 108-10-1 1634-04-4 115-07-1 100-42-5 71-55-6 79-34-5 79-00-5 120-82-1 95-63-6 109-67-8	46 106.2 88 120.2 187.4 170.9 100.2 260.8 86.17 100 60 84.94 72.11 100.2 88.15 42 104.1 133.4 167.9 133.4 181.5 120.2	Ethanol Ethylbenzene Ethyl Acetate 4-Ethyltoluene Freon 113 Freon 114 Heptane Hexachlorobutadiene Hexane 2-Hexanone Isopropyl Alcohol Methylene chloride Methyl ethyl ketone Methyl Isobutyl Ketone Methyl Tert Butyl Ether Propylene Styrene 1,1,1-Trichloroethane 1,2,2-Tetrachloroethane 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	ND ND ND	$\begin{array}{c} 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.50\\$	ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv	42.5 ND ND ND ND ND ND 1.9 ND 7.9 3.0 4.4 ND ND ND ND ND ND ND ND ND	0.94 2.2 1.8 2.5 3.8 3.5 2.0 5.3 1.8 2.0 1.2 1.7 1.5 2.0 1.8 0.86 2.1 1.1 1.4 1.1 3.7 2.5	ug/m3 ug/m3
108-67-8 540-84-1 75-65-0 127-18-4 109-99-9 108-88-3 79-01-6 75-69-4 75-01-4 108-05-4 95-47-6 1330-20-7 CAS No.	120.2 114.2 74.12 165.8 72 92.14 131.4 137.4 62.5 86 106.2 106.2 106.2 Surro	1,3,5-Trimethylbenzene 2,2,4-Trimethylpentane Tertiary Butyl Alcohol Tetrachloroethylene Tetrahydrofuran Toluene Trichloroethylene Trichlorofluoromethane Vinyl chloride Vinyl Acetate m,p-Xylene o-Xylene Xylenes (total) gate Recoveries	ND ND ND 0.56 2.7 ND ND ND 1.1 ND 1.4 un# 1 Run	0.50 0.50 0.50 0.20 0.50 0.20 0.50 0.20 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.20 0.50 0.20 0.50 0.20 0.50 0.20 0.50 0.20 0.50 0.50 0.20 0.50 0.50 0.20 0.50 0.50 0.20 0.50 0.50 0.20 0.50	ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv	ND ND ND 1.6 10 ND ND ND 4.8 ND 6.1	2.5 2.3 1.5 1.4 1.5 1.9 1.1 2.8 0.51 1.8 2.2 2.2 2.2	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3
460-00-4	4-Bron	mofluorobenzene 10)2%	5	0-129%			

Report of Analysis

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 2

<u>ω</u>

ω

MC3739

Client Sample ID: Lab Sample ID: Matrix: Method: Project:		841110919-02 MC3739-2 AIR - Air Summa TO-15 Former Woonsocke	Date	Sampled: Received: ent Solids:	09/19/11 09/20/11 n/a				
Run #1 Run #2	File ID J19995.	DF D 1	Analyzed 10/03/11	By AA	Prej n/a	o Date	Prep Batc n/a		Analytical Batch MSJ1060
Run #1 Run #2	Initial 400 ml	Volume							
CAS No.	MW	Compound		Result	RL	Units Q	Result	RL	Units
106-99-0 71-43-2 75-27-4 75-25-2 74-83-9 593-60-2 100-44-7 75-15-0 108-90-7 75-00-3 67-66-3 74-87-3 107-05-1 95-49-8 56-23-5 110-82-7 75-34-3 75-35-4	$\begin{array}{c} 54.09\\ 78.11\\ 163.8\\ 252.8\\ 94.94\\ 106.9\\ 126\\ 76.14\\ 112.6\\ 64.52\\ 119.4\\ 50.49\\ 76.53\\ 126.6\\ 153.8\\ 84.16\\ 98.96\\ 96.94 \end{array}$	1,3-Butadiene Benzene Bromodichlorome Bromoform Bromoethane Bromoethane Benzyl Chloride Carbon disulfide Chlorobenzene Chlorobenzene Chlorotonethane 3-Chloropropene 2-Chlorotoluene Carbon tetrachlori Cyclohexane 1,1-Dichloroethan 1,1-Dichloroethal	de e	ND 0.71 ND ND ND 0.57 ND ND ND ND ND ND ND ND ND ND ND ND	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.20 0.50 0.20	ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv	ND 2.3 ND ND ND ND 1.8 ND ND ND ND ND ND ND ND ND ND ND ND ND	$\begin{array}{c} 1.1\\ 1.6\\ 3.3\\ 5.2\\ 1.9\\ 2.2\\ 2.6\\ 1.6\\ 2.3\\ 0.53\\ 2.4\\ 1.0\\ 1.6\\ 2.6\\ 1.3\\ 1.7\\ 0.81\\ 0.79 \end{array}$	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3
106-93-4 107-06-2 78-87-5 123-91-1 75-71-8 124-48-1 156-60-5 156-59-2 10061-01-5 541-73-1 95-50-1 106-46-7 10061-02-6	187.9 98.96 113 88 120.9 208.3 96.94 96.94 111 147 147 147	1,2-Dibromoethan 1,2-Dichloroethan 1,2-Dichloropropa 1,4-Dioxane Dichlorodifluorom Dibromochlorome trans-1,2-Dichloroet cis-1,2-Dichloroet cis-1,3-Dichlorop m-Dichlorobenzen p-Dichlorobenzen trans-1,3-Dichloro	e e une nethane thane bethylene hylene ropene ne e e	ND ND ND ND ND ND ND ND ND ND ND ND	$\begin{array}{c} 0.50\\ 0.20\\ 0.50\\ 0.50\\ 0.50\\ 0.20\\ 0.20\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ \end{array}$	ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv	ND ND ND ND ND ND ND ND ND ND ND ND	$\begin{array}{c} 3.8\\ 0.81\\ 2.3\\ 1.8\\ 2.5\\ 4.3\\ 0.79\\ 0.79\\ 2.3\\ 3.0\\ 3.0\\ 3.0\\ 2.3\end{array}$	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 2

MC3739

ω

Client Sample ID: Lab Sample ID: Matrix: Method: Project:		841110919-02 MC3739-2 AIR - Air Summa ID: M040 TO-15 Former Woonsocket M.S. Wo	Date	Sampled: Received: ent Solids:	09/19/11 09/20/11 n/a			
CAS No.	MW	Compound	Result	RL	Units Q	Result	RL	Units
64-17-5	46	Ethanol	ND	0.50	ppbv	ND	0.94	ug/m3
100-41-4	106.2	Ethylbenzene	ND	0.50	ppbv	ND	2.2	ug/m3
141-78-6	88	Ethyl Acetate	ND	0.50	ppbv	ND	1.8	ug/m3
622-96-8	120.2	4-Ethyltoluene	ND	0.50	ppbv	ND	2.5	ug/m3
76-13-1	187.4	Freon 113	ND	0.50	ppbv	ND	3.8	ug/m3
76-14-2	170.9	Freon 114	ND	0.50	ppbv	ND	3.5	ug/m3
142-82-5	100.2	Heptane	ND	0.50	ppbv	ND	2.0	ug/m3
87-68-3	260.8	Hexachlorobutadiene	ND	0.50	ppbv	ND	5.3	ug/m3
110-54-3	86.17	Hexane	ND	0.50	ppbv	ND	1.8	ug/m3
591-78-6	100	2-Hexanone	ND	0.50	ppbv	ND	2.0	ug/m3
67-63-0	60	Isopropyl Alcohol	ND	0.50	ppbv	ND	1.2	ug/m3
75-09-2	84.94	Methylene chloride	ND	0.50	ppbv	ND	1.7	ug/m3
78-93-3	72.11	Methyl ethyl ketone	7.3	0.50	ppbv	22	1.5	ug/m3
108-10-1	100.2	Methyl Isobutyl Ketone	ND	0.50	ppbv	ND	2.0	ug/m3
1634-04-4	88.15	Methyl Tert Butyl Ether	ND	0.50	ppbv	ND	1.8	ug/m3
115-07-1	42	Propylene	8.4	0.50	ppbv	14	0.86	ug/m3
100-42-5	104.1	Styrene	ND	0.50	ppbv	ND	2.1	ug/m3
71-55-6	133.4	1,1,1-Trichloroethane	ND	0.20	ppbv	ND	1.1	ug/m3
79-34-5	167.9	1,1,2,2-Tetrachloroethane	ND	0.20	ppbv	ND	1.4	ug/m3
79-00-5	133.4	1,1,2-Trichloroethane	ND	0.20	ppbv	ND	1.1	ug/m3
120-82-1	181.5	1,2,4-Trichlorobenzene	ND	0.50	ppbv	ND	3.7	ug/m3
95-63-6	120.2	1,2,4-Trimethylbenzene	1.5	0.50	ppbv	7.4	2.5	ug/m3
108-67-8	120.2	1,3,5-Trimethylbenzene	ND	0.50	ppbv	ND	2.5	ug/m3
540-84-1	114.2	2,2,4-Trimethylpentane	6.2	0.50	ppbv	29	2.3	ug/m3
75-65-0	74.12	Tertiary Butyl Alcohol	ND	0.50	ppbv	ND	1.5	ug/m3
127-18-4	165.8	Tetrachloroethylene	1.8	0.20	ppbv	12	1.4	ug/m3
109-99-9	72	Tetrahydrofuran	ND	0.50	ppbv	ND	1.5	ug/m3
108-88-3	92.14	Toluene	1.2	0.50	ppbv	4.5	1.9	ug/m3
79-01-6	131.4	Trichloroethylene	ND	0.20	ppbv	ND	1.1	ug/m3
75-69-4	137.4	Trichlorofluoromethane	ND	0.50	ppbv	ND	2.8	ug/m3
75-01-4	62.5	Vinyl chloride	ND	0.20	ppbv	ND	0.51	ug/m3
108-05-4	86	Vinyl Acetate	2.2	0.50	ppbv	7.7	1.8	ug/m3
	106.2	m,p-Xylene	1.2	0.50	ppbv	5.2	2.2	ug/m3
95-47-6	106.2	o-Xylene	0.50	0.50	ppbv	2.2	2.2	ug/m3
1330-20-7	106.2	Xylenes (total)	1.7	0.50	ppbv	7.4	2.2	ug/m3
CAS No.	Surro	gate Recoveries Run#	1 Run	#2 I	limits			
460-00-4	4-Bror	nofluorobenzene 103%		5	0-129%			

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

3.2

ω

9 of 70 ACCUTEST MC3739

Client Sample ID: Lab Sample ID: Matrix: Method: Project:		841110919-03 MC3739-3 AIR - Air Sum TO-15 Former Woonso	Date	e Sampled: e Received: cent Solids:	11 11				
	File ID	DF	Analyzed	By	Prej	p Date	Prep Bate	h A	nalytical Batch
Run #1	J19967.		10/01/11	AA	n/a		n/a		ISJ1059
Run #2 ^a	J19996.	D 1	10/04/11	AA	n/a		n/a	N	ISJ1060
	Initial V	Volume							
Run #1	400 ml								
Run #2	400 ml								
CAS No.	MW	Compound		Result	RL	Units Q	Result	RL	Units
67-64-1	58.08	Acetone		12.0	0.50	ppbv	28.5	1.2	ug/m3
106-99-0	54.09	1,3-Butadiene		ND	0.50	ppbv	ND	1.1	ug/m3
71-43-2	78.11	Benzene		ND	0.50	ppbv	ND	1.6	ug/m3
75-27-4	163.8	Bromodichloro	methane	ND	0.50	ppbv	ND	3.3	ug/m3
75-25-2	252.8	Bromoform		ND	0.50	ppbv	ND	5.2	ug/m3
74-83-9	94.94	Bromomethane		ND	0.50	ppbv	ND	1.9	ug/m3
593-60-2	106.9	Bromoethene		ND	0.50	ppbv	ND	2.2	ug/m3
100-44-7	126	Benzyl Chlorid	e	ND	0.50	ppbv	ND	2.6	ug/m3
75-15-0	76.14	Carbon disulfid	e	0.90	0.50	ppbv	2.8	1.6	ug/m3
108-90-7	112.6	Chlorobenzene		ND	0.50	ppbv	ND	2.3	ug/m3
75-00-3	64.52	Chloroethane		ND	0.20	ppbv	ND	0.53	ug/m3
67-66-3	119.4	Chloroform		ND	0.50	ppbv	ND	2.4	ug/m3
74-87-3	50.49	Chloromethane		ND	0.50	ppbv	ND	1.0	ug/m3
107-05-1	76.53	3-Chloroproper	ne	ND	0.50	ppbv	ND	1.6	ug/m3
95-49-8	126.6	2-Chlorotoluen	e	ND	0.50	ppbv	ND	2.6	ug/m3
56-23-5	153.8	Carbon tetrachl	oride	ND	0.20	ppbv	ND	1.3	ug/m3
110-82-7	84.16	Cyclohexane		ND	0.50	ppbv	ND	1.7	ug/m3
75-34-3	98.96	1,1-Dichloroeth	nane	ND	0.20	ppbv	ND	0.81	ug/m3
75-35-4	96.94	1,1-Dichloroeth	nylene	ND	0.20	ppbv	ND	0.79	ug/m3
106-93-4	187.9	1,2-Dibromoetl	nane	ND	0.50	ppbv	ND	3.8	ug/m3
107-06-2	98.96	1,2-Dichloroeth	nane	ND	0.20	ppbv	ND	0.81	ug/m3
78-87-5	113	1,2-Dichloropr	opane	ND	0.50	ppbv	ND	2.3	ug/m3
123-91-1	88	1,4-Dioxane		ND	0.50	ppbv	ND	1.8	ug/m3
75-71-8	120.9	Dichlorodifluor	omethane	ND	0.50	ppbv	ND	2.5	ug/m3
124-48-1	208.3	Dibromochloro		ND	0.50	ppbv	ND	4.3	ug/m3
156-60-5	96.94	trans-1,2-Dichl	oroethylene	ND	0.20	ppbv	ND	0.79	ug/m3
156-59-2	96.94	cis-1,2-Dichlor	•	ND	0.20	ppbv	ND	0.79	ug/m3
10061-01-5	5 111	cis-1,3-Dichlor		ND	0.50	ppbv	ND	2.3	ug/m3
541-73-1	147	m-Dichloroben	zene	ND	0.50	ppbv	ND	3.0	ug/m3
95-50-1	147	o-Dichlorobenz		ND	0.50	ppbv	ND	3.0	ug/m3
106-46-7	147	p-Dichlorobenz		ND	0.50	ppbv	ND	3.0	ug/m3
10061-02-6	5 111	trans-1,3-Dichl	oropropene	ND	0.50	ppbv	ND	2.3	ug/m3

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 3

MC3739

ω

Client Sample ID: Lab Sample ID: Matrix: Method: Project:		841110919-03 MC3739-3 AIR - Air Summa ID: M092 TO-15 Former Woonsocket M.S. Woonsocket, RI				Sampled: Received: ent Solids:	09/19/11 09/20/11 n/a	
CAS No.	MW	Compound	Result	RL	Units Q	Result	RL	Units
64-17-5 100-41-4 141-78-6 622-96-8 76-13-1 76-14-2 142-82-5 87-68-3 110-54-3 591-78-6 67-63-0 75-09-2 78-93-3 108-10-1 1634-04-4 115-07-1 100-42-5 71-55-6 79-34-5 79-00-5 120-82-1 95-63-6 108-67-8 540-84-1 75-65-0 127-18-4 109-99-9 108-88-3 79-01-6	46 106.2 88 120.2 187.4 170.9 100.2 260.8 86.17 100 60 84.94 72.11 100.2 88.15 42 104.1 133.4 167.9 133.4 181.5 120.2 120.2 114.2 74.12 165.8 72 92.14 131.4	Ethanol Ethylbenzene Ethyl Acetate 4-Ethyltoluene Freon 113 Freon 114 Heptane Hexachlorobutadiene Hexane 2-Hexanone Isopropyl Alcohol Methylene chloride Methyl ethyl ketone Methyl Isobutyl Ketone Methyl Tert Butyl Ether Propylene Styrene 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,2,4-Trichlorobenzene 1,3,5-Trimethylbenzene 2,2,4-Trimethylbenzene 2,2,4-Trimethylpentane Tertiary Butyl Alcohol Tetrachloroethylene Tetrahydrofuran Toluene Trichloroethylene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	0.50 0.50	ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv	ND ND ND ND ND ND ND ND ND ND ND ND ND N	$\begin{array}{c} 0.94\\ 2.2\\ 1.8\\ 2.5\\ 3.8\\ 3.5\\ 2.0\\ 5.3\\ 1.8\\ 2.0\\ 1.2\\ 1.7\\ 1.5\\ 2.0\\ 1.8\\ 0.86\\ 2.1\\ 1.1\\ 1.4\\ 1.1\\ 3.7\\ 2.5\\ 2.3\\ 1.5\\ 1.4\\ 1.5\\ 1.9\\ 1.1 \end{array}$	ug/m3 ug/m3
75-69-4 75-01-4 108-05-4	137.4 62.5 86 106.2	Trichlorofluoromethane Vinyl chloride Vinyl Acetate m,p-Xylene	ND ND ND 0.90	0.50 0.20 0.50 0.50	ppbv ppbv ppbv ppbv	ND ND ND 3.9	2.8 0.51 1.8 2.2	ug/m3 ug/m3 ug/m3 ug/m3
95-47-6 1330-20-7	106.2 106.2	o-Xylene Xylenes (total)	ND 1.2	0.50 0.50	ppbv ppbv	ND 5.2	2.2 2.2	ug/m3 ug/m3
CAS No.		gate Recoveries Run#			<i>imits</i>			
460-00-4	4-Bror	nofluorobenzene 108%	87%	5	0-129%			

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ယ ပ

ω

MC3739

Accutest Laboratories

	Report of Analysis	5	Page 3 of 3
Client Sample ID:	841110919-03		
Lab Sample ID:	MC3739-3	Date Sampled:	09/19/11
Matrix:	AIR - Air Summa ID: M092	Date Received:	09/20/11
Method:	TO-15	Percent Solids:	n/a
Project:	Former Woonsocket M.S. Woonsocket, RI		
CAS No. MW	Compound Result RL	Units Q Result	RL Units

(a) Confirmation run for internal standard areas.

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

ယ ပ

ω

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: Lab Sample ID: Matrix: Method: Project:		841110919-04 MC3739-4 AIR - Air Summa ID: M261 TO-15 Former Woonsocket M.S. Woonsocket, RI					Sampled: Received: ent Solids:	/11 /11		
	File ID	DF	Analyzed	By	Pre	p Date	Prep Batc	h A	nalytical Batch	
Run #1	J19968.		10/01/11	AA	n/a		n/a		ISJ1059	
Run #2 ^a	J19997.	D 1	10/04/11	AA	n/a		n/a	Ν	MSJ1060	
	Initial V	Volume								
Run #1	400 ml									
Run #2	400 ml									
CAS No.	MW	Compound		Result	RL	Units Q	Result	RL	Units	
67-64-1	58.08	Acetone		18.7	0.50	ppbv	44.4	1.2	ug/m3	
106-99-0	54.09	1,3-Butadiene		ND	0.50	ppbv	ND	1.1	ug/m3	
71-43-2	78.11	Benzene		1.5	0.50	ppbv	4.8	1.6	ug/m3	
75-27-4	163.8	Bromodichloron	nethane	ND	0.50	ppbv	ND	3.3	ug/m3	
75-25-2	252.8	Bromoform		ND	0.50	ppbv	ND	5.2	ug/m3	
74-83-9	94.94	Bromomethane		ND	0.50	ppbv	ND	1.9	ug/m3	
593-60-2	106.9	Bromoethene		ND	0.50	ppbv	ND	2.2	ug/m3	
100-44-7	126	Benzyl Chloride	•	ND	0.50	ppbv	ND	2.6	ug/m3	
75-15-0	76.14	Carbon disulfide		1.2	0.50	ppbv	3.7	1.6	ug/m3	
108-90-7	112.6	Chlorobenzene		ND	0.50	ppbv	ND	2.3	ug/m3	
75-00-3	64.52	Chloroethane		ND	0.20	ppbv	ND	0.53	ug/m3	
67-66-3	119.4	Chloroform		ND	0.50	ppbv	ND	2.4	ug/m3	
74-87-3	50.49	Chloromethane		ND	0.50	ppbv	ND	1.0	ug/m3	
107-05-1	76.53	3-Chloropropen	e	ND	0.50	ppbv	ND	1.6	ug/m3	
95-49-8	126.6	2-Chlorotoluene		ND	0.50	ppbv	ND	2.6	ug/m3	
56-23-5	153.8	Carbon tetrachle		ND	0.20	ppbv	ND	1.3	ug/m3	
110-82-7	84.16	Cyclohexane		ND	0.50	ppbv	ND	1.7	ug/m3	
75-34-3	98.96	1,1-Dichloroeth	ane	ND	0.20	ppbv	ND	0.81	ug/m3	
75-35-4	96.94	1,1-Dichloroeth		ND	0.20	ppbv	ND	0.79	ug/m3	
106-93-4	187.9	1,2-Dibromoeth		ND	0.50	ppbv	ND	3.8	ug/m3	
107-06-2	98.96	1,2-Dichloroeth		ND	0.20	ppbv	ND	0.81	ug/m3	
78-87-5	113	1,2-Dichloropro		ND	0.50	ppbv	ND	2.3	ug/m3	
123-91-1	88	1,4-Dioxane		ND	0.50	ppbv	ND	1.8	ug/m3	
75-71-8	120.9	Dichlorodifluor	omethane	0.55	0.50	ppbv	2.7	2.5	ug/m3	
124-48-1	208.3	Dibromochloror		ND	0.50	ppbv	ND	4.3	ug/m3	
156-60-5	96.94	trans-1,2-Dichlo		ND	0.20	ppbv	ND	0.79	ug/m3	
156-59-2	96.94	cis-1,2-Dichloro		ND	0.20	ppbv	ND	0.79	ug/m3	
10061-01-5		cis-1,3-Dichloro	•	ND	0.50	ppbv	ND	2.3	ug/m3	
541-73-1	147	m-Dichlorobenz		ND	0.50	ppbv	ND	3.0	ug/m3	
95-50-1	147	o-Dichlorobenze		ND	0.50	ppbv	ND	3.0	ug/m3	
106-46-7	147	p-Dichlorobenze	ene	ND	0.50	ppbv	ND	3.0	ug/m3	
10061-02-6	5 111	trans-1,3-Dichlo	propropene	ND	0.50	ppbv	ND	2.3	ug/m3	

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 3

MC3739

ω

Г

Client Samj Lab Sample Matrix: Method: Project:		841110919-04 MC3739-4 AIR - Air Summa ID: M26 TO-15 Former Woonsocket M.S. Wo		2I	09/19/11 09/20/11 n/a			
CAS No.	MW	Compound	Result	RL	Units Q	Result	RL	Units
64-17-5 100-41-4 141-78-6 622-96-8 76-13-1 76-14-2 142-82-5 87-68-3 110-54-3 591-78-6 67-63-0 75-09-2 78-93-3 108-10-1 1634-04-4 115-07-1 100-42-5 71-55-6 79-34-5 79-00-5 120-82-1 95-63-6 108-67-8 540-84-1 75-65-0 127-18-4 109-99-9 108-88-3	$\begin{array}{c} 46\\ 106.2\\ 88\\ 120.2\\ 187.4\\ 170.9\\ 100.2\\ 260.8\\ 86.17\\ 100\\ 60\\ 84.94\\ 72.11\\ 100.2\\ 88.15\\ 42\\ 104.1\\ 133.4\\ 167.9\\ 133.4\\ 181.5\\ 120.2\\ 120.2\\ 114.2\\ 74.12\\ 165.8\\ 72\\ 92.14 \end{array}$	Ethanol Ethylbenzene Ethyl Acetate 4-Ethyltoluene Freon 113 Freon 114 Heptane Hexachlorobutadiene Hexane 2-Hexanone Isopropyl Alcohol Methylene chloride Methyl ethyl ketone Methyl Isobutyl Ketone Methyl Isobutyl Ketone Methyl Tert Butyl Ether Propylene Styrene 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,2,4-Trinethylbenzene 1,2,4-Trimethylbenzene 2,2,4-Trimethylbenzene 2,2,4-Trimethylbenzene 2,2,4-Trimethylpentane Tertiary Butyl Alcohol Tetrachloroethylene Tetrahydrofuran Toluene	ND 0.80 ND ND ND ND ND ND ND ND ND ND	$\begin{array}{c} 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.20\\ 0.20\\ 0.20\\ 0.50\\$	ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv	ND 3.5 ND ND ND 2.4 ND ND ND 29 16 ND ND 29 16 ND ND 32.5 ND ND ND ND ND ND ND 3.2 ND ND ND 1.9 16	$\begin{array}{c} 0.94\\ 2.2\\ 1.8\\ 2.5\\ 3.8\\ 3.5\\ 2.0\\ 5.3\\ 1.8\\ 2.0\\ 1.2\\ 1.7\\ 1.5\\ 2.0\\ 1.2\\ 1.7\\ 1.5\\ 2.0\\ 1.8\\ 0.86\\ 2.1\\ 1.1\\ 1.4\\ 1.1\\ 3.7\\ 2.5\\ 2.3\\ 1.5\\ 1.4\\ 1.5\\ 1.9\\ \end{array}$	ug/m3 ug/m3
79-01-6 75-69-4 75-01-4 108-05-4 95-47-6 1330-20-7	131.4 137.4 62.5 86 106.2 106.2 106.2	Trichloroethylene Trichlorofluoromethane Vinyl chloride Vinyl Acetate m,p-Xylene o-Xylene Xylenes (total)	ND ND 1.3 2.6 0.79 3.4	$\begin{array}{c} 0.20\\ 0.50\\ 0.20\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ \end{array}$	ppbv ppbv ppbv ppbv ppbv ppbv ppbv	ND ND 4.6 11 3.4 15	1.1 2.8 0.51 1.8 2.2 2.2 2.2	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3
CAS No. 460-00-4		gate Recoveries Run# nofluorobenzene 109%			Limits 50-129%			
400-00-4	4-DI 0I	109%	104%		0-12770			

Report of Analysis

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 3

3.4

ω

MC3739

Accutest Laboratories

CAS No. MW	Compound	Result RL	Units O Result	RL Units
Project:	Former Woonsocket M.S. Woons	socket, RI		
Method:	TO-15		Percent Solids:	n/a
Matrix:	AIR - Air Summa ID: M261		Date Received:	09/20/11
Lab Sample ID:	MC3739-4		Date Sampled:	09/19/11
Client Sample ID:	841110919-04			

Report of Analysis

(a) Confirmation run for internal standard areas.

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

3.4

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

			-		·				U
Client Sam Lab Sample Matrix: Method: Project:	-				RI	Date	Sampled: Received: ent Solids:	09/20/	
Run #1 Run #2	File ID J19998.	DF D 1	Analyzed 10/04/11	By AA	Prej n/a	p Date	Prep Bat n/a		nalytical Batch (SJ1060
Run #1 Run #2	Initial V 400 ml	Volume							
CAS No.	MW	Compound		Result	RL	Units Q	Result	RL	Units
67-64-1 106-99-0 71-43-2	58.08 54.09 78.11	Acetone 1,3-Butadiene Benzene		27.5 1.7 1.6	0.50 0.50 0.50	ppbv ppbv ppbv	65.3 3.8 5.1	1.2 1.1 1.6	ug/m3 ug/m3 ug/m3
75-27-4 75-25-2 74-83-9 593-60-2	163.8 252.8 94.94 106.9	Bromodichlorom Bromoform Bromomethane Bromoethene	ethane	ND ND ND ND	0.50 0.50 0.50 0.50	ppbv ppbv ppbv ppbv	ND ND ND ND	3.3 5.2 1.9 2.2	ug/m3 ug/m3 ug/m3 ug/m3
100-44-7 75-15-0 108-90-7	100.9 126 76.14 112.6	Benzyl Chloride Carbon disulfide Chlorobenzene		ND 1.0 ND	0.50 0.50 0.50 0.50	ppbv ppbv ppbv ppbv	ND 3.1 ND	2.6 1.6 2.3	ug/m3 ug/m3 ug/m3
75-00-3 67-66-3 74-87-3	64.52 119.4 50.49	Chloroethane Chloroform Chloromethane		ND ND ND	0.20 0.50 0.50	ppbv ppbv ppbv	ND ND ND	0.53 2.4 1.0	ug/m3 ug/m3 ug/m3
107-05-1 95-49-8 56-23-5 110-82-7	76.53 126.6 153.8 84.16	3-Chloropropene 2-Chlorotoluene Carbon tetrachlor Cyclohexane		ND ND ND ND	0.50 0.50 0.20 0.50	ppbv ppbv ppbv ppbv	ND ND ND ND	1.6 2.6 1.3 1.7	ug/m3 ug/m3 ug/m3 ug/m3
75-34-3 75-35-4 106-93-4	98.96 96.94 187.9	1,1-Dichloroetha 1,1-Dichloroethy 1,2-Dibromoetha	lene	ND ND ND	0.30 0.20 0.20 0.50	ppbv ppbv ppbv ppbv	ND ND ND	0.81 0.79 3.8	ug/m3 ug/m3 ug/m3
107-06-2 78-87-5 123-91-1	98.96 113 88	1,2-Dichloroetha 1,2-Dichloroprop 1,4-Dioxane	ne Dane	ND ND ND	0.20 0.50 0.50	ppbv ppbv ppbv ppbv	ND ND ND	0.81 2.3 1.8	ug/m3 ug/m3 ug/m3
75-71-8 124-48-1 156-60-5	120.9 208.3 96.94	Dichlorodifluoro Dibromochlorom trans-1,2-Dichlor	methane ethane roethylene	0.84 ND ND	0.50 0.50 0.20	ppbv ppbv ppbv	4.2 ND ND	2.5 4.3 0.79	ug/m3 ug/m3 ug/m3
156-59-2 10061-01-5 541-73-1 95-50-1	96.94 111 147 147	cis-1,2-Dichloroe cis-1,3-Dichlorop m-Dichlorobenze o-Dichlorobenze	propene ene ne	ND ND ND ND	0.20 0.50 0.50 0.50	ppbv ppbv ppbv ppbv	ND ND ND ND	0.79 2.3 3.0 3.0	ug/m3 ug/m3 ug/m3 ug/m3
106-46-7 10061-02-6	147 111	p-Dichlorobenzer trans-1,3-Dichlor		ND ND	0.50 0.50	ppbv ppbv	ND ND	3.0 2.3	ug/m3 ug/m3

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 2

ω

Client Samj Lab Sample Matrix: Method: Project:		841110919-05 MC3739-5 AIR - Air Summa ID: M TO-15 Former Woonsocket M.S.		2I	09/19/11 09/20/11 n/a			
CAS No.	MW	Compound	Result	RL	Units Q	Result	RL	Units
64-17-5 100-41-4 141-78-6 622-96-8 76-13-1 76-14-2 142-82-5 87-68-3 110-54-3 591-78-6 67-63-0 75-09-2 78-93-3 108-10-1 1634-04-4 115-07-1 100-42-5 71-55-6 79-34-5 79-00-5 120-82-1 95-63-6 108-67-8 540-84-1 75-65-0	46 106.2 88 120.2 187.4 170.9 100.2 260.8 86.17 100 60 84.94 72.11 100.2 88.15 42 104.1 133.4 167.9 133.4 181.5 120.2 120.2 114.2 74.12	Ethanol Ethylbenzene Ethyl Acetate 4-Ethyltoluene Freon 113 Freon 114 Heptane Hexachlorobutadiene Hexane 2-Hexanone Isopropyl Alcohol Methylene chloride Methyl ethyl ketone Methyl Isobutyl Ketone Methyl Isobutyl Ketone Methyl Tert Butyl Ether Propylene Styrene 1, 1, 1-Trichloroethane 1, 1, 2-Tetrachloroethane 1, 2, 4-Trichlorobenzene 1, 3, 5-Trimethylbenzene 2, 2, 4-Trimethylbenzene 2, 2, 4-Trimethylpentane Tertiary Butyl Alcohol	ND 0.52 ND ND ND 0.80 ND ND ND 1.2 ND ND 1.2 ND ND 20.1 ND ND ND ND ND ND ND ND ND ND	$\begin{array}{c} 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.20\\ 0.20\\ 0.20\\ 0.50\\$	ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv	ND 2.3 ND ND ND 3.3 ND ND ND A.2 ND ND AD 34.5 ND ND ND ND ND ND ND ND ND ND ND ND ND	$\begin{array}{c} 0.94\\ 2.2\\ 1.8\\ 2.5\\ 3.8\\ 3.5\\ 2.0\\ 5.3\\ 1.8\\ 2.0\\ 1.2\\ 1.7\\ 1.5\\ 2.0\\ 1.2\\ 1.7\\ 1.5\\ 2.0\\ 1.8\\ 0.86\\ 2.1\\ 1.1\\ 1.4\\ 1.1\\ 3.7\\ 2.5\\ 2.5\\ 2.3\\ 1.5\\ \end{array}$	ug/m3 ug/m3
75-63-0 127-18-4 109-99-9 108-88-3 79-01-6 75-69-4 75-01-4 108-05-4 95-47-6 1330-20-7 CAS No.	165.8 72 92.14 131.4 137.4 62.5 86 106.2 106.2 106.2	Tetrachloroethylene Tetrahydrofuran Toluene Trichloroethylene Trichlorofluoromethane Vinyl chloride Vinyl Acetate m,p-Xylene o-Xylene Xylenes (total)	ND ND 6.2 ND 0.71 ND 0.67 1.8 0.52 2.3 un# 1 Run	$\begin{array}{c} 0.20\\ 0.50\\ 0.50\\ 0.20\\ 0.50\\ 0.20\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ \end{array}$	ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv	ND ND 23 ND 4.0 ND 2.4 7.8 2.3 10	1.5 1.4 1.5 1.9 1.1 2.8 0.51 1.8 2.2 2.2 2.2	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3
460-00-4	4-Bror	nofluorobenzene 98	3%	5	0-129%			

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 2

3.5

Client Sam Lab Sampl Matrix: Method: Project:	nple ID: MC3739-6 AIR - Air Summa ID: M166 : TO-15 TO-15		nsocket, F	2I	Date	Sampled: Received: ent Solids:		09/19/11 09/20/11 n/a		
	File ID	DF	Analyzed	By	Pre	p Date	Prep Bate	ch A	analytical Batch	
Run #1	J20008.		10/04/11	AA	n/a		n/a		ISJ1061	
Run #2	J20010.	D 5	10/04/11	AA	n/a		n/a	N	4SJ1061	
	Initial V	olume								
Run #1	400 ml									
Run #2	400 ml									
CAS No.	MW	Compound		Result	RL	Units Q	Result	RL	Units	
67-64-1	58.08	Acetone		46.0 ^a	2.5	ppbv	109 ^a	5.9	ug/m3	
106-99-0	54.09	1,3-Butadiene		ND	0.50	ppbv	ND	1.1	ug/m3	
71-43-2	78.11	Benzene		1.6	0.50	ppbv	5.1	1.6	ug/m3	
75-27-4	163.8	Bromodichlorom	lethane	ND	0.50	ppbv	ND	3.3	ug/m3	
75-25-2	252.8	Bromoform		ND	0.50	ppbv	ND	5.2	ug/m3	
74-83-9	94.94	Bromomethane		ND	0.50	ppbv	ND	1.9	ug/m3	
593-60-2	106.9	Bromoethene		ND	0.50	ppbv	ND	2.2	ug/m3	
100-44-7	126	Benzyl Chloride		ND	0.50	ppbv	ND	2.6	ug/m3	
75-15-0	76.14	Carbon disulfide		1.9	0.50	ppbv	5.9	1.6	ug/m3	
108-90-7	112.6	Chlorobenzene		ND	0.50	ppbv	ND	2.3	ug/m3	
75-00-3	64.52	Chloroethane		ND	0.20	ppbv	ND	0.53	ug/m3	
67-66-3	119.4	Chloroform		ND	0.50	ppbv	ND	2.4	ug/m3	
74-87-3	50.49	Chloromethane		ND	0.50	ppbv	ND	1.0	ug/m3	
107-05-1	76.53	3-Chloropropene	•	ND	0.50	ppbv	ND	1.6	ug/m3	
95-49-8	126.6	2-Chlorotoluene		ND	0.50	ppbv	ND	2.6	ug/m3	
56-23-5	153.8	Carbon tetrachlo	ride	ND	0.20	ppbv	ND	1.3	ug/m3	
110-82-7	84.16	Cyclohexane		ND	0.50	ppbv	ND	1.7	ug/m3	
75-34-3	98.96	1,1-Dichloroetha	ine	ND	0.20	ppbv	ND	0.81	ug/m3	
75-35-4	96.94	1,1-Dichloroethy	lene	ND	0.20	ppbv	ND	0.79	ug/m3	
106-93-4	187.9	1,2-Dibromoetha	ane	ND	0.50	ppbv	ND	3.8	ug/m3	
107-06-2	98.96	1,2-Dichloroetha	ine	ND	0.20	ppbv	ND	0.81	ug/m3	
78-87-5	113	1,2-Dichloroprop	pane	ND	0.50	ppbv	ND	2.3	ug/m3	
123-91-1	88	1,4-Dioxane		ND	0.50	ppbv	ND	1.8	ug/m3	
75-71-8	120.9	Dichlorodifluoro	methane	ND	0.50	ppbv	ND	2.5	ug/m3	
124-48-1	208.3	Dibromochlorom	nethane	ND	0.50	ppbv	ND	4.3	ug/m3	
156-60-5	96.94	trans-1,2-Dichlor	roethylene	ND	0.20	ppbv	ND	0.79	ug/m3	
156-59-2	96.94	cis-1,2-Dichloro		ND	0.20	ppbv	ND	0.79	ug/m3	
10061-01-5	111	cis-1,3-Dichloro	propene	ND	0.50	ppbv	ND	2.3	ug/m3	
541-73-1	147	m-Dichlorobenze		ND	0.50	ppbv	ND	3.0	ug/m3	
95-50-1	147	o-Dichlorobenze		ND	0.50	ppbv	ND	3.0	ug/m3	
106-46-7	147	p-Dichlorobenze	ne	ND	0.50	ppbv	ND	3.0	ug/m3	
10061-02-6	111	trans-1,3-Dichlor	ropropene	ND	0.50	ppbv	ND	2.3	ug/m3	

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 3

3.6

ω

MC3739

Client Samj Lab Sample Matrix: Method: Project:		841110919-06 MC3739-6 AIR - Air Summa ID: M TO-15 Former Woonsocket M.S. V		RI	Date	Sampled: Received: ent Solids:	09/19/11 09/20/11 n/a		
CAS No.	MW	Compound	Result	RL	Units Q	Result	RL	Units	
64-17-5 100-41-4 141-78-6 622-96-8 76-13-1 76-14-2 142-82-5 87-68-3 110-54-3 591-78-6 67-63-0 75-09-2 78-93-3 108-10-1 1634-04-4 115-07-1 100-42-5 71-55-6 79-34-5 79-00-5 120-82-1 95-63-6 108-67-8 540-84-1 75-65-0 127-18-4 109-99-9 108-88-3 79-01-6	46 106.2 88 120.2 187.4 170.9 100.2 260.8 86.17 100 60 84.94 72.11 100.2 88.15 42 104.1 133.4 167.9 133.4 181.5 120.2 120.2 114.2 74.12 165.8 72 92.14 131.4	Ethanol Ethylbenzene Ethyl Acetate 4-Ethyltoluene Freon 113 Freon 114 Heptane Hexachlorobutadiene Hexane 2-Hexanone Isopropyl Alcohol Methylene chloride Methyl ethyl ketone Methyl Isobutyl Ketone Methyl Isobutyl Ketone Methyl Tert Butyl Ether Propylene Styrene 1, 1, 1-Trichloroethane 1, 1, 2, 2-Tetrachloroethane 1, 1, 2-Trichlorobenzene 1, 2, 4-Trimethylbenzene 1, 3, 5-Trimethylbenzene 2, 2, 4-Trimethylbenzene 2, 2, 4-Trimethylpentane Tertiary Butyl Alcohol Tetrachloroethylene Tetrahydrofuran Toluene Trichloroethylene	34.9 0.91 ND ND ND 0.63 ND 0.68 ND ND ND ND ND ND ND ND ND ND ND ND ND	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.20 0.20 0.50	ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv	65.7 4.0 ND ND ND 2.6 ND 2.4 ND ND 21 ND ND 21 ND 39.7 ND ND ND ND ND ND ND ND ND ND ND 2.4 1.9 17 ND	$\begin{array}{c} 0.94\\ 2.2\\ 1.8\\ 2.5\\ 3.8\\ 3.5\\ 2.0\\ 5.3\\ 1.8\\ 2.0\\ 1.2\\ 1.7\\ 1.5\\ 2.0\\ 1.2\\ 1.7\\ 1.5\\ 2.0\\ 1.8\\ 0.86\\ 2.1\\ 1.1\\ 1.4\\ 1.1\\ 3.7\\ 2.5\\ 2.3\\ 1.5\\ 1.4\\ 1.5\\ 1.9\\ 1.1\\ \end{array}$	ug/m3 ug/m3	
75-69-4 75-01-4 108-05-4	137.4 62.5 86 106.2	Trichlorofluoromethane Vinyl chloride Vinyl Acetate m, p-Xylene	ND ND 2.0 3.0	0.50 0.20 0.50 0.50	ppbv ppbv ppbv ppbv	ND ND 7.0 13	2.8 0.51 1.8 2.2	ug/m3 ug/m3 ug/m3 ug/m3	
95-47-6 1330-20-7	106.2 106.2	o-Xylene Xylenes (total)	1.0 4.0	0.50 0.50	ppbv ppbv	4.3 17	2.2 2.2	ug/m3 ug/m3	
CAS No.	Surro	gate Recoveries Ru	n#1 Rı	ın#2 I	Limits				
460-00-4	4-Bron	mofluorobenzene 103	8% 87	% 5	0-129%				

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 3

3.6

ω

MC3739

Accutest Laboratories

CAS No. MW	Compound	Result R	L Unit	ts O	Result	RL	Units
Project:	Former Woonsocket M.S. Woon	nsocket, RI					
Method:	TO-15			Perce	ent Solids:	n/a	
Matrix:	AIR - Air Summa ID: M166			Date	Received:	09/20/	11
Lab Sample ID:	MC3739-6			Date	Sampled:	09/19/	11
Client Sample ID:	841110919-06						

Report of Analysis

(a) Result is from Run# 2

- ND = Not detected
- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

3.6

			1		v				U		
Client Sam Lab Sampl Matrix: Method: Project:	nple ID: 841110919-07 ole ID: MC3739-7 AIR - Air Summa ID: M154 TO-15 Former Woonsocket M.S. Woonsocket,				Date Sampled:09/19/11Date Received:09/20/11Percent Solids:n/a						
Run #1 Run #2	File ID J19984.	DF D 1	Analyzed 10/03/11	By AA	Prep n/a	o Date	Prep Bat n/a		nalytical Batch ISJ1060		
Run #1 Run #2	Initial V 400 ml	Volume									
CAS No.	MW	Compound		Result	RL	Units Q	Result	RL	Units		
106-99-0 71-43-2 75-27-4 75-25-2 74-83-9 593-60-2 100-44-7 75-15-0 108-90-7 75-00-3 67-66-3 74-87-3 107-05-1 95-49-8 56-23-5 110-82-7 75-34-3 75-35-4	$54.09 \\78.11 \\163.8 \\252.8 \\94.94 \\106.9 \\126 \\76.14 \\112.6 \\64.52 \\119.4 \\50.49 \\76.53 \\126.6 \\153.8 \\84.16 \\98.96 \\96.94$	1,3-Butadiene Benzene Bromodichlorom Bromoform Bromoethane Bromoethane Benzyl Chloride Carbon disulfide Chlorobenzene Chloroothane Chloroothane 3-Chloropropene 2-Chlorotoluene Carbon tetrachlor Cyclohexane 1,1-Dichloroetha	ride ne lene	ND 0.79 ND ND ND 1.0 ND ND ND ND ND ND ND ND ND ND ND ND	0.50 0.20 0.50 0.20 0.50 0.20 0.50 0.20 0.50 0.20 0.50 0.20	ppbv ppbv <t< td=""><td>ND 2.5 ND ND ND 3.1 ND ND ND ND ND ND ND ND ND ND ND ND</td><td>$\begin{array}{c} 1.1\\ 1.6\\ 3.3\\ 5.2\\ 1.9\\ 2.2\\ 2.6\\ 1.6\\ 2.3\\ 0.53\\ 2.4\\ 1.0\\ 1.6\\ 2.6\\ 1.3\\ 1.7\\ 0.81\\ 0.79\end{array}$</td><td>ug/m3 ug/m3</td></t<>	ND 2.5 ND ND ND 3.1 ND ND ND ND ND ND ND ND ND ND ND ND	$\begin{array}{c} 1.1\\ 1.6\\ 3.3\\ 5.2\\ 1.9\\ 2.2\\ 2.6\\ 1.6\\ 2.3\\ 0.53\\ 2.4\\ 1.0\\ 1.6\\ 2.6\\ 1.3\\ 1.7\\ 0.81\\ 0.79\end{array}$	ug/m3 ug/m3		
106-93-4 107-06-2 78-87-5 123-91-1 75-71-8 124-48-1 156-60-5 156-59-2 10061-01-5 541-73-1 95-50-1 106-46-7 10061-02-6	187.9 98.96 113 88 120.9 208.3 96.94 96.94 111 147 147 147 147 111	1,2-Dibromoetha 1,2-Dichloropetha 1,2-Dichloroprop 1,4-Dioxane Dichlorodifluoro Dibromochlorom trans-1,2-Dichloro cis-1,2-Dichloro cis-1,3-Dichlorop m-Dichlorobenzer p-Dichlorobenzer trans-1,3-Dichlor	ne ne oane methane tethane coethylene oropene oropene ne ne ne	ND ND ND 0.52 ND ND ND ND ND ND ND ND	$\begin{array}{c} 0.50\\ 0.20\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.20\\ 0.20\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ \end{array}$	ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv	ND ND ND 2.6 ND ND ND ND ND ND ND ND	3.8 0.81 2.3 1.8 2.5 4.3 0.79 0.79 2.3 3.0 3.0 3.0 2.3	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3		

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 2

ω

3.7

Client Samj Lab Sample Matrix: Method: Project:		841110919-07 MC3739-7 AIR - Air Summa ID: M154 TO-15 Former Woonsocket M.S. Wo		RI	09/19/11 09/20/11 n/a			
CAS No.	MW	Compound	Result	RL	Units Q	Result	RL	Units
64-17-5 100-41-4 141-78-6 622-96-8 76-13-1 76-14-2 142-82-5 87-68-3 110-54-3 591-78-6 67-63-0 75-09-2 78-93-3 108-10-1 1634-04-4 115-07-1 100-42-5 71-55-6 79-34-5 79-00-5 120-82-1 95-63-6 108-67-8 540-84-1 75-65-0 127-18-4	46 106.2 88 120.2 187.4 170.9 100.2 260.8 86.17 100 60 84.94 72.11 100.2 88.15 42 104.1 133.4 167.9 133.4 181.5 120.2 120.2 114.2 74.12	Ethanol Ethylbenzene Ethyl Acetate 4-Ethyltoluene Freon 113 Freon 114 Heptane Hexachlorobutadiene Hexane 2-Hexanone Isopropyl Alcohol Methylene chloride Methyl ethyl ketone Methyl Isobutyl Ketone Methyl Isobutyl Ketone Methyl Tert Butyl Ether Propylene Styrene 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,2,4-Trinethylbenzene 1,3,5-Trimethylbenzene 2,2,4-Trimethylbenzene 2,2,4-Trimethylpentane	24.7 ND ND ND ND ND ND ND 2.2 1.1 1.7 ND ND 2.2 1.1 1.7 ND ND 1.8 ND 0.20 ND ND ND ND ND ND ND ND ND ND ND ND ND	$\begin{array}{c} 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.50\\$	ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv	46.5 ND ND ND ND ND ND ND 5.4 3.8 5.0 ND 3.1 ND 3.1 ND 1.1 ND ND ND ND ND ND ND ND	$\begin{array}{c} 0.94\\ 2.2\\ 1.8\\ 2.5\\ 3.8\\ 3.5\\ 2.0\\ 5.3\\ 1.8\\ 2.0\\ 1.2\\ 1.7\\ 1.5\\ 2.0\\ 1.2\\ 1.7\\ 1.5\\ 2.0\\ 1.8\\ 0.86\\ 2.1\\ 1.1\\ 1.4\\ 1.1\\ 3.7\\ 2.5\\ 2.3\\ 1.5\\ 1.5\\ 1.4\end{array}$	ug/m3 ug/m3
127-18-4 109-99-9 108-88-3 79-01-6 75-69-4 75-01-4 108-05-4 95-47-6 1330-20-7 CAS No.	165.8 72 92.14 131.4 137.4 62.5 86 106.2 106.2 106.2 Surro	Tetrachloroethylene Tetrahydrofuran Toluene Trichloroethylene Trichlorofluoromethane Vinyl chloride Vinyl Acetate m,p-Xylene o-Xylene Xylenes (total) gate Recoveries Run#	0.31 ND 2.5 ND ND 1.0 1.3 ND 1.7	0.20 0.50 0.50 0.20 0.50 0.50 0.50 0.50 0.50 0.50 0.50 1.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.20 0.50	ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv	2.1 ND 9.4 ND ND 3.5 5.6 ND 7.4	1.4 1.5 1.9 1.1 2.8 0.51 1.8 2.2 2.2 2.2 2.2	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3
460-00-4	4-Bror	nofluorobenzene 102%		5	0-129%			

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

3.7

					•				
Client Sam Lab Sample Matrix: Method: Project:	mple ID: MC3739-8 AIR - Air Summa ID: M271 : TO-15 TO-15			D:MC3739-8 AIR - AirDate SanAIR - AirSumma ID:M271Date Rec					
Run #1 Run #2	File ID J19985.1	DF D 1	Analyzed 10/03/11	By AA	Prep n/a	p Date	Prep Bat n/a		nalytical Batch (SJ1060
Run #1 Run #2	Initial V 400 ml	/olume							
CAS No.	MW	Compound		Result	RL	Units Q	Result	RL	Units
106-99-0 71-43-2 75-27-4 75-25-2 74-83-9 593-60-2 100-44-7 75-15-0 108-90-7 75-00-3 67-66-3 74-87-3 107-05-1 95-49-8 56-23-5 110-82-7 75-34-3 75-35-4	$\begin{array}{c} 54.09\\ 78.11\\ 163.8\\ 252.8\\ 94.94\\ 106.9\\ 126\\ 76.14\\ 112.6\\ 64.52\\ 119.4\\ 50.49\\ 76.53\\ 126.6\\ 153.8\\ 84.16\\ 98.96\\ 96.94 \end{array}$	1,3-Butadiene Benzene Bromodichlorom Bromoform Bromoethane Bromoethane Benzyl Chloride Carbon disulfide Chlorobenzene Chloroothane Chloroothane 3-Chloropropene 2-Chlorotoluene Carbon tetrachlon Cyclohexane 1,1-Dichloroetha 1,1-Dichloroethy	ride ne	ND 0.89 ND ND ND ND 1.1 ND ND ND ND ND ND ND ND ND ND ND	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.20 0.50 0.20	ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv	ND 2.8 ND ND ND 3.4 ND ND ND ND ND ND ND ND ND ND ND ND	$\begin{array}{c} 1.1 \\ 1.6 \\ 3.3 \\ 5.2 \\ 1.9 \\ 2.2 \\ 2.6 \\ 1.6 \\ 2.3 \\ 0.53 \\ 2.4 \\ 1.0 \\ 1.6 \\ 2.6 \\ 1.3 \\ 1.7 \\ 0.81 \\ 0.79 \end{array}$	ug/m3 ug/m3
$\begin{array}{c} 106-93-4\\ 107-06-2\\ 78-87-5\\ 123-91-1\\ 75-71-8\\ 124-48-1\\ 156-60-5\\ 156-59-2\\ 10061-01-5\\ 541-73-1\\ 95-50-1\\ 106-46-7\\ 10061-02-6 \end{array}$	187.9 98.96 113 88 120.9 208.3 96.94 96.94 111 147 147 147	1,2-Dibromoetha 1,2-Dichloroetha 1,2-Dichloroprop 1,4-Dioxane Dichlorodifluoron Dibromochlorom trans-1,2-Dichloro cis-1,2-Dichloro cis-1,3-Dichlorop m-Dichlorobenzen p-Dichlorobenzen trans-1,3-Dichlor	ne ne pane methane ethane coethylene propene ne ne ne ne	ND ND ND ND ND ND ND ND ND ND ND	$\begin{array}{c} 0.50\\ 0.20\\ 0.50\\ 0.50\\ 0.50\\ 0.20\\ 0.20\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ \end{array}$	ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv	ND ND ND ND ND ND ND ND ND ND ND	3.8 0.81 2.3 1.8 2.5 4.3 0.79 0.79 2.3 3.0 3.0 3.0 2.3	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 2

ACCUTEST MC3739

Г

Client Samj Lab Sample Matrix: Method: Project:		841110919-08 MC3739-8 AIR - Air Summa ID: M2 TO-15 Former Woonsocket M.S. W		I	Date	Sampled: Received: ent Solids:	09/19/11 09/20/11 n/a		
CAS No.	MW	Compound	Result	RL	Units Q	Result	RL	Units	
64-17-5 100-41-4 141-78-6 622-96-8 76-13-1 76-14-2 142-82-5 87-68-3 110-54-3 591-78-6 67-63-0 75-09-2 78-93-3 108-10-1 1634-04-4 115-07-1 100-42-5 71-55-6 79-34-5 79-00-5 120-82-1 95-63-6 108-67-8 540-84-1 75-65-0 127-18-4 109-99-9 108-88-3	46 106.2 88 120.2 187.4 170.9 100.2 260.8 86.17 100 60 84.94 72.11 100.2 88.15 42 104.1 133.4 167.9 133.4 181.5 120.2 120.2 114.2 74.12 165.8 72 92.14	Ethanol Ethylbenzene Ethyl Acetate 4-Ethyltoluene Freon 113 Freon 114 Heptane Hexachlorobutadiene Hexane 2-Hexanone Isopropyl Alcohol Methylene chloride Methyl ethyl ketone Methyl Isobutyl Ketone Methyl Isobutyl Ketone Methyl Tert Butyl Ether Propylene Styrene 1, 1, 1-Trichloroethane 1, 1, 2, 2-Tetrachloroethane 1, 1, 2, 4-Trichloroethane 1, 2, 4-Trichloroethane 1, 3, 5-Trimethylbenzene 2, 2, 4-Trimethylbenzene 2, 2, 4-Trimethylpentane Tertiary Butyl Alcohol Tetrachloroethylene Tetrahydrofuran Toluene	26.1 ND ND ND ND ND ND ND 2.8 ND 1.6 ND ND ND ND ND ND ND ND ND ND ND ND ND	0.50 0.50	ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv	49.1 ND ND ND ND ND ND ND 6.9 ND 4.7 ND 3.1 ND ND ND ND ND ND ND ND ND ND ND ND ND	$\begin{array}{c} 0.94\\ 2.2\\ 1.8\\ 2.5\\ 3.8\\ 3.5\\ 2.0\\ 5.3\\ 1.8\\ 2.0\\ 1.2\\ 1.7\\ 1.5\\ 2.0\\ 1.2\\ 1.7\\ 1.5\\ 2.0\\ 1.8\\ 0.86\\ 2.1\\ 1.1\\ 1.4\\ 1.1\\ 3.7\\ 2.5\\ 2.5\\ 2.3\\ 1.5\\ 1.4\\ 1.5\\ 1.9\\ \end{array}$	ug/m3 ug/m3	
79-01-6 75-69-4 75-01-4 108-05-4 95-47-6 1330-20-7	131.4 137.4 62.5 86 106.2 106.2 106.2	Trichloroethylene Trichlorofluoromethane Vinyl chloride Vinyl Acetate m,p-Xylene o-Xylene Xylenes (total)	ND ND 0.99 1.3 ND 1.7	$\begin{array}{c} 0.20 \\ 0.50 \\ 0.20 \\ 0.50 \\ 0.50 \\ 0.50 \\ 0.50 \\ 0.50 \end{array}$	ppbv ppbv ppbv ppbv ppbv ppbv ppbv	ND ND 3.5 5.6 ND 7.4	1.1 2.8 0.51 1.8 2.2 2.2 2.2 2.2	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	
CAS No.		gate Recoveries Run			Limits				
460-00-4	4-Bron	nofluorobenzene 97%		5	0-129%				

Report of Analysis

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 2

ယ 8

Section 4

Misc. Forms	
Custody Documents and Other Forms	
ncludes the following where applicable:	
Certification Exceptions Certification Exceptions (RI) Chain of Custody Summa Canister and Flow Controller Log	

Parameter Certification Exceptions

Γ

Job Number:	MC3739
Account:	FORI Fuss & O'Neill RI
Project:	Former Woonsocket M.S. Woonsocket, RI

The following parameters included in this report are exceptions to NELAC certification. The certification status of each is indicated below.

Parameter	CAS#	Method	Mat	Certification Status
Acetone	67-64-1	TO-15	AIR	Certified by SOP MMS294/GC-MS
Bromodichloromethane	75-27-4	ТО-15	AIR	Certified by SOP MMS294/GC-MS
Bromoethene	593-60-2	TO-15	AIR	Certified by SOP MMS294/GC-MS
2-Chlorotoluene	95-49-8	ТО-15	AIR	Certified by SOP MMS294/GC-MS
Cyclohexane	110-82-7	ТО-15	AIR	Certified by SOP MMS294/GC-MS
Dibromochloromethane	124-48-1	ТО-15	AIR	Certified by SOP MMS294/GC-MS
Dichlorodifluoromethane	75-71-8	TO-15	AIR	Certified by SOP MMS294/GC-MS
4-Ethyltoluene	622-96-8	ТО-15	AIR	Certified by SOP MMS294/GC-MS
Ethanol	64-17-5	ТО-15	AIR	Certified by SOP MMS294/GC-MS
Ethyl Acetate	141-78-6	ТО-15	AIR	Certified by SOP MMS294/GC-MS
Freon 113	76-13-1	ТО-15	AIR	Certified by SOP MMS294/GC-MS
Freon 114	76-14-2	TO-15	AIR	Certified by SOP MMS294/GC-MS
2-Hexanone	591-78-6	ТО-15	AIR	Certified by SOP MMS294/GC-MS
Heptane	142-82-5	TO-15	AIR	Certified by SOP MMS294/GC-MS
Isopropyl Alcohol	67-63-0	ТО-15	AIR	Certified by SOP MMS294/GC-MS
Propylene	115-07-1	ТО-15	AIR	Certified by SOP MMS294/GC-MS
1,2,4-Trimethylbenzene	95-63-6	ТО-15	AIR	Certified by SOP MMS294/GC-MS
1,3,5-Trimethylbenzene	108-67-8	ТО-15	AIR	Certified by SOP MMS294/GC-MS
Tertiary Butyl Alcohol	75-65-0	TO-15	AIR	Certified by SOP MMS294/GC-MS
Tetrahydrofuran	109-99-9	ТО-15	AIR	Certified by SOP MMS294/GC-MS
Trichlorofluoromethane	75-69-4	ТО-15	AIR	Certified by SOP MMS294/GC-MS
m,p-Xylene		ТО-15	AIR	Certified by SOP MMS294/GC-MS
o-Xylene	95-47-6	TO-15	AIR	Certified by SOP MMS294/GC-MS

4.1

FUSS & C Disciplines to H (860) 646-2469	Deliver		77		⊐ 50 ⊐ 14	Quarry B 19 Richla	d Road, Mi oad, Trumi nd Street, C : Drive, We	bull, CT Iolumbia,	06611 SC 2920)1		Redfield	Street, St ade Stree	iite 100, 1 1, Suite 3	Boston, 1 50, Prov 1, Pougl	UL 3 7 3 9
СН	AIN-OF-CUST	ODY F	RECO	RD	24	560					J 1 Day∗	Ω ډر ت	ltrs*	Furnarou		ner (days)
										C	1 2 Days"	Alstan	dard (days)	*Sure	harge Applies
PROJECT NAME			LOCATION		_			~	NUMBI		A7.0				-	DRATORY
REPORT TO: P	Nonsacket M.S.		sonrack	of rel	Anal	veie		201	77	7	77					cectest tainers
INVOICE TO:	tinck Dowing i	Polowin.	g@tai	M	Requ			//			' /		/	77	7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P.O. No.:	Hire Granfruerce, 41 20100607 AZO	NL Lept	of end.	Ingma.	1		/	' /)	/ /	/ /			/ /		/ /	50° 40° 200
	AD											// /§	5 ³⁹ / /		$ _{\dot{z}}$?/≈/. /、ソ
Sampler's Signature: Source Codes:	- Jlath	<u> </u>	Date: 9/	9[201]		,	(SV)	/ /	//	/ /				145 15 1 14	148.14	
MW=Monitoring Well PV	V=Potable Water S=Soil Treatment Facility B=Sediment	W=Waste A=Air				/v	¥ / .	/ /			Constant of the	e ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	14 14 14 14 14 14 14 14 14 14 14 14 14 1	₹]}	/\$/\$///
X=Other	, , , , , , , , , , , , , , , , , , ,	11 100				M				.	<u>_</u>		-/40/_	÷/~/		
Transfer Check						5/ /	/ / /		/ /	120	فن / تقوي /			y (3. 47		
No. 1 2 3 4	Sample Number	Source Code	Date Sampled	Time Sampled	Ń					1 10 11 100 11 100 11 100 11 100 100 10	17. 17. 17. 17. 17. 17. 17. 17. 17. 17.		A LO LO LO	100-100-100-100-100-100-100-100-100-100	01/11/10/00/00	Comments
177	84/1/09/9-01	A	9/19/11	1010		f - f	+	f - f	-	<u> </u>	6/ 6	<u></u>	/6/4	<u> </u>		Comments
-2 1 //	1 -02		4 fiq 4	1050	1							1				· · · · · · · · · · · · · · · · · · ·
-3	-03			1650	~							· l			+	
-11 - 1 - 1	-04			1215				+				1	_			
-31-1	-05			10	~				-			1				
-41-1				145	/							1			+	
-7111				1990	/							(++	
-81,1	1 -57			1430	-		+ + -	+				1				
	-05	V		11,0												
																AMB
Transfer	·····		I		l				ł	<u>_</u>			l	I	1	
Number Relinqu	ished By	Accepted By		Date	Tit	ne Rep	orting and	Detectio	n Limit F	(equirer	nents:					
1	in Fr	other	1	9/14/1		30 Ad	litional Cor	nments:	1 1.410		ć			<i>i</i> -		1
2 Figheld	foom 2	V/a	5	9/20/			. Men	is in	i Dillis 6	i int	5 + CL	xeeletis,	t (QA)	60)	ي الآدم	e emailed
3 1 2 1 m	Win u	a verell	1,	9/201	$u \downarrow 1$	10 -	Bill	ing 6	yer i	Mast	4 fri	ie Ag	eenen	t w/	5ta	e emailed to of RI
- Ull 12		ne call	<u>ں</u>	0110	11 16	40		~ ~				· · · · ·				

MC3739: Chain of Custody Page 1 of 11

4.2

INITIAL DATE: JULY 2007 REVISION DATE: JULY 2007 REVISION: 0.0

FUSS&O'NEILL

GENERIC QUALITY ASSURANCE PROJECT PLAN FOR PROJECTS IN RHODE ISLAND MODIFIED TIER I COMPLETENESS CHECKLIST

YES NO							ם פלפא פירים שלפלם ציים מעפרים מע	
1. SAMPLING AND FIELD MEASUREMENTS:	Field measurement calibration records Groundwater field measurements (if applicable) Soil sampling field measurements (if applicable)	Sediment sampling field measurements (if applicable) Surface water sampling field measurements (if applicable)	Low-flow sampling field measurements (if applicable) Documentation of field activities	Sample numbering and labeling Drain-of-Custody records T-i hi	Duplicate samples	Equipment blanks Soliti samoles (if anv)	 LABORATORY MEASUREMENTS: Trip blanks Instrument blanks Laboratory control samples Duplicates samples Equipment blanks Matrix spike/matrix spike duplicates Analysis type Analysis type Cuain-of-Custody records Surrogate recoveries Samples (ff any) 	TOTAL:

F:\P2009\1532\Å20\Lab-Data\E - Completeness Checklist.doc

%

PERCENT COMPLETE:

MC3739: Chain of Custody Page 2 of 11

4.2 4

	INITIAL DATE: JULY 2007 REVISION DATE: JULY 2007 REVISION: 0.0	N HECKLIST	PERFORMED AND, WHERE APPLICABLE, WITHIN ACCEPTABLE LIMITS?	COMMENTS	M																				
	IF	CT PLAN UD ATION C	ID, WHE	NO								E			C										2
		E PROJE DE ISLAN A VALIDA	MED AN ACCEP1	YES								Ε		D	0									C	2
EUSS & O'NEILL		GENERIC QUALITY ASSURANCE PROJECT PLAN FOR PROJECTS IN RHODE ISLAND FUSS & O'NEILL MODIFIED TIER II DATA VALIDATION CHECKLIST	PERFORMED AND, WHERE APP WITHIN ACCEPTABLE LIMITS ²	1. SAMPLING AND FIELD MEASUREMENTS:	Field measurement calibration records pH - ± 0.3 pH units S.C $\pm 5\%$ of calibration solution, within?	calibration range	Temperature $\pm 0.5 \text{ °C}$	Croundwater field measurements (if applicable)	Water depth measured to within 0.01 ft.? Soil sampling field measurements (ff anolicable)	$OVM - \pm 2 ppm$	$OVA - \pm 2 ppm$	Descriptive information recorded:	Descriptive information recordedr Surface water sampling field measurements (if applicable)	Water depth measured to within 0.01 ft.?	S.C + 10%	$pH - \pm 0.2 pH$ units	Temperature - $\pm 10\%$	Turbidity - ±5 NTU	Documentation of field activities	Site-specific information documented in field notebook?	Andra data speets completed? Sample numbering and lahaling	Sample numbering conforms to sample 1.D. system	identified in QAPP?	Cuant-or-Custody ferms completed?	Fr\P2009\1532\A20\Lab-Dara\E - Completeness Checklist.doc
]	M	C 3	739: Chain of Custody Page 3 of 11

4.2

	INITIAL DATE: JULY 2007 REVISION DATE: JULY 2007 REVISION: 0.0	JECT PLAN AND IDATION CHECKLIST	PERFORMED AND, WHERE APPLICABLE, WITHIN ACCEPTABLE LIMITS?	XES NO COMMENTS	ם שר מי
EUSS&O'NEILL		GENERIC QUALITY ASSURANCE PROJECT PLAN FOR PROJECTS IN RHODE ISLAND FUSS & O'NEILL MODIFIED TIER II DATA VALIDATION CHECKLIST (Continued)	PERFORMED A WITHIN ACCEI	Trip blanks Trip blanks Any compounds detected in trip blanks? Any compounds detected in trip blanks? Duplicates performed, 1/20 samples? Duplicates performed, 1/20 samples? Duplicates performed on 10% of samples screened for explosives? Is percent difference within 30% for all field parameters? Any compounds detected in equipment blank? Split samples (if any) Split samples (if any) Is percent difference within 30% for split samples?	 2. TADORTORY MEASUREMENTS: Trip blants: Trip blants:

4.2

LUSS & O'NEILL

MC3739: Chain of Custody Page 5 of 11

4.2

INTIAL DATE; JULY 2007 REVISION DATE; JULY 2007 REVISION: 0.0 T PLAN	ION CHECKLIST	PERFORMED AND, WHERE APPLICABLE, WITHIN ACCEPTABLE LIMTS?**	YES NO COMMENTS									ا هري		
IN REVI REVI GENERIC QUALITY ASSURANCE PROJECT PI AN	FOR PROJECTS IN RHODE ISLAND LABORATORY MODIFIED TIER II DATA VALIDATION CHECKLIST ORGANIC COMPOUNDS (Continued)	PERFORMED AND, WHERE APPLICABLE, WITHIN ACCE LIMTS?**	X	Sample Data TCL Results Tentatively Identified Compounds Reconstructed total ion chronotocomo (DIC) 6-2-2-1	актольських кла топ спионнаюваных (АЛС) тог еасп Sample For each sammle:	Raw spectra and pro- spectra of TCL compound-subtracted mass spectra of TCL compounds Mass spectra of TICs with 3 best library matches	GPC chromatograms (if GPC performed)	Standards Data (all instruments) Initial Calibration Data RICs and Quan Reports for all Standards	Continuing Calibration RICs and Quan Reports for all Standards Internal Standard Areas Summary Internal Standard Areas Summary	Raw QC Data Decafluorotripbenylphosphine (DFTPP)	Blank Data Matrix Spike Data Matrix Spike Duplicate Data	Miscellaneous Data Original preparation and analysis forms or copies of preparation and analysis log book pages Internal sample & sample extract transfer chain-of custody	records Screening Records	Fi\P2009\1532\A20\Lab.Data\E - Completeness Checklist.doc
				Ŀ				ಬ		r i		ц		F:\P2009\1

FUSS & O'NEILL

MC3739: Chain of Custody Page 6 of 11

4.2

Ense o'neill	INITIAL DATE, JULY 2007 REVISION DATE, JULY 2007 All instrument output, including strip charts from screening $\mathbf{Y} = \mathbf{X}$ activities (describe or list) $\mathbf{A}[I]$ Part Auto with put from j_h Jura mon \mathbf{S} $u(\mathbf{k}_c)/a_b/e_{\mathbf{X}}$	and archive d		Fe\P2009\1533\A20\Lab-Dau\E - Completeness Checklist.doc	4.2 4

MC3739: Chain of Custody Page 7 of 11

Certified by: Certified by: Certified by: Certified by: Certified by: Certified Date D	IABORATORY MOLFIED TIRR II DATA VALUDATION CHECKLIST ORGANIC COMPOUNDS (Continued) FERFORMED AND, WHERE APPLICABLE, WITHIN ACCEPTABL ILMTSS** 6 Chain-of-Custody Records Sample Log-in Sheet (Lab & DC1) YES NO COMMED APPLICABLE, WITHIN ACCEPTABL ILMTSS** 6 Chain-of-Custody Records Sample Log-in Sheet (Lab & DC1) YES NO COMMED APPLICABLE, WITHIN ACCEPTABL ILMTSS** 6 Chain-of-Custody Records Sample Log-in Sheet (Lab & DC1) YES NO COMMED APPLICABLE, WITHIN ACCEPTABL APPLICABLE, WITHIN ACCEPTABL ILMTSS** 6 Chain-of-Custody Records Sample Log-in Sheet (Lab & DC1) YES NO COMMED APPLICABLE, WITHIN ACCEPTABL Miscellaneous Shipping/Records (describe or list) Yes NO Yes NO 7 Internal Lab Sample Transfer Records (describe or list) Yes NO Yes NO Yes NO 8 Other Records (describe or list) Yes Other Records (describe or list) Yes NO Yes NO 9 Other Records (describe or list) Yes Other Records (describe or list) Yes APPLICABLE Yes APPLICABLE 1 Internal Lab Sample Transfer Records (describe or list) Yes APPLICABLE Yes APPLICABLE 1 Internal Lab Sample Transfer Records (describe or list) Yes APPLICABLE Yes APPLICABLE 1 Internal Lab Sample Transfer APPLICABLE	PERFORMED AND, WHERE APPLICABLE, WITHIN ACCE LIMTS?** XES NO Accords (describe or list) d accords and Tracking d accords and Tracking d accords in tracking d accurate. further certify that all laborato to event (7) years fit	DATA VALIDATION CHECKLIST MOPOUNDS PERFORMED AND, WHERE LIMTS*** YES NO COMMENTS (describe or list) & 0 (describe or lis	ENTS
	(Sighatu	a Zu ful	Dire its	<u>19 - 7 - 1/</u> Date

MC3739: Chain of Custody Page 8 of 11

4.2

INITIAL DATE: JULY 2007 REVISION DATE: JULY 2007 REVISION: 0.0	ROJECT PLAN SLAND JIDATION CHECKLIST DS	PERFORMED AND, WHERE APPLICABLE, WITHIN ACCEPTABLE LIMTS?**	YES NO COMMENTS	□ □																											
FUSS&O NEILL	GENERIC QUALITY ASSURANCE PROJECT PLAN FOR PROJECTS IN RHODE ISLAND LABORATORY MODIFIED TIER II DATA VALIDATION CHECKLIST INORGANIC COMPOUNDS	PERFORM APPL/CABL LIMTS?**		SDG Project Narratives	Inorganic Analysis Data Sheet	CRDL Standard for AA and ICP	Blanks	ICP Interference Check Sample	Spike Sample Recovery	Post Digest Spike Sample Recovery	Duplicates	Laboratory Control Sample	Standard Addition Results	ICP Serial Dilutions	Instrument Detection Limits, Quarterly	ICP Interelement Correction Factors, Annually	Demonstron T and	Analysis Run Loo	ICP Raw Data	Furnace AA Raw Data	Mercury Raw Data	Percent Solids Calculations	Digestion Logs	EPA Shipping/Receiving Records	(Last all individual records) (Chain-of Crustody Records)	Sample Lop-In sheet	Miscellaneous Shipping/Receiving Records	(List all individual records)			F-\P2004\1552\A20\Lab-Daa\E - Completeness Checklist.doc
FUSS				1.	ci r	, 4,			7.	õ						14.		17.					5.22		_		24.		·	ı	F:\P2009/15
																								Μ	°C3	87.	39	: C	hai		f Custe ge 9 of

4.2

	INITIAL DATE; JULY 2007 REVISION DATE; JULY 2007 REVISION: 0.0	CT PLAN D TION CHECKLIST	PERFORMED AND, WHERE APPLICABLE, WITHIN ACCEPTABLE LIMTS?**	S NO COMMENTS					Date	that all laboratory results even (7) years following	uchar (0-7-// Date	
FISS&ONEILL FOR PH LABORATORY MODIFININ IABORATORY MODIFININ CARATORY MODIFININ LABORATORY MODIFININ LABORATORY MODIFININ LABORATORY MODIFININ LABORATORY MODIFININ LABORATORY MODIFININ 26. Internal Lab Sample Transfer Re (Describe or List) Theremation Records Analysis Records Description 23. Other Records (Describe or List (Describe on List Preparation Records Analysis Analysis Records Analysis Analysis Analysi		ALITY ASSURANCE PROJE (OJECTS IN RHODE ISLAN (ED THER II DATA VALIDAT ORGANIC COMPOUNDS (Continued)	PERFORMED AND, WHERE APPI WITHIN ACCEPTABLE LIMTS?**	<u>YES</u> cords and Tracking Sheets				e Plan for limits.	(Printed Name/Title)	e and accurate. I further certify : made available for review for s	for the for the for (Printed Name/Title)	g
FUS. 25. 26. 26. 27. 28. 28. 28. 28. 28. 28. 28. 28. 28. 28	S&O'NEILL	GENERIC QU FOR PF LABORATORY MODIFI IN		Internal Lab Sample Transfer Re (Describe or List)	Internal Original Sample Prepara (Describe or List Preparation Records Analysis Records	Description Other Records (Describe or List	Comments:	See laboratory Quality Assurance		that the above information is tru- ed with the above analyses will be ution of this document.	(Signat	332/A20/Lab-Dau/E - Completences Checklir, d
	FUS			25.	26.	27.	28.	× ×	Comple (Lab)	I certify associat certifica	Certifie (Lab)	F:\P20091!

MC3739: Chain of Custody Page 10 of 11

4.2

Accutest Laboratories Sample Receipt Summary

			Accutest	Laborato	orie	es Sample Receipt Summary				
Accutest Job Number: MC37	39	Clien	t: FUSS ONE	EILL		Immediate Client Servic	es Actio	n Re	quired:	No
Date / Time Received: 9/20/2	2011		Delive	ry Method:		Client Service Action	n Require	ed at	Login:	No
Project: WOONSOCKET RI			No. Co	olers:	0	Airbill #'s: N/A				
Cooler Security Y	or N			Y or N	I	Sample Integrity - Documentation	Y	or	N	
1. Custody Seals Present:			Present:			1. Sample labels present on bottles:	✓			
2. Custody Seals Intact:		4. Smpl D	ates/Time OK	✓		2. Container labeling complete:	✓			
Cooler Temperature	Y or	r N				3. Sample container label / COC agree:	✓			
1. Temp criteria achieved:	✓					Sample Integrity - Condition	Y	or	N	
2. Cooler temp verification:	Infare	ed gun				1. Sample recvd within HT:	✓			
3. Cooler media:	Ice	(bag)				2. All containers accounted for:	✓			
Quality Control Preservatio	Υo	r N N	<u>/A</u>			3. Condition of sample:		Intac	t	
1. Trip Blank present / cooler:			/			Sample Integrity - Instructions	Y	or	N	N/A
2. Trip Blank listed on COC:			/			1. Analysis requested is clear:	~			
3. Samples preserved properly:	✓					2. Bottles received for unspecified tests			✓	
4. VOCs headspace free:			/			3. Sufficient volume recvd for analysis:	✓			
						4. Compositing instructions clear:				✓
						5. Filtering instructions clear:				•

Comments

Accutest Laboratories V:508.481.6200 495 Technology Center West, Bldg One F: 508.481.7753 Marlborough, MA www/accutest.com 4.2

4

MC3739: Chain of Custody Page 11 of 11

Summa Canister and Flow Controller Log

Job Number:	MC3739
Account:	FORI Fuss & O'Neill RI
Project:	Former Woonsocket M.S. Woonsocket, RI
Received:	09/20/11

Shipping							Receiving						
Summa		Vac	Date		SCC	SCC	Sample	Date		Vac	Pres	Final	Dil
ID	L	'' Hg	Out	By	Batch	FileID	Number	In	By	'' Hg	psig	psig	Fact
M229	6	29.4	09/15/11	AA	CP1093	J19785.D	MC3739-1	09/21/11	AA	.5			1
M040	6	29.4	09/15/11	AA	CP1093	J19785.D	MC3739-2	09/21/11	AA	1			1
M092	6	29.4	09/15/11	AA	CP1093	J19785.D	MC3739-3	09/21/11	AA	1			1
M261	6	29.4	09/15/11	AA	CP1093	J19785.D	MC3739-4	09/21/11	AA	1.5			1
M019	6	29.4	09/15/11	AA	CP1093	J19785.D	MC3739-5	09/21/11	AA	.5			1
M166	6	29.4	09/15/11	AA	CP1093	J19785.D	MC3739-6	09/21/11	AA	4.5			1
M154	6	29.4	09/15/11	AA	CP1093	J19785.D	MC3739-7	09/21/11	AA	1			1
M271	6	29.4	09/15/11	AA	CP1093	J19785.D	MC3739-8	09/21/11	AA	2.25			1

FLOW CONTROLLERS							
Shipping	g				Receivin	g	
Flow	Date		cc/	Time	Date		cc/
Crtl ID	Out	By	min	hrs.	In	By	min
MC002	09/15/11	AA	160	.5	09/21/11	AA	162.5
MC026	09/15/11	AA	160	.5	09/21/11	AA	163.9
MC027	09/15/11	AA	160	.5	09/21/11	AA	162.9
MC066	09/15/11	AA	160	.5	09/21/11	AA	163.1
MC086	09/15/11	AA	160	.5	09/21/11	AA	168
MC093	09/15/11	AA	160	.5	09/21/11	AA	164
MC108	09/15/11	AA	160	.5	09/21/11	AA	162
MC144	09/15/11	AA	160	.5	09/21/11	AA	146.6

Accutest Bottle Order(s):

AA/9-15-11/FUSS&O/WOON MID SCH

Prep Date	Room Temp(F)	Bar Pres ''Hg
09/15/11	70	29.92

А

4.3

S

GC/MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries
- Surrogate Recovery Summaries

Job Number:	MC3739
Account:	FORI Fuss & O'Neill RI
Project:	Former Woonsocket M.S. Woonsocket, RI

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
MSJ1059-MB	J19957.D	1	10/01/11	AA	n/a	n/a	MSJ1059

The QC reported here applies to the following samples:

Method: TO-15

MC3739-3, MC3739-4

CAS No.	Compound	Result	RL	Units Q	Result	RL	Units
67-64-1	Acetone	ND	0.50	ppbv	ND	1.2	ug/m3
106-99-0	1,3-Butadiene	ND	0.50	ppbv	ND	1.1	ug/m3
71-43-2	Benzene	ND	0.50	ppbv	ND	1.6	ug/m3
75-27-4	Bromodichloromethane	ND	0.50	ppbv	ND	3.3	ug/m3
75-25-2	Bromoform	ND	0.50	ppbv	ND	5.2	ug/m3
74-83-9	Bromomethane	ND	0.50	ppbv	ND	1.9	ug/m3
593-60-2	Bromoethene	ND	0.50	ppbv	ND	2.2	ug/m3
100-44-7	Benzyl Chloride	ND	0.50	ppbv	ND	2.6	ug/m3
75-15-0	Carbon disulfide	ND	0.50	ppbv	ND	1.6	ug/m3
108-90-7	Chlorobenzene	ND	0.50	ppbv	ND	2.3	ug/m3
75-00-3	Chloroethane	ND	0.20	ppbv	ND	0.53	ug/m3
67-66-3	Chloroform	ND	0.50	ppbv	ND	2.4	ug/m3
74-87-3	Chloromethane	ND	0.50	ppbv	ND	1.0	ug/m3
107-05-1	3-Chloropropene	ND	0.50	ppbv	ND	1.6	ug/m3
95-49-8	2-Chlorotoluene	ND	0.50	ppbv	ND	2.6	ug/m3
56-23-5	Carbon tetrachloride	ND	0.20	ppbv	ND	1.3	ug/m3
110-82-7	Cyclohexane	ND	0.50	ppbv	ND	1.7	ug/m3
75-34-3	1,1-Dichloroethane	ND	0.20	ppbv	ND	0.81	ug/m3
75-35-4	1,1-Dichloroethylene	ND	0.20	ppbv	ND	0.79	ug/m3
106-93-4	1,2-Dibromoethane	ND	0.50	ppbv	ND	3.8	ug/m3
107-06-2	1,2-Dichloroethane	ND	0.20	ppbv	ND	0.81	ug/m3
78-87-5	1,2-Dichloropropane	ND	0.50	ppbv	ND	2.3	ug/m3
123-91-1	1,4-Dioxane	ND	0.50	ppbv	ND	1.8	ug/m3
75-71-8	Dichlorodifluoromethane	ND	0.50	ppbv	ND	2.5	ug/m3
124-48-1	Dibromochloromethane	ND	0.50	ppbv	ND	4.3	ug/m3
156-60-5	trans-1,2-Dichloroethylene	ND	0.20	ppbv	ND	0.79	ug/m3
156-59-2	cis-1,2-Dichloroethylene	ND	0.20	ppbv	ND	0.79	ug/m3
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	ppbv	ND	2.3	ug/m3
541-73-1	m-Dichlorobenzene	ND	0.50	ppbv	ND	3.0	ug/m3
95-50-1	o-Dichlorobenzene	ND	0.50	ppbv	ND	3.0	ug/m3
106-46-7	p-Dichlorobenzene	ND	0.50	ppbv	ND	3.0	ug/m3
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	ppbv	ND	2.3	ug/m3
64-17-5	Ethanol	ND	0.50	ppbv	ND	0.94	ug/m3
100-41-4	Ethylbenzene	ND	0.50	ppbv	ND	2.2	ug/m3
141-78-6	Ethyl Acetate	ND	0.50	ppbv	ND	1.8	ug/m3
622-96-8	4-Ethyltoluene	ND	0.50	ppbv	ND	2.5	ug/m3

Job Number:	MC3739
Account:	FORI Fuss & O'Neill RI
Project:	Former Woonsocket M.S. Woonsocket, RI

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
MSJ1059-MB	J19957.D	1	10/01/11	AA	n/a	n/a	MSJ1059

The QC reported here applies to the following samples:

Method: TO-15

MC3739-3, MC3739-4

CAS No.	Compound	Result	RL	Units Q	Result	RL	Units
76-13-1	Freon 113	ND	0.50	ppbv	ND	3.8	ug/m3
76-14-2	Freon 114	ND	0.50	ppbv	ND	3.5	ug/m3
142-82-5	Heptane	ND	0.50	ppbv	ND	2.0	ug/m3
87-68-3	Hexachlorobutadiene	ND	0.50	ppbv	ND	5.3	ug/m3
110-54-3	Hexane	ND	0.50	ppbv	ND	1.8	ug/m3
591-78-6	2-Hexanone	ND	0.50	ppbv	ND	2.0	ug/m3
67-63-0	Isopropyl Alcohol	ND	0.50	ppbv	ND	1.2	ug/m3
75-09-2	Methylene chloride	ND	0.50	ppbv	ND	1.7	ug/m3
78-93-3	Methyl ethyl ketone	ND	0.50	ppbv	ND	1.5	ug/m3
108-10-1	Methyl Isobutyl Ketone	ND	0.50	ppbv	ND	2.0	ug/m3
1634-04-4	Methyl Tert Butyl Ether	ND	0.50	ppbv	ND	1.8	ug/m3
115-07-1	Propylene	ND	0.50	ppbv	ND	0.86	ug/m3
100-42-5	Styrene	ND	0.50	ppbv	ND	2.1	ug/m3
71-55-6	1,1,1-Trichloroethane	ND	0.20	ppbv	ND	1.1	ug/m3
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.20	ppbv	ND	1.4	ug/m3
79-00-5	1,1,2-Trichloroethane	ND	0.20	ppbv	ND	1.1	ug/m3
120-82-1	1,2,4-Trichlorobenzene	ND	0.50	ppbv	ND	3.7	ug/m3
95-63-6	1,2,4-Trimethylbenzene	ND	0.50	ppbv	ND	2.5	ug/m3
108-67-8	1,3,5-Trimethylbenzene	ND	0.50	ppbv	ND	2.5	ug/m3
540-84-1	2,2,4-Trimethylpentane	ND	0.50	ppbv	ND	2.3	ug/m3
75-65-0	Tertiary Butyl Alcohol	ND	0.50	ppbv	ND	1.5	ug/m3
127-18-4	Tetrachloroethylene	ND	0.20	ppbv	ND	1.4	ug/m3
109-99-9	Tetrahydrofuran	ND	0.50	ppbv	ND	1.5	ug/m3
108-88-3	Toluene	ND	0.50	ppbv	ND	1.9	ug/m3
79-01-6	Trichloroethylene	ND	0.20	ppbv	ND	1.1	ug/m3
75-69-4	Trichlorofluoromethane	ND	0.50	ppbv	ND	2.8	ug/m3
75-01-4	Vinyl chloride	ND	0.20	ppbv	ND	0.51	ug/m3
108-05-4	Vinyl Acetate	ND	0.50	ppbv	ND	1.8	ug/m3
	m,p-Xylene	ND	0.50	ppbv	ND	2.2	ug/m3
95-47-6	o-Xylene	ND	0.50	ppbv	ND	2.2	ug/m3
1330-20-7	Xylenes (total)	ND	0.50	ppbv	ND	2.2	ug/m3
CAS No.	Surrogate Recoveries		Limits	5			

460-00-4 4-Bromofluorobenzene 83% 50-129%

Job Number:	MC3739
Account:	FORI Fuss & O'Neill RI
Project:	Former Woonsocket M.S. Woonsocket, RI

Sample	File ID	DF	Analyzed 10/03/11	By	Prep Date	Prep Batch	Analytical Batch
MSJ1060-MB	J19981.D	1		AA	n/a	n/a	MSJ1060

The QC reported here applies to the following samples:

Method: TO-15

MC3739-2, MC3739-5, MC3739-7, MC3739-8

CAS No.	Compound	Result	RL	Units Q	Result	RL	Units
67-64-1	Acetone	ND	0.50	ppbv	ND	1.2	ug/m3
106-99-0	1,3-Butadiene	ND	0.50	ppbv	ND	1.1	ug/m3
71-43-2	Benzene	ND	0.50	ppbv	ND	1.6	ug/m3
75-27-4	Bromodichloromethane	ND	0.50	ppbv	ND	3.3	ug/m3
75-25-2	Bromoform	ND	0.50	ppbv	ND	5.2	ug/m3
74-83-9	Bromomethane	ND	0.50	ppbv	ND	1.9	ug/m3
593-60-2	Bromoethene	ND	0.50	ppbv	ND	2.2	ug/m3
100-44-7	Benzyl Chloride	ND	0.50	ppbv	ND	2.6	ug/m3
75-15-0	Carbon disulfide	ND	0.50	ppbv	ND	1.6	ug/m3
108-90-7	Chlorobenzene	ND	0.50	ppbv	ND	2.3	ug/m3
75-00-3	Chloroethane	ND	0.20	ppbv	ND	0.53	ug/m3
67-66-3	Chloroform	ND	0.50	ppbv	ND	2.4	ug/m3
74-87-3	Chloromethane	ND	0.50	ppbv	ND	1.0	ug/m3
107-05-1	3-Chloropropene	ND	0.50	ppbv	ND	1.6	ug/m3
95-49-8	2-Chlorotoluene	ND	0.50	ppbv	ND	2.6	ug/m3
56-23-5	Carbon tetrachloride	ND	0.20	ppbv	ND	1.3	ug/m3
110-82-7	Cyclohexane	ND	0.50	ppbv	ND	1.7	ug/m3
75-34-3	1,1-Dichloroethane	ND	0.20	ppbv	ND	0.81	ug/m3
75-35-4	1,1-Dichloroethylene	ND	0.20	ppbv	ND	0.79	ug/m3
106-93-4	1,2-Dibromoethane	ND	0.50	ppbv	ND	3.8	ug/m3
107-06-2	1,2-Dichloroethane	ND	0.20	ppbv	ND	0.81	ug/m3
78-87-5	1,2-Dichloropropane	ND	0.50	ppbv	ND	2.3	ug/m3
123-91-1	1,4-Dioxane	ND	0.50	ppbv	ND	1.8	ug/m3
75-71-8	Dichlorodifluoromethane	ND	0.50	ppbv	ND	2.5	ug/m3
124-48-1	Dibromochloromethane	ND	0.50	ppbv	ND	4.3	ug/m3
156-60-5	trans-1,2-Dichloroethylene	ND	0.20	ppbv	ND	0.79	ug/m3
156-59-2	cis-1,2-Dichloroethylene	ND	0.20	ppbv	ND	0.79	ug/m3
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	ppbv	ND	2.3	ug/m3
541-73-1	m-Dichlorobenzene	ND	0.50	ppbv	ND	3.0	ug/m3
95-50-1	o-Dichlorobenzene	ND	0.50	ppbv	ND	3.0	ug/m3
106-46-7	p-Dichlorobenzene	ND	0.50	ppbv	ND	3.0	ug/m3
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	ppbv	ND	2.3	ug/m3
64-17-5	Ethanol	ND	0.50	ppbv	ND	0.94	ug/m3
100-41-4	Ethylbenzene	ND	0.50	ppbv	ND	2.2	ug/m3
141-78-6	Ethyl Acetate	ND	0.50	ppbv	ND	1.8	ug/m3
622-96-8	4-Ethyltoluene	ND	0.50	ppbv	ND	2.5	ug/m3

Job Number:	MC3739
Account:	FORI Fuss & O'Neill RI
Project:	Former Woonsocket M.S. Woonsocket, RI

Sample File ID DI	F Analyzed By	Prep Date n/aPrep Batch n/a	Analytical Batch
MSJ1060-MB J19981.D 1	10/03/11 AA		MSJ1060

The QC reported here applies to the following samples:

Method: TO-15

MC3739-2, MC3739-5, MC3739-7, MC3739-8

CAS No.	Compound	Result	RL	Units Q	Result	RL	Units
76-13-1	Freon 113	ND	0.50	ppbv	ND	3.8	ug/m3
76-14-2	Freon 114	ND	0.50	ppbv	ND	3.5	ug/m3
142-82-5	Heptane	ND	0.50	ppbv	ND	2.0	ug/m3
87-68-3	Hexachlorobutadiene	ND	0.50	ppbv	ND	5.3	ug/m3
110-54-3	Hexane	ND	0.50	ppbv	ND	1.8	ug/m3
591-78-6	2-Hexanone	ND	0.50	ppbv	ND	2.0	ug/m3
67-63-0	Isopropyl Alcohol	ND	0.50	ppbv	ND	1.2	ug/m3
75-09-2	Methylene chloride	ND	0.50	ppbv	ND	1.7	ug/m3
78-93-3	Methyl ethyl ketone	ND	0.50	ppbv	ND	1.5	ug/m3
108-10-1	Methyl Isobutyl Ketone	ND	0.50	ppbv	ND	2.0	ug/m3
1634-04-4	Methyl Tert Butyl Ether	ND	0.50	ppbv	ND	1.8	ug/m3
115-07-1	Propylene	ND	0.50	ppbv	ND	0.86	ug/m3
100-42-5	Styrene	ND	0.50	ppbv	ND	2.1	ug/m3
71-55-6	1,1,1-Trichloroethane	ND	0.20	ppbv	ND	1.1	ug/m3
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.20	ppbv	ND	1.4	ug/m3
79-00-5	1,1,2-Trichloroethane	ND	0.20	ppbv	ND	1.1	ug/m3
120-82-1	1,2,4-Trichlorobenzene	ND	0.50	ppbv	ND	3.7	ug/m3
95-63-6	1,2,4-Trimethylbenzene	ND	0.50	ppbv	ND	2.5	ug/m3
108-67-8	1,3,5-Trimethylbenzene	ND	0.50	ppbv	ND	2.5	ug/m3
540-84-1	2,2,4-Trimethylpentane	ND	0.50	ppbv	ND	2.3	ug/m3
75-65-0	Tertiary Butyl Alcohol	ND	0.50	ppbv	ND	1.5	ug/m3
127-18-4	Tetrachloroethylene	ND	0.20	ppbv	ND	1.4	ug/m3
109-99-9	Tetrahydrofuran	ND	0.50	ppbv	ND	1.5	ug/m3
108-88-3	Toluene	ND	0.50	ppbv	ND	1.9	ug/m3
79-01-6	Trichloroethylene	ND	0.20	ppbv	ND	1.1	ug/m3
75-69-4	Trichlorofluoromethane	ND	0.50	ppbv	ND	2.8	ug/m3
75-01-4	Vinyl chloride	ND	0.20	ppbv	ND	0.51	ug/m3
108-05-4	Vinyl Acetate	ND	0.50	ppbv	ND	1.8	ug/m3
	m,p-Xylene	ND	0.50	ppbv	ND	2.2	ug/m3
95-47-6	o-Xylene	ND	0.50	ppbv	ND	2.2	ug/m3
1330-20-7	Xylenes (total)	ND	0.50	ppbv	ND	2.2	ug/m3
CAS No.	Surrogate Recoveries		Limits	8			

460-00-4 4-Bromofluorobenzene 91% 50-129%

Job Number:	MC3739
Account:	FORI Fuss & O'Neill RI
Project:	Former Woonsocket M.S. Woonsocket, RI

Sample	File ID	DF	Analyzed 10/04/11	By	Prep Date	Prep Batch	Analytical Batch
MSJ1061-MB	J20007.D	1		AA	n/a	n/a	MSJ1061

The QC reported here applies to the following samples:

Method: TO-15

MC3739-1, MC3739-6

CAS No.	Compound	Result	RL	Units Q	Result	RL	Units
67-64-1	Acetone	ND	0.50	ppbv	ND	1.2	ug/m3
106-99-0	1,3-Butadiene	ND	0.50	ppbv	ND	1.1	ug/m3
71-43-2	Benzene	ND	0.50	ppbv	ND	1.6	ug/m3
75-27-4	Bromodichloromethane	ND	0.50	ppbv	ND	3.3	ug/m3
75-25-2	Bromoform	ND	0.50	ppbv	ND	5.2	ug/m3
74-83-9	Bromomethane	ND	0.50	ppbv	ND	1.9	ug/m3
593-60-2	Bromoethene	ND	0.50	ppbv	ND	2.2	ug/m3
100-44-7	Benzyl Chloride	ND	0.50	ppbv	ND	2.6	ug/m3
75-15-0	Carbon disulfide	ND	0.50	ppbv	ND	1.6	ug/m3
108-90-7	Chlorobenzene	ND	0.50	ppbv	ND	2.3	ug/m3
75-00-3	Chloroethane	ND	0.20	ppbv	ND	0.53	ug/m3
67-66-3	Chloroform	ND	0.50	ppbv	ND	2.4	ug/m3
74-87-3	Chloromethane	ND	0.50	ppbv	ND	1.0	ug/m3
107-05-1	3-Chloropropene	ND	0.50	ppbv	ND	1.6	ug/m3
95-49-8	2-Chlorotoluene	ND	0.50	ppbv	ND	2.6	ug/m3
56-23-5	Carbon tetrachloride	ND	0.20	ppbv	ND	1.3	ug/m3
110-82-7	Cyclohexane	ND	0.50	ppbv	ND	1.7	ug/m3
75-34-3	1,1-Dichloroethane	ND	0.20	ppbv	ND	0.81	ug/m3
75-35-4	1,1-Dichloroethylene	ND	0.20	ppbv	ND	0.79	ug/m3
106-93-4	1,2-Dibromoethane	ND	0.50	ppbv	ND	3.8	ug/m3
107-06-2	1,2-Dichloroethane	ND	0.20	ppbv	ND	0.81	ug/m3
78-87-5	1,2-Dichloropropane	ND	0.50	ppbv	ND	2.3	ug/m3
123-91-1	1,4-Dioxane	ND	0.50	ppbv	ND	1.8	ug/m3
75-71-8	Dichlorodifluoromethane	ND	0.50	ppbv	ND	2.5	ug/m3
124-48-1	Dibromochloromethane	ND	0.50	ppbv	ND	4.3	ug/m3
156-60-5	trans-1,2-Dichloroethylene	ND	0.20	ppbv	ND	0.79	ug/m3
156-59-2	cis-1,2-Dichloroethylene	ND	0.20	ppbv	ND	0.79	ug/m3
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	ppbv	ND	2.3	ug/m3
541-73-1	m-Dichlorobenzene	ND	0.50	ppbv	ND	3.0	ug/m3
95-50-1	o-Dichlorobenzene	ND	0.50	ppbv	ND	3.0	ug/m3
106-46-7	p-Dichlorobenzene	ND	0.50	ppbv	ND	3.0	ug/m3
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	ppbv	ND	2.3	ug/m3
64-17-5	Ethanol	ND	0.50	ppbv	ND	0.94	ug/m3
100-41-4	Ethylbenzene	ND	0.50	ppbv	ND	2.2	ug/m3
141-78-6	Ethyl Acetate	ND	0.50	ppbv	ND	1.8	ug/m3
622-96-8	4-Ethyltoluene	ND	0.50	ppbv	ND	2.5	ug/m3

Page 1 of 2

Job Number:	MC3739
Account:	FORI Fuss & O'Neill RI
Project:	Former Woonsocket M.S. Woonsocket, RI

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
MSJ1061-MB	J20007.D	1	10/04/11	AA	n/a	n/a	MSJ1061

The QC reported here applies to the following samples:

Method: TO-15

MC3739-1, MC3739-6

CAS No.	Compound	Result	RL	Units Q	Result	RL	Units
76-13-1	Freon 113	ND	0.50	ppbv	ND	3.8	ug/m3
76-14-2	Freon 114	ND	0.50	ppbv	ND	3.5	ug/m3
142-82-5	Heptane	ND	0.50	ppbv	ND	2.0	ug/m3
87-68-3	Hexachlorobutadiene	ND	0.50	ppbv	ND	5.3	ug/m3
110-54-3	Hexane	ND	0.50	ppbv	ND	1.8	ug/m3
591-78-6	2-Hexanone	ND	0.50	ppbv	ND	2.0	ug/m3
67-63-0	Isopropyl Alcohol	ND	0.50	ppbv	ND	1.2	ug/m3
75-09-2	Methylene chloride	ND	0.50	ppbv	ND	1.7	ug/m3
78-93-3	Methyl ethyl ketone	ND	0.50	ppbv	ND	1.5	ug/m3
108-10-1	Methyl Isobutyl Ketone	ND	0.50	ppbv	ND	2.0	ug/m3
1634-04-4	Methyl Tert Butyl Ether	ND	0.50	ppbv	ND	1.8	ug/m3
115-07-1	Propylene	ND	0.50	ppbv	ND	0.86	ug/m3
100-42-5	Styrene	ND	0.50	ppbv	ND	2.1	ug/m3
71-55-6	1,1,1-Trichloroethane	ND	0.20	ppbv	ND	1.1	ug/m3
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.20	ppbv	ND	1.4	ug/m3
79-00-5	1,1,2-Trichloroethane	ND	0.20	ppbv	ND	1.1	ug/m3
120-82-1	1,2,4-Trichlorobenzene	ND	0.50	ppbv	ND	3.7	ug/m3
95-63-6	1,2,4-Trimethylbenzene	ND	0.50	ppbv	ND	2.5	ug/m3
108-67-8	1,3,5-Trimethylbenzene	ND	0.50	ppbv	ND	2.5	ug/m3
540-84-1	2,2,4-Trimethylpentane	ND	0.50	ppbv	ND	2.3	ug/m3
75-65-0	Tertiary Butyl Alcohol	ND	0.50	ppbv	ND	1.5	ug/m3
127-18-4	Tetrachloroethylene	ND	0.20	ppbv	ND	1.4	ug/m3
109-99-9	Tetrahydrofuran	ND	0.50	ppbv	ND	1.5	ug/m3
108-88-3	Toluene	ND	0.50	ppbv	ND	1.9	ug/m3
79-01-6	Trichloroethylene	ND	0.20	ppbv	ND	1.1	ug/m3
75-69-4	Trichlorofluoromethane	ND	0.50	ppbv	ND	2.8	ug/m3
75-01-4	Vinyl chloride	ND	0.20	ppbv	ND	0.51	ug/m3
108-05-4	Vinyl Acetate	ND	0.50	ppbv	ND	1.8	ug/m3
	m,p-Xylene	ND	0.50	ppbv	ND	2.2	ug/m3
95-47-6	o-Xylene	ND	0.50	ppbv	ND	2.2	ug/m3
1330-20-7	Xylenes (total)	ND	0.50	ppbv	ND	2.2	ug/m3
CAS No.	Surrogate Recoveries		Limits				

50-129%

460-00-4 4-Bromofluorobenzene 96%

Page 2 of 2

5.1.3 **5**

Method Blank Summary Job Number: MC3739

Sample	File ID	DF	Analyzed	Bv	Pron Date
Project:	Former Woon	nsocket M.	S. Woonsocket,	RI	
Account:	FORI Fuss &	O'Neill R	I		
Job Number:	MC3/39				

Sample	File ID	DF	Analyzed 09/15/11	By	Prep Date	Prep Batch	Analytical Batch
MSQ809-MB	Q19186.D	1		AA	n/a	n/a	MSQ809

The QC reported here applies to the following samples:

Method: TO-15

MSQ809-SCC

CAS No.	Compound	Result	RL	Units Q	Result	RL	Units
67-64-1	Acetone	ND	0.50	ppbv	ND	1.2	ug/m3
106-99-0	1,3-Butadiene	ND	0.50	ppbv	ND	1.1	ug/m3
71-43-2	Benzene	ND	0.50	ppbv	ND	1.6	ug/m3
75-27-4	Bromodichloromethane	ND	0.50	ppbv	ND	3.3	ug/m3
75-25-2	Bromoform	ND	0.50	ppbv	ND	5.2	ug/m3
74-83-9	Bromomethane	ND	0.50	ppbv	ND	1.9	ug/m3
593-60-2	Bromoethene	ND	0.50	ppbv	ND	2.2	ug/m3
100-44-7	Benzyl Chloride	ND	0.50	ppbv	ND	2.6	ug/m3
75-15-0	Carbon disulfide	ND	0.50	ppbv	ND	1.6	ug/m3
108-90-7	Chlorobenzene	ND	0.50	ppbv	ND	2.3	ug/m3
75-00-3	Chloroethane	ND	0.20	ppbv	ND	0.53	ug/m3
67-66-3	Chloroform	ND	0.50	ppbv	ND	2.4	ug/m3
74-87-3	Chloromethane	ND	0.50	ppbv	ND	1.0	ug/m3
107-05-1	3-Chloropropene	ND	0.50	ppbv	ND	1.6	ug/m3
95-49-8	2-Chlorotoluene	ND	0.50	ppbv	ND	2.6	ug/m3
56-23-5	Carbon tetrachloride	ND	0.20	ppbv	ND	1.3	ug/m3
110-82-7	Cyclohexane	ND	0.50	ppbv	ND	1.7	ug/m3
75-34-3	1,1-Dichloroethane	ND	0.20	ppbv	ND	0.81	ug/m3
75-35-4	1,1-Dichloroethylene	ND	0.20	ppbv	ND	0.79	ug/m3
106-93-4	1,2-Dibromoethane	ND	0.50	ppbv	ND	3.8	ug/m3
107-06-2	1,2-Dichloroethane	ND	0.20	ppbv	ND	0.81	ug/m3
78-87-5	1,2-Dichloropropane	ND	0.50	ppbv	ND	2.3	ug/m3
123-91-1	1,4-Dioxane	ND	0.50	ppbv	ND	1.8	ug/m3
75-71-8	Dichlorodifluoromethane	ND	0.50	ppbv	ND	2.5	ug/m3
124-48-1	Dibromochloromethane	ND	0.50	ppbv	ND	4.3	ug/m3
156-60-5	trans-1,2-Dichloroethylene	ND	0.20	ppbv	ND	0.79	ug/m3
156-59-2	cis-1,2-Dichloroethylene	ND	0.20	ppbv	ND	0.79	ug/m3
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	ppbv	ND	2.3	ug/m3
541-73-1	m-Dichlorobenzene	ND	0.50	ppbv	ND	3.0	ug/m3
95-50-1	o-Dichlorobenzene	ND	0.50	ppbv	ND	3.0	ug/m3
106-46-7	p-Dichlorobenzene	ND	0.50	ppbv	ND	3.0	ug/m3
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	ppbv	ND	2.3	ug/m3
64-17-5	Ethanol	ND	0.50	ppbv	ND	0.94	ug/m3
100-41-4	Ethylbenzene	ND	0.50	ppbv	ND	2.2	ug/m3
141-78-6	Ethyl Acetate	ND	0.50	ppbv	ND	1.8	ug/m3
622-96-8	4-Ethyltoluene	ND	0.50	ppbv	ND	2.5	ug/m3

Page 1 of 2

5.1.4 5

Job Number: Account:	FORI Fuss & O'Neill RI
Project:	Former Woonsocket M.S. Woonsocket, RI

	Sample MSQ809-MB	File ID Q19186.D	DF 1	Analyzed 09/15/11	By AA	Prep Date n/a	Prep Batch n/a	Analytical Batch MSQ809
--	----------------------------	----------------------------	----------------	--------------------------	----------	-------------------------	--------------------------	-----------------------------------

The QC reported here applies to the following samples:

Method: TO-15

MSQ809-SCC

CAS No.	Compound	Result	RL	Units Q	Result	RL	Units
76-13-1	Freon 113	ND	0.50	ppbv	ND	3.8	ug/m3
76-14-2	Freon 114	ND	0.50	ppbv	ND	3.5	ug/m3
142-82-5	Heptane	ND	0.50	ppbv	ND	2.0	ug/m3
87-68-3	Hexachlorobutadiene	ND	0.50	ppbv	ND	5.3	ug/m3
110-54-3	Hexane	ND	0.50	ppbv	ND	1.8	ug/m3
591-78-6	2-Hexanone	ND	0.50	ppbv	ND	2.0	ug/m3
67-63-0	Isopropyl Alcohol	ND	0.50	ppbv	ND	1.2	ug/m3
75-09-2	Methylene chloride	ND	0.50	ppbv	ND	1.7	ug/m3
78-93-3	Methyl ethyl ketone	ND	0.50	ppbv	ND	1.5	ug/m3
108-10-1	Methyl Isobutyl Ketone	ND	0.50	ppbv	ND	2.0	ug/m3
1634-04-4	Methyl Tert Butyl Ether	ND	0.50	ppbv	ND	1.8	ug/m3
115-07-1	Propylene	ND	0.50	ppbv	ND	0.86	ug/m3
100-42-5	Styrene	ND	0.50	ppbv	ND	2.1	ug/m3
71-55-6	1,1,1-Trichloroethane	ND	0.20	ppbv	ND	1.1	ug/m3
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.20	ppbv	ND	1.4	ug/m3
79-00-5	1,1,2-Trichloroethane	ND	0.20	ppbv	ND	1.1	ug/m3
120-82-1	1,2,4-Trichlorobenzene	ND	0.50	ppbv	ND	3.7	ug/m3
95-63-6	1,2,4-Trimethylbenzene	ND	0.50	ppbv	ND	2.5	ug/m3
108-67-8	1,3,5-Trimethylbenzene	ND	0.50	ppbv	ND	2.5	ug/m3
540-84-1	2,2,4-Trimethylpentane	ND	0.50	ppbv	ND	2.3	ug/m3
75-65-0	Tertiary Butyl Alcohol	ND	0.50	ppbv	ND	1.5	ug/m3
127-18-4	Tetrachloroethylene	ND	0.20	ppbv	ND	1.4	ug/m3
109-99-9	Tetrahydrofuran	ND	0.50	ppbv	ND	1.5	ug/m3
108-88-3	Toluene	ND	0.50	ppbv	ND	1.9	ug/m3
79-01-6	Trichloroethylene	ND	0.20	ppbv	ND	1.1	ug/m3
75-69-4	Trichlorofluoromethane	ND	0.50	ppbv	ND	2.8	ug/m3
75-01-4	Vinyl chloride	ND	0.20	ppbv	ND	0.51	ug/m3
108-05-4	Vinyl Acetate	ND	0.50	ppbv	ND	1.8	ug/m3
	m,p-Xylene	ND	0.50	ppbv	ND	2.2	ug/m3
95-47-6	o-Xylene	ND	0.50	ppbv	ND	2.2	ug/m3
1330-20-7	Xylenes (total)	ND	0.50	ppbv	ND	2.2	ug/m3
CAS No.	Surrogate Recoveries		Limits	5			

460-00-4 4-Bromofluorobenzene 73% 50-129%

Blank Spike Summary Job Number: MC3739

Account: Project:	FORI Fuss & C Former Woonse			RI			
Sample	File ID	DF	Analyzed 10/01/11	By	Prep Date	Prep Batch	Analytical Batch
MSJ1059-BS	J19956A.D	1		AA	n/a	n/a	MSJ1059

The QC reported here applies to the following samples:

Method: TO-15

MC3739-3, MC3739-4

CAS No.	Compound	Spike ppbv	BSP ppbv	BSP %	Limits
67-64-1	Acetone	10	9.7	97	70-130
106-99-0	1,3-Butadiene	10	11.4	114	70-130
71-43-2	Benzene	10	10.2	102	70-130
75-27-4	Bromodichloromethane	10	11.8	118	70-130
75-25-2	Bromoform	10	10	100	70-130
74-83-9	Bromomethane	10	10.1	101	70-130
593-60-2	Bromoethene	10	9.8	98	70-130
100-44-7	Benzyl Chloride	10	18.4	184* a	70-130
75-15-0	Carbon disulfide	10	10.4	104	70-130
108-90-7	Chlorobenzene	10	9.9	99	70-130
75-00-3	Chloroethane	10	10.2	102	70-130
67-66-3	Chloroform	10	10.2	102	70-130
74-87-3	Chloromethane	10	10.4	104	70-130
107-05-1	3-Chloropropene	10	12.0	120	70-130
95-49-8	2-Chlorotoluene	10	10.4	104	70-130
56-23-5	Carbon tetrachloride	10	9.8	98	70-130
110-82-7	Cyclohexane	10	10.5	105	70-130
75-34-3	1,1-Dichloroethane	10	10.6	106	70-130
75-35-4	1,1-Dichloroethylene	10	9.3	93	70-130
106-93-4	1,2-Dibromoethane	10	11.2	112	70-130
107-06-2	1,2-Dichloroethane	10	9.9	99	70-130
78-87-5	1,2-Dichloropropane	10	10.5	105	70-130
123-91-1	1,4-Dioxane	10	7.3	73	70-130
75-71-8	Dichlorodifluoromethane	10	10.7	107	70-130
124-48-1	Dibromochloromethane	10	10.4	104	70-130
156-60-5	trans-1,2-Dichloroethylene	10	9.4	94	70-130
156-59-2	cis-1,2-Dichloroethylene	10	9.6	96	70-130
10061-01-5	cis-1,3-Dichloropropene	10	11.1	111	70-130
541-73-1	m-Dichlorobenzene	10	11.8	118	70-130
95-50-1	o-Dichlorobenzene	10	9.0	90	70-130
106-46-7	p-Dichlorobenzene	10	12.1	121	70-130
10061-02-6	trans-1,3-Dichloropropene	10	13.2	132* a	70-130
64-17-5	Ethanol	10	9.2	92	70-130
100-41-4	Ethylbenzene	10	9.7	97	70-130
141-78-6	Ethyl Acetate	10	10.5	105	70-130
622-96-8	4-Ethyltoluene	10	10.5	105	70-130

Blank Spike Summary Job Number: MC3739

Account: Project:	FORI Fuss & C Former Woons		I S. Woonsocket,	RI						
Sample MSJ1059-BS	File ID J19956A.D	DF 1	Analyzed 10/01/11	By AA	Prep Date n/a	Prep Batch n/a	Analytical Batch MSJ1059			
The QC reported here applies to the following samples:						Method: TO-15				

MC3739-3, MC3739-4

CAS No.	Compound	Spike ppbv	BSP ppbv	BSP %	Limits
76-13-1	Freon 113	10	9.1	91	70-130
76-14-2	Freon 114	10	11.6	116	70-130
142-82-5	Heptane	10	12.1	121	70-130
87-68-3	Hexachlorobutadiene	10	9.2	92	70-130
110-54-3	Hexane	10	9.2	92	70-130
591-78-6	2-Hexanone	10	9.0	90	70-130
67-63-0	Isopropyl Alcohol	10	9.0	90	70-130
75-09-2	Methylene chloride	10	8.5	85	70-130
78-93-3	Methyl ethyl ketone	10	10.4	104	70-130
108-10-1	Methyl Isobutyl Ketone	10	9.9	99	70-130
1634-04-4	Methyl Tert Butyl Ether	10	8.7	87	70-130
115-07-1	Propylene	10	10.4	104	70-130
100-42-5	Styrene	10	12.1	121	70-130
71-55-6	1,1,1-Trichloroethane	10	10.2	102	70-130
79-34-5	1,1,2,2-Tetrachloroethane	10	9.8	98	70-130
79-00-5	1,1,2-Trichloroethane	10	10.5	105	70-130
120-82-1	1,2,4-Trichlorobenzene	10	13.9	139* a	70-130
95-63-6	1,2,4-Trimethylbenzene	10	10.1	101	70-130
108-67-8	1,3,5-Trimethylbenzene	10	9.8	98	70-130
540-84-1	2,2,4-Trimethylpentane	10	12.2	122	70-130
75-65-0	Tertiary Butyl Alcohol	10	8.0	80	70-130
127-18-4	Tetrachloroethylene	10	9.2	92	70-130
109-99-9	Tetrahydrofuran	10	9.5	95	70-130
108-88-3	Toluene	10	9.5	95	70-130
79-01-6	Trichloroethylene	10	11.4	114	70-130
75-69-4	Trichlorofluoromethane	10	10.6	106	70-130
75-01-4	Vinyl chloride	10	10.2	102	70-130
108-05-4	Vinyl Acetate	10	10.6	106	70-130
	m, p-Xylene	20	19.5	98	70-130
95-47-6	o-Xylene	10	9.7	97	70-130
1330-20-7	Xylenes (total)	30	29.2	97	70-130
CAS No.	Surrogate Recoveries	BSP	Li	mits	
460-00-4	4-Bromofluorobenzene	104%	50	-129%	

5.2.1

G

Method: TO-15

Account:	FORI Fuss & O'Neill RI									
Project:	Former Woonsocket M.S. Woonsocket, RI									
Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch			
MSJ1059-BS	J19956A.D	1	10/01/11	AA	n/a	n/a	MSJ1059			
The QC repor	ted here applies	to the fo	llowing sample	s:		Method: TO-15				

MC3739-3, MC3739-4

(a) Outside control limits. Associated samples are non-detect for this compound.

S

Page 3 of 3

Account:	FORI Fuss & O'Neill RI										
Project:	Former Woonsocket M.S. Woonsocket, RI										
Sample	File ID	DF	Analyzed 10/03/11	By	Prep Date	Prep Batch	Analytical Batch				
MSJ1060-BS	J19980A.D	1		AA	n/a	n/a	MSJ1060				

The QC reported here applies to the following samples:

- -

MC3739-2, MC3739-5, MC3739-7, MC3739-8

CAS No.	Compound	Spike ppbv	BSP ppbv	BSP %	Limits
67-64-1	Acetone	10	9.7	97	70-130
106-99-0	1,3-Butadiene	10	10.1	101	70-130
71-43-2	Benzene	10	9.1	91	70-130
75-27-4	Bromodichloromethane	10	11.0	110	70-130
75-25-2	Bromoform	10	11.6	116	70-130
74-83-9	Bromomethane	10	10.3	103	70-130
593-60-2	Bromoethene	10	10.6	106	70-130
100-44-7	Benzyl Chloride	10	21.8	218* a	70-130
75-15-0	Carbon disulfide	10	11.2	112	70-130
108-90-7	Chlorobenzene	10	10.2	102	70-130
75-00-3	Chloroethane	10	9.6	96	70-130
67-66-3	Chloroform	10	9.8	98	70-130
74-87-3	Chloromethane	10	9.7	97	70-130
107-05-1	3-Chloropropene	10	9.0	90	70-130
95-49-8	2-Chlorotoluene	10	10.6	106	70-130
56-23-5	Carbon tetrachloride	10	10.4	104	70-130
110-82-7	Cyclohexane	10	9.6	96	70-130
75-34-3	1,1-Dichloroethane	10	8.9	89	70-130
75-35-4	1,1-Dichloroethylene	10	9.1	91	70-130
106-93-4	1,2-Dibromoethane	10	11.6	116	70-130
107-06-2	1,2-Dichloroethane	10	9.7	97	70-130
78-87-5	1,2-Dichloropropane	10	9.3	93	70-130
123-91-1	1,4-Dioxane	10	9.7	97	70-130
75-71-8	Dichlorodifluoromethane	10	11.2	112	70-130
124-48-1	Dibromochloromethane	10	11.2	112	70-130
156-60-5	trans-1,2-Dichloroethylene	10	10.6	106	70-130
156-59-2	cis-1,2-Dichloroethylene	10	9.0	90	70-130
10061-01-5	cis-1,3-Dichloropropene	10	11.4	114	70-130
541-73-1	m-Dichlorobenzene	10	13.1	131* a	70-130
95-50-1	o-Dichlorobenzene	10	10.5	105	70-130
106-46-7	p-Dichlorobenzene	10	13.7	137* a	70-130
10061-02-6	trans-1,3-Dichloropropene	10	11.9	119	70-130
64-17-5	Ethanol	10	7.0	70	70-130
100-41-4	Ethylbenzene	10	10	100	70-130
141-78-6	Ethyl Acetate	10	11.2	112	70-130
622-96-8	4-Ethyltoluene	10	11.1	111	70-130

Account:	FORI Fuss & O'Neill RI										
Project:	Former Woonsocket M.S. Woonsocket, RI										
Sample	File ID	DF	Analyzed 10/03/11	By	Prep Date	Prep Batch	Analytical Batch				
MSJ1060-BS	J19980A.D	1		AA	n/a	n/a	MSJ1060				

The QC reported here applies to the following samples:

MC3739-2, MC3739-5, MC3739-7, MC3739-8

CAS No.	Compound	Spike ppbv	BSF ppb		BSP %	Limits
76-13-1	Freon 113	10	9.6		96	70-130
76-14-2	Freon 114	10	11.1		111	70-130
142-82-5	Heptane	10	10.6	5	106	70-130
87-68-3	Hexachlorobutadiene	10	13.6	5	136* a	70-130
110-54-3	Hexane	10	8.8		88	70-130
591-78-6	2-Hexanone	10	11.2	2	112	70-130
67-63-0	Isopropyl Alcohol	10	9.3		93	70-130
75-09-2	Methylene chloride	10	8.0		80	70-130
78-93-3	Methyl ethyl ketone	10	10.2	2	102	70-130
108-10-1	Methyl Isobutyl Ketone	10	10.2	2	102	70-130
1634-04-4	Methyl Tert Butyl Ether	10	10.3	3	103	70-130
115-07-1	Propylene	10	9.9		99	70-130
100-42-5	Styrene	10	12.3	3	123	70-130
71-55-6	1,1,1-Trichloroethane	10	9.8		98	70-130
79-34-5	1,1,2,2-Tetrachloroethane	10	9.2		92	70-130
79-00-5	1,1,2-Trichloroethane	10	10.0)	100	70-130
120-82-1	1,2,4-Trichlorobenzene	10	23.6	5	236* a	70-130
95-63-6	1,2,4-Trimethylbenzene	10	10.4	ŀ	104	70-130
108-67-8	1,3,5-Trimethylbenzene	10	10.2	2	102	70-130
540-84-1	2,2,4-Trimethylpentane	10	9.7		97	70-130
75-65-0	Tertiary Butyl Alcohol	10	10.4	ŀ	104	70-130
127-18-4	Tetrachloroethylene	10	9.6		96	70-130
109-99-9	Tetrahydrofuran	10	9.6		96	70-130
108-88-3	Toluene	10	9.1		91	70-130
79-01-6	Trichloroethylene	10	10.2	2	102	70-130
75-69-4	Trichlorofluoromethane	10	10.6	5	106	70-130
75-01-4	Vinyl chloride	10	9.9		99	70-130
108-05-4	Vinyl Acetate	10	9.3		93	70-130
	m,p-Xylene	20	20.0)	100	70-130
95-47-6	o-Xylene	10	10.1		101	70-130
1330-20-7	Xylenes (total)	30	30.1		100	70-130
CAS No.	Surrogate Recoveries	BSP		Lim	its	
460-00-4	4-Bromofluorobenzene	104%		50-1	29%	

Method: TO-15

Account:	FORI Fuss & O'Neill RI									
Project:	Former Woonsocket M.S. Woonsocket, RI									
Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch			
MSJ1060-BS	J19980A.D	1	10/03/11	AA	n/a	n/a	MSJ1060			
The QC repor	ted here applies	to the fo	llowing samples	5:	Method: TO-15					

MC3739-2, MC3739-5, MC3739-7, MC3739-8

(a) Outside control limits. Associated samples are non-detect for this compound.

Page 3 of 3

5.2.2

S

Account:	FORI Fuss & O'Neill RI										
Project:	Former Woonsocket M.S. Woonsocket, RI										
Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch				
MSJ1061-BS	J20005A.D	1	10/04/11	AA	n/a	n/a	MSJ1061				

The QC reported here applies to the following samples:

Method: TO-15

MC3739-1, MC3739-6

CAS No.	Compound	Spike ppbv	BSP ppbv	BSP %	Limits
67-64-1	Acetone	10	9.3	93	70-130
106-99-0	1,3-Butadiene	10	11.0	110	70-130
71-43-2	Benzene	10	9.0	90	70-130
75-27-4	Bromodichloromethane	10	10.7	107	70-130
75-25-2	Bromoform	10	10.6	106	70-130
74-83-9	Bromomethane	10	10.8	108	70-130
593-60-2	Bromoethene	10	11.2	112	70-130
100-44-7	Benzyl Chloride	10	18.1	181* a	70-130
75-15-0	Carbon disulfide	10	12.3	123	70-130
108-90-7	Chlorobenzene	10	9.9	99	70-130
75-00-3	Chloroethane	10	10.7	107	70-130
67-66-3	Chloroform	10	9.7	97	70-130
74-87-3	Chloromethane	10	10.2	102	70-130
107-05-1	3-Chloropropene	10	10.7	107	70-130
95-49-8	2-Chlorotoluene	10	9.8	98	70-130
56-23-5	Carbon tetrachloride	10	9.9	99	70-130
110-82-7	Cyclohexane	10	9.9	99	70-130
75-34-3	1,1-Dichloroethane	10	9.5	95	70-130
75-35-4	1,1-Dichloroethylene	10	9.9	99	70-130
106-93-4	1,2-Dibromoethane	10	10.9	109	70-130
107-06-2	1,2-Dichloroethane	10	9.2	92	70-130
78-87-5	1,2-Dichloropropane	10	9.0	90	70-130
123-91-1	1,4-Dioxane	10	8.5	85	70-130
75-71-8	Dichlorodifluoromethane	10	10.9	109	70-130
124-48-1	Dibromochloromethane	10	10.8	108	70-130
156-60-5	trans-1,2-Dichloroethylene	10	10.8	108	70-130
156-59-2	cis-1,2-Dichloroethylene	10	9.2	92	70-130
10061-01-5	cis-1,3-Dichloropropene	10	10.6	106	70-130
541-73-1	m-Dichlorobenzene	10	11.8	118	70-130
95-50-1	o-Dichlorobenzene	10	9.2	92	70-130
106-46-7	p-Dichlorobenzene	10	12.1	121	70-130
10061-02-6	trans-1,3-Dichloropropene	10	10.7	107	70-130
64-17-5	Ethanol	10	7.1	71	70-130
100-41-4	Ethylbenzene	10	9.5	95	70-130
141-78-6	Ethyl Acetate	10	10.4	104	70-130
622-96-8	4-Ethyltoluene	10	10.5	105	70-130

Account:	FORI Fuss & O'Neill RI										
Project:	Former Woonsocket M.S. Woonsocket, RI										
Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch				
MSJ1061-BS	J20005A.D	1	10/04/11	AA	n/a	n/a	MSJ1061				

The QC reported here applies to the following samples:

Method: TO-15

MC3739-1, MC3739-6

CAS No.	Compound	Spike ppbv	BSI ppb		BSP %	Limits
76-13-1	Freon 113	10	9.4		94	70-130
76-14-2	Freon 114	10	11.′	7	117	70-130
142-82-5	Heptane	10	10.3	3	103	70-130
87-68-3	Hexachlorobutadiene	10	10.2	2	102	70-130
110-54-3	Hexane	10	9.0		90	70-130
591-78-6	2-Hexanone	10	9.4		94	70-130
67-63-0	Isopropyl Alcohol	10	8.6		86	70-130
75-09-2	Methylene chloride	10	8.4		84	70-130
78-93-3	Methyl ethyl ketone	10	9.7		97	70-130
108-10-1	Methyl Isobutyl Ketone	10	9.4		94	70-130
1634-04-4	Methyl Tert Butyl Ether	10	9.4		94	70-130
115-07-1	Propylene	10	10.3	3	103	70-130
100-42-5	Styrene	10	11.0	6	116	70-130
71-55-6	1,1,1-Trichloroethane	10	9.7		97	70-130
79-34-5	1,1,2,2-Tetrachloroethane	10	9.0		90	70-130
79-00-5	1,1,2-Trichloroethane	10	9.5		95	70-130
120-82-1	1,2,4-Trichlorobenzene	10	18.2	2	182* a	70-130
95-63-6	1,2,4-Trimethylbenzene	10	9.6		96	70-130
108-67-8	1,3,5-Trimethylbenzene	10	9.5		95	70-130
540-84-1	2,2,4-Trimethylpentane	10	9.8		98	70-130
75-65-0	Tertiary Butyl Alcohol	10	9.2		92	70-130
127-18-4	Tetrachloroethylene	10	9.5		95	70-130
109-99-9	Tetrahydrofuran	10	9.2		92	70-130
108-88-3	Toluene	10	8.6		86	70-130
79-01-6	Trichloroethylene	10	10.2	2	102	70-130
75-69-4	Trichlorofluoromethane	10	11.0	0	110	70-130
75-01-4	Vinyl chloride	10	10.2	2	102	70-130
108-05-4	Vinyl Acetate	10	9.2		92	70-130
	m, p-Xylene	20	19.	1	96	70-130
95-47-6	o-Xylene	10	9.4		94	70-130
1330-20-7	Xylenes (total)	30	28.5	5	95	70-130
CAS No.	Surrogate Recoveries	BSP		Lim	nits	
460-00-4	4-Bromofluorobenzene	105%		50-1	129%	

5.2.3 **5**

Account:	FORI Fuss & O'Neill RI									
Project:	Former Woonsocket M.S. Woonsocket, RI									
Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch			
MSJ1061-BS	J20005A.D	1	10/04/11	AA	n/a	n/a	MSJ1061			
The QC repor	ted here applies	to the fo	llowing samples	s:		Method: TO-15				

MC3739-1, MC3739-6

(a) Outside control limits. Associated samples are non-detect for this compound.

S

Page 3 of 3

The QC reported here applies to the following samples:

Account:	FORI Fuss & O'Neill RI										
Project:	Former Woonsocket M.S. Woonsocket, RI										
Sample	File ID	DF	Analyzed 09/15/11	By	Prep Date	Prep Batch	Analytical Batch				
MSQ809-BS	Q19184.D	1		AA	n/a	n/a	MSQ809				

MSQ809-SCC

CAS No.	Compound	Spike ppbv	BSP ppbv	BSP %	Limits
67-64-1	Acetone	10	8.4	84	70-130
106-99-0	1,3-Butadiene	10	8.2	82	70-130
71-43-2	Benzene	10	9.1	91	70-130
75-27-4	Bromodichloromethane	10	10.2	102	70-130
75-25-2	Bromoform	10	14.0	140* a	70-130
74-83-9	Bromomethane	10	9.1	91	70-130
593-60-2	Bromoethene	10	9.3	93	70-130
100-44-7	Benzyl Chloride	10	10.8	108	70-130
75-15-0	Carbon disulfide	10	7.7	77	70-130
108-90-7	Chlorobenzene	10	10.4	104	70-130
75-00-3	Chloroethane	10	8.0	80	70-130
67-66-3	Chloroform	10	10.4	104	70-130
74-87-3	Chloromethane	10	7.2	72	70-130
107-05-1	3-Chloropropene	10	10.0	100	70-130
95-49-8	2-Chlorotoluene	10	9.7	97	70-130
56-23-5	Carbon tetrachloride	10	12.7	127	70-130
110-82-7	Cyclohexane	10	8.6	86	70-130
75-34-3	1,1-Dichloroethane	10	8.7	87	70-130
75-35-4	1,1-Dichloroethylene	10	9.4	94	70-130
106-93-4	1,2-Dibromoethane	10	10.7	107	70-130
107-06-2	1,2-Dichloroethane	10	10.3	103	70-130
78-87-5	1,2-Dichloropropane	10	8.2	82	70-130
123-91-1	1,4-Dioxane	10	9.3	93	70-130
75-71-8	Dichlorodifluoromethane	10	9.3	93	70-130
124-48-1	Dibromochloromethane	10	12.4	124	70-130
156-60-5	trans-1,2-Dichloroethylene	10	8.6	86	70-130
156-59-2	cis-1,2-Dichloroethylene	10	9.4	94	70-130
10061-01-5	cis-1,3-Dichloropropene	10	9.0	90	70-130
541-73-1	m-Dichlorobenzene	10	11.7	117	70-130
95-50-1	o-Dichlorobenzene	10	11.1	111	70-130
106-46-7	p-Dichlorobenzene	10	12.0	120	70-130
10061-02-6	trans-1,3-Dichloropropene	10	11.7	117	70-130
64-17-5	Ethanol	10	8.3	83	70-130
100-41-4	Ethylbenzene	10	9.3	93	70-130
141-78-6	Ethyl Acetate	10	7.4	74	70-130
622-96-8	4-Ethyltoluene	10	9.9	99	70-130

Method: TO-15

5.2.4

G

The QC reported here applies to the following samples:

Account: Project:	FORI Fuss & C Former Woons						
Sample	File ID	DF	Analyzed 09/15/11	By	Prep Date	Prep Batch	Analytical Batch
MSQ809-BS	Q19184.D	1		AA	n/a	n/a	MSQ809

MSQ809-SCC

CAS No.	Compound	Spike ppbv	BS pp		BSP %	Limits
76-13-1	Freon 113	10	12	.2	122	70-130
76-14-2	Freon 114	10	10.	.6	106	70-130
142-82-5	Heptane	10	8.0)	80	70-130
87-68-3	Hexachlorobutadiene	10	27.	.4	274* a	70-130
110-54-3	Hexane	10	7.1	L	71	70-130
591-78-6	2-Hexanone	10	9.9)	99	70-130
67-63-0	Isopropyl Alcohol	10	8.8	3	88	70-130
75-09-2	Methylene chloride	10	9.1	l	91	70-130
78-93-3	Methyl ethyl ketone	10	7.8	3	78	70-130
108-10-1	Methyl Isobutyl Ketone	10	9.1	L	91	70-130
1634-04-4	Methyl Tert Butyl Ether	10	8.6	5	86	70-130
115-07-1	Propylene	10	7.3	3	73	70-130
100-42-5	Styrene	10	10.	.4	104	70-130
71-55-6	1,1,1-Trichloroethane	10	11.	.3	113	70-130
79-34-5	1,1,2,2-Tetrachloroethane	10	8.3	3	83	70-130
79-00-5	1,1,2-Trichloroethane	10	8.8	3	88	70-130
120-82-1	1,2,4-Trichlorobenzene	10	12.	.7	127	70-130
95-63-6	1,2,4-Trimethylbenzene	10	10.	.3	103	70-130
108-67-8	1,3,5-Trimethylbenzene	10	9.6	5	96	70-130
540-84-1	2,2,4-Trimethylpentane	10	8.1	L	81	70-130
75-65-0	Tertiary Butyl Alcohol	10	8.9)	89	70-130
127-18-4	Tetrachloroethylene	10	11.	.8	118	70-130
109-99-9	Tetrahydrofuran	10	7.7	7	77	70-130
108-88-3	Toluene	10	8.9)	89	70-130
79-01-6	Trichloroethylene	10	9.7	7	97	70-130
75-69-4	Trichlorofluoromethane	10	12.	.0	120	70-130
75-01-4	Vinyl chloride	10	7.4	1	74	70-130
108-05-4	Vinyl Acetate	10	8.7	7	87	70-130
	m,p-Xylene	20	19.	.1	96	70-130
95-47-6	o-Xylene	10	9.9)	99	70-130
1330-20-7	Xylenes (total)	30	29.	.0	97	70-130
CAS No.	Surrogate Recoveries	BSP		Lim	iits	
460-00-4	4-Bromofluorobenzene	120%		50-1	29%	

5.2.4

G

Method: TO-15

Account: Project:	FORI Fuss & Former Woons		I S. Woonsocket,	RI			
Sample MSQ809-BS	File ID Q19184.D	DF 1	Analyzed 09/15/11	By AA	Prep Date n/a	Prep Batch n/a	Analytical Batch MSQ809
The QC repo	rted here applies	to the fo	llowing sample	s:		Method: TO-15	

MSQ809-SCC

(a) Outside control limits. Associated samples are non-detect for this compound.

5.2.4

S

Job Number:	MC3739
Account:	FORI Fuss & O'Neill RI
Project:	Former Woonsocket M.S. Woonsocket, RI

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
MC3944-1DUP	J19964.D	5	10/01/11	AA	n/a	n/a	MSJ1059
MC3944-1	J19963.D	5	10/01/11	AA	n/a	n/a	MSJ1059

The QC reported here applies to the following samples:

Method: TO-15

MC3739-3, MC3739-4

		MC3944	-1	DUP		
CAS No.	Compound	ppbv	Q	ppbv Q	RPD	Limits
67-64-1	Acetone	4.0		3.9	3	25
106-99-0	1,3-Butadiene	ND		ND	nc	25
71-43-2	Benzene	ND		ND	nc	25
75-27-4	Bromodichloromethane	ND		ND	nc	25
75-25-2	Bromoform	ND		ND	nc	25
74-83-9	Bromomethane	ND		ND	nc	25
593-60-2	Bromoethene	ND		ND	nc	20
100-44-7	Benzyl Chloride	ND		ND	nc	25
75-15-0	Carbon disulfide	ND		ND	nc	25
108-90-7	Chlorobenzene	ND		ND	nc	25
75-00-3	Chloroethane	ND		ND	nc	25
67-66-3	Chloroform	ND		ND	nc	25
74-87-3	Chloromethane	ND		ND	nc	25
107-05-1	3-Chloropropene	ND		ND	nc	25
95-49-8	2-Chlorotoluene	ND		ND	nc	25
56-23-5	Carbon tetrachloride	ND		ND	nc	25
110-82-7	Cyclohexane	ND		ND	nc	25
75-34-3	1,1-Dichloroethane	9.0		9.6	6	25
75-35-4	1,1-Dichloroethylene	ND		ND	nc	25
106-93-4	1,2-Dibromoethane	ND		ND	nc	25
107-06-2	1,2-Dichloroethane	ND		ND	nc	25
78-87-5	1,2-Dichloropropane	ND		ND	nc	25
123-91-1	1,4-Dioxane	ND		ND	nc	25
75-71-8	Dichlorodifluoromethane	ND		ND	nc	25
124-48-1	Dibromochloromethane	ND		ND	nc	25
156-60-5	trans-1,2-Dichloroethylene	ND		ND	nc	25
156-59-2	cis-1,2-Dichloroethylene	13.2		13.7	4	25
10061-01-5	cis-1,3-Dichloropropene	ND		ND	nc	25
541-73-1	m-Dichlorobenzene	ND		ND	nc	25
95-50-1	o-Dichlorobenzene	ND		ND	nc	25
106-46-7	p-Dichlorobenzene	ND		ND	nc	25
10061-02-6	trans-1,3-Dichloropropene	ND		ND	nc	25
64-17-5	Ethanol	ND		ND	nc	25
100-41-4	Ethylbenzene	ND		ND	nc	25
141-78-6	Ethyl Acetate	ND		ND	nc	25
622-96-8	4-Ethyltoluene	ND		ND	nc	25

5.3.1

Job Number:	MC3739
Account:	FORI Fuss & O'Neill RI
Project:	Former Woonsocket M.S. Woonsocket, RI

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
MC3944-1DUP	J19964.D	5	10/01/11	AA	n/a	n/a	MSJ1059
MC3944-1	J19963.D	5	10/01/11	AA	n/a	n/a	MSJ1059

The QC reported here applies to the following samples:

Method: TO-15

MC3739-3, MC3739-4

CAS No.	Compound	MC3944-1 ppbv Q	-	RPD	Limits
76-13-1	Freon 113	1.3	1.3 J	0	25
76-14-2	Freon 114	ND	ND	nc	25
142-82-5	Heptane	ND	ND	nc	25
87-68-3	Hexachlorobutadiene	ND	ND	nc	25
110-54-3	Hexane	ND	ND	nc	25
591-78-6	2-Hexanone	ND	ND	nc	25
67-63-0	Isopropyl Alcohol	ND	ND	nc	25
75-09-2	Methylene chloride	ND	ND	nc	25
78-93-3	Methyl ethyl ketone	ND	ND	nc	25
108-10-1	Methyl Isobutyl Ketone	ND	ND	nc	25
1634-04-4	Methyl Tert Butyl Ether	ND	ND	nc	25
115-07-1	Propylene	ND	ND	nc	25
100-42-5	Styrene	ND	ND	nc	25
71-55-6	1,1,1-Trichloroethane	6.4	7.0	9	25
79-34-5	1,1,2,2-Tetrachloroethane	ND	ND	nc	25
79-00-5	1,1,2-Trichloroethane	ND	ND	nc	25
120-82-1	1,2,4-Trichlorobenzene	ND	ND	nc	25
95-63-6	1,2,4-Trimethylbenzene	ND	ND	nc	25
108-67-8	1,3,5-Trimethylbenzene	ND	ND	nc	25
540-84-1	2,2,4-Trimethylpentane	ND	ND	nc	25
75-65-0	Tertiary Butyl Alcohol	ND	ND	nc	25
127-18-4	Tetrachloroethylene	93.4	97.1	4	25
109-99-9	Tetrahydrofuran	ND	ND	nc	25
108-88-3	Toluene	ND	ND	nc	25
79-01-6	Trichloroethylene	41.0	45.5	10	25
75-69-4	Trichlorofluoromethane	ND	ND	nc	25
75-01-4	Vinyl chloride	ND	ND	nc	25
108-05-4	Vinyl Acetate	ND	ND	nc	25
	m,p-Xylene	ND	ND	nc	25
95-47-6	o-Xylene	ND	ND	nc	25
1330-20-7	Xylenes (total)	ND	ND	nc	25
CAS No.	Surrogate Recoveries	DUP	MC3944-1	Limits	
460-00-4	4-Bromofluorobenzene	107%	113%	50-129	9%

Job Number:	MC3739
Account:	FORI Fuss & O'Neill RI
Project:	Former Woonsocket M.S. Woonsocket, RI

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
MC3739-7DUP	J19986.D	1	10/03/11	AA	n/a	n/a	MSJ1060
MC3739-7	J19984.D	1	10/03/11	AA	n/a	n/a	MSJ1060

The QC reported here applies to the following samples:

Method: TO-15

MC3739-2, MC3739-5, MC3739-7, MC3739-8

CAS No.	Compound	MC3739-7 ppbv Q	DUP ppbv	Q	RPD	Limits
67-64-1	Acetone	16.8	13.7		20	25
106-99-0	1,3-Butadiene	ND	ND		nc	25
71-43-2	Benzene	0.79	0.64		21	25
75-27-4	Bromodichloromethane	ND	ND		nc	25
75-25-2	Bromoform	ND	ND		nc	25
74-83-9	Bromomethane	ND	ND		nc	25
593-60-2	Bromoethene	ND	ND		nc	20
100-44-7	Benzyl Chloride	ND	ND		nc	25
75-15-0	Carbon disulfide	1.0	0.86		15	25
108-90-7	Chlorobenzene	ND	ND		nc	25
75-00-3	Chloroethane	ND	ND		nc	25
67-66-3	Chloroform	ND	ND		nc	25
74-87-3	Chloromethane	ND	ND		nc	25
107-05-1	3-Chloropropene	ND	ND		nc	25
95-49-8	2-Chlorotoluene	ND	ND		nc	25
56-23-5	Carbon tetrachloride	ND	ND		nc	25
110-82-7	Cyclohexane	ND	ND		nc	25
75-34-3	1,1-Dichloroethane	ND	ND		nc	25
75-35-4	1,1-Dichloroethylene	ND	ND		nc	25
106-93-4	1,2-Dibromoethane	ND	ND		nc	25
107-06-2	1,2-Dichloroethane	ND	ND		nc	25
78-87-5	1,2-Dichloropropane	ND	ND		nc	25
123-91-1	1,4-Dioxane	ND	ND		nc	25
75-71-8	Dichlorodifluoromethane	0.52	0.47	J	10	25
124-48-1	Dibromochloromethane	ND	ND		nc	25
156-60-5	trans-1,2-Dichloroethylene	ND	ND		nc	25
156-59-2	cis-1,2-Dichloroethylene	ND	ND		nc	25
10061-01-5	cis-1,3-Dichloropropene	ND	ND		nc	25
541-73-1	m-Dichlorobenzene	ND	ND		nc	25
95-50-1	o-Dichlorobenzene	ND	ND		nc	25
106-46-7	p-Dichlorobenzene	ND	ND		nc	25
10061-02-6	trans-1,3-Dichloropropene	ND	ND		nc	25
64-17-5	Ethanol	24.7	16.5		40* a	25
100-41-4	Ethylbenzene	0.38	0.32	J	17	25
141-78-6	Ethyl Acetate	ND	ND		nc	25
622-96-8	4-Ethyltoluene	ND	ND		nc	25

Job Number:	MC3739
Account:	FORI Fuss & O'Neill RI
Project:	Former Woonsocket M.S. Woonsocket, RI

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
MC3739-7DUP	J19986.D	1	10/03/11	AA	n/a	n/a	MSJ1060
MC3739-7	J19984.D	1	10/03/11	AA	n/a	n/a	MSJ1060

The QC reported here applies to the following samples:

Method: TO-15

MC3739-2, MC3739-5, MC3739-7, MC3739-8

CAS No.	Compound	MC3739-7 ppbv Q	DUP ppbv Q	RPD	Limits
76-13-1	Freon 113	ND	ND	nc	25
76-14-2	Freon 114	ND	ND	nc	25
142-82-5	Heptane	ND	ND	nc	25
87-68-3	Hexachlorobutadiene	ND	ND	nc	25
110-54-3	Hexane	ND	ND	nc	25
591-78-6	2-Hexanone	ND	ND	nc	25
67-63-0	Isopropyl Alcohol	2.2	1.7	26* a	25
75-09-2	Methylene chloride	1.1	0.94	16	25
78-93-3	Methyl ethyl ketone	1.7	1.6	6	25
108-10-1	Methyl Isobutyl Ketone	ND	ND	nc	25
1634-04-4	Methyl Tert Butyl Ether	ND	ND	nc	25
115-07-1	Propylene	1.8	1.5	18	25
100-42-5	Styrene	ND	ND	nc	25
71-55-6	1,1,1-Trichloroethane	0.20	0.17 J	16	25
79-34-5	1,1,2,2-Tetrachloroethane	ND	ND	nc	25
79-00-5	1,1,2-Trichloroethane	ND	ND	nc	25
120-82-1	1,2,4-Trichlorobenzene	ND	ND	nc	25
95-63-6	1,2,4-Trimethylbenzene	0.38	0.34 J	11	25
108-67-8	1,3,5-Trimethylbenzene	ND	ND	nc	25
540-84-1	2,2,4-Trimethylpentane	0.26	0.21 J	21	25
75-65-0	Tertiary Butyl Alcohol	ND	ND	nc	25
127-18-4	Tetrachloroethylene	0.31	0.16 J	64* a	25
109-99-9	Tetrahydrofuran	ND	ND	nc	25
108-88-3	Toluene	2.5	1.9	27* a	25
79-01-6	Trichloroethylene	ND	ND	nc	25
75-69-4	Trichlorofluoromethane	0.33	0.29 J	13	25
75-01-4	Vinyl chloride	ND	ND	nc	25
108-05-4	Vinyl Acetate	1.0	0.96	4	25
	m,p-Xylene	1.3	1.0	26* a	25
95-47-6	o-Xylene	0.44	0.33 J	29* ^a	25
1330-20-7	Xylenes (total)	1.7	1.4	19	25
CASN		DUD	MC2720 7	T • • 4	
CAS No.	Surrogate Recoveries	DUP	MC3739-7	Limits	
460-00-4	4-Bromofluorobenzene	107%	102%	50-129	%

Duplicate Summary Job Number: MC3739

Account:

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
MC3739-7DUP	J19986.D	1	10/03/11	AA	n/a	n/a	MSJ1060
MC3739-7	J19984.D	1	10/03/11	AA	n/a	n/a	MSJ1060

MC3739-2, MC3739-5, MC3739-7, MC3739-8

FORI Fuss & O'Neill RI

(a) High RPD due to possible matrix interference and/or sample non-homogeneity.

5.3.2

G

Job Number:	MC3739
Account:	FORI Fuss & O'Neill RI
Project:	Former Woonsocket M.S. Woonsocket, RI

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
MC4112-3DUP	J20022.D	1	10/05/11	AA	n/a	n/a	MSJ1061
MC4112-3	J20015.D	1	10/04/11	AA	n/a	n/a	MSJ1061

The QC reported here applies to the following samples:

Method: TO-15

MC3739-1, MC3739-6

CAS No.	Compound	MC4112 ppbv	2-3 Q	DUP ppbv	Q	RPD	Limits
67-64-1	Acetone	10.9		14.2		26* a	25
106-99-0	1,3-Butadiene	ND		ND			25
71-43-2	Benzene	ND ND		ND ND		nc	23 25
71-43-2	Bromodichloromethane	ND ND		ND		nc nc	23 25
75-25-2	Bromoform	ND		ND		nc	23 25
73-23-2 74-83-9	Bromomethane	ND ND		ND ND			23 25
74-83-9 593-60-2	Bromoethene	ND		ND		nc nc	23 20
100-44-7		ND ND		ND ND			20 25
75-15-0	Benzyl Chloride Carbon disulfide	ND ND		ND ND		nc	25 25
						nc	
108-90-7	Chlorobenzene	ND		ND		nc	25
75-00-3	Chloroethane	ND		ND		nc	25
67-66-3	Chloroform	0.77		0.89		14	25
74-87-3	Chloromethane	0.39		0.55		34* ^a	25
107-05-1	3-Chloropropene	ND		ND		nc	25
95-49-8	2-Chlorotoluene	ND		ND		nc	25
56-23-5	Carbon tetrachloride	ND		ND		nc	25
110-82-7	Cyclohexane	ND		ND		nc	25
75-34-3	1,1-Dichloroethane	ND		ND		nc	25
75-35-4	1,1-Dichloroethylene	ND		ND		nc	25
106-93-4	1,2-Dibromoethane	ND		ND		nc	25
107-06-2	1,2-Dichloroethane	ND		ND		nc	25
78-87-5	1,2-Dichloropropane	ND		ND		nc	25
123-91-1	1,4-Dioxane	ND		ND		nc	25
75-71-8	Dichlorodifluoromethane	0.45		0.57		24	25
124-48-1	Dibromochloromethane	ND		ND		nc	25
156-60-5	trans-1,2-Dichloroethylene	ND		ND		nc	25
156-59-2	cis-1,2-Dichloroethylene	ND		ND		nc	25
10061-01-5	cis-1,3-Dichloropropene	ND		ND		nc	25
541-73-1	m-Dichlorobenzene	ND		ND		nc	25
95-50-1	o-Dichlorobenzene	ND		ND		nc	25
106-46-7	p-Dichlorobenzene	ND		ND		nc	25
10061-02-6	-	ND		ND		nc	25
64-17-5	Ethanol	9.0		36.7		121* a	25
100-41-4	Ethylbenzene	ND		ND		nc	25
141-78-6	Ethyl Acetate	ND		ND		nc	25
622-96-8	4-Ethyltoluene	ND		ND		nc	25
5 70 0	,	1,2		1,22			

Job Number:	MC3739
Account:	FORI Fuss & O'Neill RI
Project:	Former Woonsocket M.S. Woonsocket, RI

1 10/05/11	AA	n/a	n/a	MSJ1061
1 10/04/11	AA	n/a	n/a	MSJ1061
1				

The QC reported here applies to the following samples:

Method: TO-15

MC3739-1, MC3739-6

CAS No.	Compound	MC4112-3 ppbv Q	DUP ppbv Q	RPD	Limits
76-13-1	Freon 113	ND	ND	nc	25
76-14-2	Freon 114	ND	ND	nc	25
142-82-5	Heptane	ND	ND	nc	25
87-68-3	Hexachlorobutadiene	ND	ND	nc	25
110-54-3	Hexane	0.48	0.55	14	25
591-78-6	2-Hexanone	ND	ND	nc	25
67-63-0	Isopropyl Alcohol	ND	ND	nc	25
75-09-2	Methylene chloride	4.1	4.7	14	25
78-93-3	Methyl ethyl ketone	1.0	1.0	0	25
108-10-1	Methyl Isobutyl Ketone	ND	ND	nc	25
1634-04-4	Methyl Tert Butyl Ether	ND	ND	nc	25
115-07-1	Propylene	ND	ND	nc	25
100-42-5	Styrene	ND	ND	nc	25
71-55-6	1,1,1-Trichloroethane	ND	ND	nc	25
79-34-5	1,1,2,2-Tetrachloroethane	ND	ND	nc	25
79-00-5	1,1,2-Trichloroethane	ND	ND	nc	25
120-82-1	1,2,4-Trichlorobenzene	ND	ND	nc	25
95-63-6	1,2,4-Trimethylbenzene	ND	ND	nc	25
108-67-8	1,3,5-Trimethylbenzene	ND	ND	nc	25
540-84-1	2,2,4-Trimethylpentane	ND	ND	nc	25
75-65-0	Tertiary Butyl Alcohol	ND	ND	nc	25
127-18-4	Tetrachloroethylene	0.87	0.74	16	25
109-99-9	Tetrahydrofuran	ND	ND	nc	25
108-88-3	Toluene	1.1	1.3	17	25
79-01-6	Trichloroethylene	ND	ND	nc	25
75-69-4	Trichlorofluoromethane	0.27	0.33 J	20	25
75-01-4	Vinyl chloride	ND	ND	nc	25
108-05-4	Vinyl Acetate	0.98	1.2	20	25
	m,p-Xylene	ND	ND	nc	25
95-47-6	o-Xylene	ND	ND	nc	25
1330-20-7	Xylenes (total)	ND	ND	nc	25
CAS No.	Surrogate Recoveries	DUP	MC4112-3	Limits	
460-00-4	4-Bromofluorobenzene	107%	111%	50-129	%

5.3.3

Duplicate Summary Job Number: MC3739

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
MC4112-3DUP	J20022.D	1	10/05/11	AA	n/a	n/a	MSJ1061
MC4112-3	J20015.D	1	10/04/11	AA	n/a	n/a	MSJ1061

MC3739-1, MC3739-6

(a) High RPD due to possible matrix interference and/or sample non-homogeneity.

Page 3 of 3

5.3.3

G

Summa Cleaning Certification

Job Number:	MC3739
Account:	FORI Fuss & O'Neill RI
Project:	Former Woonsocket M.S. Woonsocket, RI

Sample	File ID	DF	Analyzed 09/15/11	By	Prep Date	Prep Batch	Analytical Batch
MSQ809-SCC	Q19186A.D	1		AA	n/a	n/a	MSQ809

The QC reported here (Summa M010) applies to the following samples: Method: TO-15

Batch CP1093 cleaned 09/09/11: MC3739-1(M229), MC3739-2(M040), MC3739-3(M092), MC3739-4(M261), MC3739-5(M019), MC3739-6(M166), MC3739-7(M154), MC3739-8(M271)

67-64-1 Acetone ND 0.50 ppbv ND 1.2	ug/m3
106-99-0 1,3-Butadiene ND 0.50 ppbv ND 1.1	ug/m3
71-43-2 Benzene ND 0.50 ppbv ND 1.6	ug/m3
75-27-4 Bromodichloromethane ND 0.50 ppbv ND 3.3	ug/m3
75-25-2 Bromoform ND 0.50 ppbv ND 5.2	ug/m3
74-83-9 Bromomethane ND 0.50 ppbv ND 1.9	ug/m3
593-60-2 Bromoethene ND 0.50 ppbv ND 2.2	ug/m3
100-44-7 Benzyl Chloride ND 0.50 ppbv ND 2.6	ug/m3
75-15-0 Carbon disulfide ND 0.50 ppbv ND 1.6	ug/m3
108-90-7 Chlorobenzene ND 0.50 ppbv ND 2.3	ug/m3
75-00-3 Chloroethane ND 0.20 ppbv ND 0.53	ug/m3
67-66-3 Chloroform ND 0.50 ppbv ND 2.4	ug/m3
74-87-3 Chloromethane ND 0.50 ppbv ND 1.0	ug/m3
107-05-1 3-Chloropropene ND 0.50 ppbv ND 1.6	ug/m3
95-49-8 2-Chlorotoluene ND 0.50 ppbv ND 2.6	ug/m3
56-23-5 Carbon tetrachloride ND 0.20 ppbv ND 1.3	ug/m3
110-82-7 Cyclohexane ND 0.50 ppbv ND 1.7	ug/m3
75-34-3 1,1-Dichloroethane ND 0.20 ppbv ND 0.81	ug/m3
75-35-4 1,1-Dichloroethylene ND 0.20 ppbv ND 0.79	ug/m3
106-93-4 1,2-Dibromoethane ND 0.50 ppbv ND 3.8	ug/m3
107-06-2 1,2-Dichloroethane ND 0.20 ppbv ND 0.81	ug/m3
78-87-5 1,2-Dichloropropane ND 0.50 ppbv ND 2.3	ug/m3
123-91-1 1,4-Dioxane ND 0.50 ppbv ND 1.8	ug/m3
75-71-8 Dichlorodifluoromethane ND 0.50 ppbv ND 2.5	ug/m3
124-48-1 Dibromochloromethane ND 0.50 ppbv ND 4.3	ug/m3
156-60-5 trans-1,2-Dichloroethylene ND 0.20 ppbv ND 0.79	ug/m3
156-59-2 cis-1,2-Dichloroethylene ND 0.20 ppbv ND 0.79	ug/m3
10061-01-5 cis-1,3-Dichloropropene ND 0.50 ppbv ND 2.3	ug/m3
541-73-1 m-Dichlorobenzene ND 0.50 ppbv ND 3.0	ug/m3
95-50-1 o-Dichlorobenzene ND 0.50 ppbv ND 3.0	ug/m3
106-46-7 p-Dichlorobenzene ND 0.50 ppbv ND 3.0	ug/m3
10061-02-6 trans-1,3-Dichloropropene ND 0.50 ppbv ND 2.3	ug/m3
64-17-5 Ethanol ND 0.50 ppbv ND 0.94	ug/m3
100-41-4 Ethylbenzene ND 0.50 ppbv ND 2.2	ug/m3
141-78-6 Ethyl Acetate ND 0.50 ppbv ND 1.8	ug/m3
622-96-8 4-Ethyltoluene ND 0.50 ppbv ND 2.5	ug/m3

Summa Cleaning Certification

Job Number:	MC3739
Account:	FORI Fuss & O'Neill RI
Project:	Former Woonsocket M.S. Woonsocket, RI

Sample	File ID	DF	Analyzed 09/15/11	By	Prep Date	Prep Batch	Analytical Batch
MSQ809-SCC	Q19186A.D	1		AA	n/a	n/a	MSQ809
The QC reporte	d here (Summa	M010)	applies to the f	ollowing	samples:	Method: TO-15	5

Batch CP1093 cleaned 09/09/11: MC3739-1(M229), MC3739-2(M040), MC3739-3(M092), MC3739-4(M261), MC3739-5(M019), MC3739-6(M166), MC3739-7(M154), MC3739-8(M271)

CAS No.	Compound	Result	RL	Units Q	Result	RL	Units
76-13-1	Freon 113	ND	0.50	ppbv	ND	3.8	ug/m3
76-14-2	Freon 114	ND	0.50	ppbv	ND	3.5	ug/m3
142-82-5	Heptane	ND	0.50	ppbv	ND	2.0	ug/m3
87-68-3	Hexachlorobutadiene	ND	0.50	ppbv	ND	5.3	ug/m3
110-54-3	Hexane	ND	0.50	ppbv	ND	1.8	ug/m3
591-78-6	2-Hexanone	ND	0.50	ppbv	ND	2.0	ug/m3
67-63-0	Isopropyl Alcohol	ND	0.50	ppbv	ND	1.2	ug/m3
75-09-2	Methylene chloride	ND	0.50	ppbv	ND	1.7	ug/m3
78-93-3	Methyl ethyl ketone	ND	0.50	ppbv	ND	1.5	ug/m3
108-10-1	Methyl Isobutyl Ketone	ND	0.50	ppbv	ND	2.0	ug/m3
1634-04-4	Methyl Tert Butyl Ether	ND	0.50	ppbv	ND	1.8	ug/m3
115-07-1	Propylene	ND	0.50	ppbv	ND	0.86	ug/m3
100-42-5	Styrene	ND	0.50	ppbv	ND	2.1	ug/m3
71-55-6	1,1,1-Trichloroethane	ND	0.20	ppbv	ND	1.1	ug/m3
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.20	ppbv	ND	1.4	ug/m3
79-00-5	1,1,2-Trichloroethane	ND	0.20	ppbv	ND	1.1	ug/m3
120-82-1	1,2,4-Trichlorobenzene	ND	0.50	ppbv	ND	3.7	ug/m3
95-63-6	1,2,4-Trimethylbenzene	ND	0.50	ppbv	ND	2.5	ug/m3
108-67-8	1,3,5-Trimethylbenzene	ND	0.50	ppbv	ND	2.5	ug/m3
540-84-1	2,2,4-Trimethylpentane	ND	0.50	ppbv	ND	2.3	ug/m3
75-65-0	Tertiary Butyl Alcohol	ND	0.50	ppbv	ND	1.5	ug/m3
127-18-4	Tetrachloroethylene	ND	0.20	ppbv	ND	1.4	ug/m3
109-99-9	Tetrahydrofuran	ND	0.50	ppbv	ND	1.5	ug/m3
108-88-3	Toluene	ND	0.50	ppbv	ND	1.9	ug/m3
79-01-6	Trichloroethylene	ND	0.20	ppbv	ND	1.1	ug/m3
75-69-4	Trichlorofluoromethane	ND	0.50	ppbv	ND	2.8	ug/m3
75-01-4	Vinyl chloride	ND	0.20	ppbv	ND	0.51	ug/m3
108-05-4	Vinyl Acetate	ND	0.50	ppbv	ND	1.8	ug/m3
	m,p-Xylene	ND	0.50	ppbv	ND	2.2	ug/m3
95-47-6	o-Xylene	ND	0.50	ppbv	ND	2.2	ug/m3
1330-20-7	Xylenes (total)	ND	0.50	ppbv	ND	2.2	ug/m3

CAS No. Surrogate Recoveries

Limits

460-00-4	1 Promofluorohanzana	73%	50-129%
400-00-4	4-Bromofluorobenzene	15%	30-129%

Volatile Surrogate Recovery Summary

Job Number:	MC3739
Account:	FORI Fuss & O'Neill RI
Project:	Former Woonsocket M.S. Woonsocket, RI

Method: TO-15

Matrix: AIR

Samples and QC shown here apply to the above method

Lab Sample ID	Lab File ID	S 1
MC3739-1	J20011.D	102.0
MC3739-2	J19995.D	103.0
MC3739-3	J19996.D	87.0
MC3739-3	J19967.D	108.0
MC3739-4	J19997.D	104.0
MC3739-4	J19968.D	109.0
MC3739-5	J19998.D	98.0
MC3739-6	J20010.D	87.0
MC3739-6	J20008.D	103.0
MC3739-7	J19984.D	102.0
MC3739-8	J19985.D	97.0
MC3739-7DUP	J19986.D	107.0
MC3944-1DUP	J19964.D	107.0
MC4112-3DUP	J20022.D	107.0
MSJ1059-BS	J19956A.D	104.0
MSJ1059-MB	J19957.D	83.0
MSJ1060-BS	J19980A.D	104.0
MSJ1060-MB	J19981.D	91.0
MSJ1061-BS	J20005A.D	105.0
MSJ1061-MB	J20007.D	96.0
MSQ809-SCC	Q19186A.D	73.0
MSQ809-BS	Q19184.D	120.0
MSQ809-MB	Q19186.D	73.0
Surrogate Compounds		Recovery Limits
S1 = 4-Bromoflu	orobenzene	50-129%

Page 1 of 1

