

Proactive by Design

REMEDIAL ACTION WORK PLAN

RIDEM 117 & 229 First Avenue Woonsocket, Rhode Island

February 2020 File No. 34502.04

PREPARED FOR:

Rhode Island Department of Environmental Management Providence, Rhode Island

GZA GeoEnvironmental, Inc.

188 Valley Street, Suite 300 | Providence, RI 02909 401-421-4140

Offices Nationwide www.gza.comCopyright© 2020 GZA GeoEnvironmental, Inc

Known for excellence Built on trust.

GEOTECHNICAL ENVIRONMENTAL ECOLOGICAL WATER CONSTRUCTION MANAGEMENT

188 Valley Street Suite 300 Providence, RI 02909 T: 401.421.4140 F: 401.751.8613 www.gza.com February 20, 2020 Job No. 34502.04

Ms. Rachel Simpson Rhode Island Department of Environmental Management Office of Waste Management 235 Promenade Street, 3rd Floor Providence, Rhode Island 02908

Re: Remedial Action Work Plan
RFA #19011 Add. Seville Dyeing Co.
Seville Dyeing Co. Property
117 & 229 First Avenue (Plat 6 / Lots 117, 102, & 118)
Woonsocket, Rhode Island

Dear Ms. Simpson:

GZA GeoEnvironmental, Inc. (GZA) is pleased to submit the attached *Remedial Action Work Plan* for the above referenced Site. The RAWP was completed in general accordance with our proposal for services, and applicable sections of Rule 1.10 of the Rhode Island Department of Environmental Management's (RIDEM's) <u>Rules and Regulations for the Investigation and Remediation of Hazardous Material Releases</u> (Remediation Regulations).

We trust this report addresses the applicable regulatory requirements and look forward to the Department's issuance of a *Remedial Approval Letter*. If you require any additional information or have comments on the content of the report, please feel free to contact either Rick or Ed at (401) 421-4140.

Very truly yours,

GZA GEOENVIRONMENTAL, INC.

Richard A. Carlone, P.E. Senior Project Manager

Edward A. Summerly, P.G. Principal / District Office Manager

Cc: AmyJean McKeown, EPA

Consultant/Reviewer

1.0	INTRO	DUCTION	.1
2.0	BACKG	ROUND	.1
	2.1	SITE DESCRIPTION	1
	2.2	ENVIRONMENTAL SETTING	1
	2.2.1	Topography, Drainage, Soil Type	2
	2.2.2	Groundwater	2
	2.2.3	Surface Water	2
	2.2.4	Environmentally Sensitive Area	3
	2.3	APPLICABLE REULATORY CRITERIA	3
3.0	SIR SUI	MMMARY AND LIMITED DESIGN PHASE INVESTIGATION	.3
	3.1	SITE INVESTIGATION REPORT	3
	3.2	LIMITED DESIGN INVESTIGATION	4
	3.2.1	Soil Borings and Well Installations	5
	3.2.2	Observed Subsurface Conditions	5
	3.2.3	Soil Sample Field Screening	6
	3.2.4	Investigation Derived Waste	6
	3.2.5	Soil Sample Analysis	6
	3.2.6	Soil Data Validation and Data Usability	7
	3.2.7	Soil Sample Results	8
	3.2.8	Groundwater Sampling Technique	8
	3.2.9	Groundwater Sample Analysis	9
	3.2.10	Groundwater Data Validation and Usability	9
	3.2.11	Trip Blanks	9
	3.2.12	Equipment Blanks	9
	3.2.13	Method Blanks	9

	3.2.14	Lab Control Samples	.9
	3.2.15	Surrogate Recovery/Internal Standards	10
	3.2.16	Blind Duplicate Recoveries	10
	3.2.17	Quantitation Limits	10
	3.2.18	Project Narratives	10
	3.2.19	Groundwater Sample Results	10
	3.2.20	Groundwater Elevation Survey	10
	3.2.21	Vapor Intrusion Screening	11
	3.2.22	Biovent Pilot Test	11
	3.2.23	Pilot Test Results	11
	3.2.24	Conclusion	12
4.0	SITE DE	VELOPMENT	12
5.0	RELEAS	E BACKGROUND	12
6.0	PROPO	SED REMEDIAL ALTERNATIVE	13
6.0 7.0		SED REMEDIAL ALTERNATIVE	
			13
	PROPO	SED REMEDIAL ACTIONS	13 13
	PROPO 7.1	SED REMEDIAL ACTIONS	13 13 14
	PROPO 7.1 7.1.1 7.1.2	Sed REMEDIAL ACTIONS	13 13 14 14
	PROPO 7.1 7.1.1 7.1.2	SED REMEDIAL ACTIONS	13 13 14 14 14
	PROPO 7.1 7.1.1 7.1.2 7.1.3	SED REMEDIAL ACTIONS	13 13 14 14 14 15
	PROPO 7.1 7.1.1 7.1.2 7.1.3 7.1.4	SED REMEDIAL ACTIONS	13 13 14 14 14 15 15
	PROPO 7.1 7.1.1 7.1.2 7.1.3 7.1.4 7.2	SED REMEDIAL ACTIONS	 13 14 14 14 15 15 15
	PROPO 7.1 7.1.1 7.1.2 7.1.3 7.1.4 7.2 7.2.1	SED REMEDIAL ACTIONS	 13 14 14 14 15 15 15
	PROPO 7.1 7.1.1 7.1.2 7.1.3 7.1.4 7.2 7.2.1 7.2.2	SED REMEDIAL ACTIONS	 13 14 14 14 15 15 15 16

8.0

7.2.6	Off-Site Soils (Phase II)
7.2.7	Remedial Systems Operating Log (Rule 1.10.14)18
7.2.8	Design Standards and Technical Specifications (Rule 1.10.10)18
7.2.9	Site Plans and Setup Plans (Rules 1.10.9 and 1.10.11)19
7.2.10	Effluent Disposal (Rule 1.10.12)19
7.3	BEST MANAGEMENT PRACTICES
7.4	SECURITY PROCEDURES (RULE 1.10.15)
7.5	INSTITUTIONAL CONTROLS AND NOTICES (RULE 1.10.17, PHASE II)
7.6	CONTRACTORS AND/OR CONSULTANTS (RULE 1.10.8)
7.7	CONTINGENCY PLAN (RULE 1.10.13)
7.7.1	Basic Health and Safety Procedures20
7.7.2	Personal Protective Equipment (PPE)21
7.7.3	Site Operating Procedures/Safety Guidelines21
7.7.4	In Case of Serious Exposure or Injury21
7.7.5	Emergency Phone Numbers
7.8	SHUT DOWN, CLOSURE & POST CLOSURE REQUIREMENTS (RULE 1.10.16)
7.9	COMPLIANCE DETERMINATION/EVALUATION (RULES 1.10.6 & 1.10.18)
7.9.1	ELUR Compliance
7.9.2	Confirmatory Soil Sampling24
7.9.3	Long-Term Monitoring (Phase 1)25
7.9.4	Redevelopment and Site Capping25
7.10	PROJECT SCHEDULE (RULE 1.10.7)
THE FIN	VAL ELURS AND SMPS WILL BE RECORDED ON THE PROPERTY DEEDS WITHIN 14 DAYS OF APPROVAL BY THE DEPARTMENT AND THE RECORDED VERSIONS FORWARDED BACK TO THE DEPARTMENT WITHIN 15 DAYS OF RECORDING
CERTIF	ICATIONS (RULE 1.10.19)

TABLE OF CONTENTSFebruary 2020File No. 34502.04Remedial Action Work PlanPage / iv

TABLES

- TABLE 1 SUMMARY OF DETECTED SOIL ANALYTICAL RESULTS
- TABLE 2 SUMMARY OF GROUNDWATER SCREENING PARAMETERS
- TABLE 3 SUMMARY OF DETECTED GROUNDWATER ANALYTICAL RESULTS
- TABLE 4 SUMMARY OF SOIL VAPOR ANALYTICAL RESULTS
- **FIGURES**
- FIGURE 1 LOCUS PLAN
- FIGURE 2 EXPLORATION LOCATION PLAN
- FIGURE 3 SITE CAPPING PLANS

APPENDICES

- APPENDIX A LIMITATIONS
- APPENDIX B BORING LOGS
- APPENDIX C LABORATORY CERTIFICATES
- APPENDIX D FIELD SAMPLING LOGS
- APPENDIX E BIOVENT PILOT TEST
- APPENDIX F ANALYSIS OF BROWNFIELDS CLEANUP ALTERNATIVES
- APPENDIX G DRAFT ENVIRONMENTAL LAND USE RESTRICTION AND SOIL MANAGEMENT PLAN

1.0 INTRODUCTION

GZA GeoEnvironmental, Inc. (GZA) has prepared this *Remedial Action Work Plan* (RAWP) on behalf of the Rhode Island Department of Environmental Management (RIDEM – Client) for the property located at 117 & 229 First Avenue in Woonsocket, Rhode Island (the "Site"). The Site is an active RIDEM listed remediation Site (RIDEM Case Nos. SR-39-1211A and B). GZA performed this RAWP in accordance with the Rhode Island Department of Environmental Management's (RIDEM's) *Remedial Decision Letter* (RDL) dated June 7, 2019. Authorization to proceed on this project was granted in accordance with GZA's signed proposal dated June 13, 2019. It may be subject to modification if additional information is developed subsequently by GZA or any other party, and this RAWP is subject to the limitations provided in **Appendix A**.

This RAWP has been prepared to address applicable requirements of Section 1.10 of the RIDEM's <u>Rules and Regulations for the</u> <u>Investigation and Remediation of Hazardous Materials Releases</u> (Remediation Regulations), amended January 2019, and is based in part on information presented in our April 24, 2019 *Site Investigation Report* (SIR).

2.0 BACKGROUND

The following sections provide background information on the Site.

2.1 <u>SITE DESCRIPTION</u>

The Site is identified with an address of 117 & 229 First Avenue (Plat 6 / Lots 117, 102, & 118) in Woonsocket, Rhode Island. It is bordered by Fairmount Street to the south, the Blackstone River to the east, a railroad corridor to the north, and First Avenue to the west. A Locus Plan is provided as **Figure 1** and an Exploration Location Plan is provided as **Figure 2**.

The ±5.5-acre Site consists of three parcels with the following characteristics:

- Lot 118, located at 229 First Avenue, covers 4.3 acres and comprises the southern portion of the Site. The majority of this parcel contains remnant building foundations. The former Seville Dyeing Company and previous Enterprise Dye Works mill building footprints are located along the majority of First Avenue (i.e., the southwestern portion of the Site). The northern portion of Lot 118 is unpaved and contains vehicles and solid waste piles.
- Lot 102, located at 0 First Avenue, covers 0.24 acres and comprises the northwestern portion of the Site. The lot is currently vacant and covered with asphalt pavement. It was formerly utilized for parking by Laramee's Transit Inc. and the Woonsocket Machine and Press Company.
- Lot 117, located at 117 First Avenue, covers 1.08 acres and occupies the northern portion of the Site. This Lot is currently vacant, covered with asphalt pavement and was also formerly utilized for parking by Laramee's Transit Inc.

The Site is undeveloped following demolition of the once extensive mill structures in 2011/2012 and is presently vacant. Three Site reuse options are being considered by the City: solar array, recreational field or new redevelopment (residential, commercial and/or industrial).

2.2 ENVIRONMENTAL SETTING

The following subsections provide information regarding the general physiographic and hydrogeologic conditions in the area of the Site.

2.2.1 <u>Topography, Drainage, Soil Type</u>

The Site is relatively flat. Based on a review of the U.S. Geological Survey topographic map and online GIS mapping, the northwestern portion of the Site is at an elevation of ± 170 feet above mean sea level (MSL). The eastern perimeter is a riverbank that borders the Blackstone River which is located at roughly ± 150 feet MSL. The regional topographic gradient near the Site slopes downward to the east towards the adjacent Blackstone River.

According to the Bedrock Geology Map of the Blackstone Quadrangle, Rhode Island, dated 1959, the underlying bedrock is Rhode Island Formation (Esmond-Dedham Subterrane) and is described as greenish, gray, dark-gray, to black greywacke, conglomerate, sandstone, shale, and meta-anthracite. Based on review of available mapping, bedrock appears to be located approximately 90 feet below ground surface (bgs). According to the Surficial Geology Map of the Blackstone Quadrangle, dated 1956, the surficial soils in the vicinity of the Site are comprised of artificial fill underlain by glacial outwash plains. Outwash plains consist of sorted sand, stratified silts, and local deposits of gravel, and can be highly permeable.

The Unites States Natural Resources Conservation Service's Web Soil Survey classifies surficial Site soils as "Merrimac-Urban Land Complex", 0 to 9 percent slopes that are well drained. The Urban Land classification is defined as those areas that consist mostly of sites for buildings, paved roads and parking lots and is common for sites in the intensely built-up portions of Providence and Newport Counties.

2.2.2 <u>Groundwater</u>

Groundwater at the Site is classified as GB by RIDEM. This designation applies to groundwater resources which may not be suitable for human consumption without treatment due to known or presumed degradation. The northeastern portion of the Site is located within an area designated as a Groundwater Reservoir. The Site is located approximately 730 feet east (downgradient) of a GA Groundwater Classification Area.

Based on local topography, the inferred direction of groundwater flow is to the east toward the Blackstone River. However, the localized direction of groundwater flow near the Site might vary because of underground utilities, subsurface preferential pathways, variations in weather or heterogeneous geological and/or anthropogenic conditions.

According to overlay maps maintained by the RIDEM's Office of Water Resources, the Site is located approximately 0.9 miles east (downgradient) of a non-community wellhead protection area. There are no known sources of potable water (i.e., groundwater supply wells) on the properties immediately abutting the Site; abutting properties are connected to public water.

2.2.3 Surface Water

The Blackstone River borders the eastern perimeter of the Site. The Blackstone River has been classified as B1 water by RIDEM which stipulates that these waters are designated for fish and wildlife habitat and primary and secondary contact recreational activities. They shall be suitable for compatible industrial processes and cooling, hydropower, aquaculture uses, navigation, and irrigation and other agricultural uses. These waters shall have good aesthetic value with the caveat that primary contact recreational activities may be impacted due to pathogens from approved wastewater discharges.

The Blackstone River is currently listed by the RIDEM Office of Water Resources on the State of Rhode Island 2016 303(d) List of Impaired Waters, dated March 2018. The 2016 303(d) list identifies water bodies within the state, which may not currently meet Rhode Island Water Quality Standards and for which a Total Maximum Daily Load (TMDL) may be needed. TMDLs are water quality restoration plans that identify water quality goals, necessary pollutant reductions, sources, and implementation plans to achieve the required reductions. RIDEM identifies the segment of the Black Stone River adjacent to the Site as Water Body ID RI0001003R-01A and lists the impairments as cadmium, iron, lead, mercury, PCB, low dissolved oxygen, nutrients, and pathogens.

A review of the *Environmental Resource Map* prepared by RIDEM (<u>http://www.dem.ri.gov/maps/</u>) shows that the Site is located in the Blackstone River – West River to Peters River Drainage Basin. Stormwater at the Site is managed naturally for the most part and either flows downgradient from west to east directly into the Blackstone River or is sequestered by infiltration through the soils.

Based on a review of Federal Emergency Management Agency (FEMA) Map #44007C0069G dated March 2, 2009, the majority of the Site is located within Zone X. The Zone X designation is for areas with a 0.2% annual chance of flood; areas of 1% annual chance of flood with average depths of less than 1 foot or with drainage areas less than 1-square mile; and areas protected by levees from 1% annual chance of flood. The northeastern portion of the Site is located with an "AE, 0.2% Annual Chance Flood Hazard Zone."

2.2.4 Environmentally Sensitive Area

According to the overlay maps maintained by RIDEM's Office of Water Resources, the Site is located within a Natural Heritage Area. The Site is also bordered to the east by the Blackstone River which is part of the John H. Chafee Blackstone River Valley National Heritage Corridor, a federally designated national park (note that the Site's classification as a Natural Heritage Area is not related to this national park).

2.3 APPLICABLE REULATORY CRITERIA

Based on the foregoing description of the Site and surrounding area, and our interpretation of the regulatory requirements provided in RIDEM's Remediation Regulations, RIDEM's August 2018 <u>Water Quality Regulations</u>, and the Federal Safe Drinking Water Act, the following regulatory criteria apply to the Site:

Potentially Impacted Material	Applicable Criteria
Soils	Residential Direct Exposure Criteria
	GB Leachability Criteria
Groundwater	GB Groundwater Objectives

3.0 SIR SUMMMARY AND LIMITED DESIGN PHASE INVESTIGATION

The April 24, 2019 SIR prepared by GZA documents studies conducted at the Site to address the requirements for evaluation of the nature and extent of environmental contaminants as presented in Section 1.8 of RIDEM's Remediation Regulations. To address data gaps in the SIR, GZA also conducted a Limited Design Phase Investigation (LDI) in October and November 2019. The LDI was divided into three tasks: 1) Evaluate the extent of total petroleum hydrocarbon (TPH) impacted soil and groundwater in the vicinity of MW-7 and MW-8 where TPH was previously identified; 2) Complete four borings and one monitoring well in the northwestern portion of the Site which were not completed as part of the initial site investigation; and 3) Conduct a biovent pilot test. The LDI is discussed in detail below.

3.1 SITE INVESTIGATION REPORT

On the behalf of RIDEM, GZA conducted a subsurface investigation at the Site. The objective of the study was to evaluate potential impacts to soil and groundwater from previously identified Recognized Environmental Conditions (RECs). This study is described in the April 24, 2019 SIR and the explorations are shown on **Figure 2**; the following summary has been developed from the testing and observations conducted as part of this study:

- GZA conducted a subsurface investigation at the Site consisting of the completion of 14 soil test borings and the collection of soil samples for field screening and laboratory analysis. The 14 borings (B-1 through B-3, B-5 through B-11, MW-3, MW-4, MW-7 and MW-8) were completed to a depth of 8 to 20 feet below ground surface (bgs). Two of the borings were located directly downgradient of the #6 oil UST bunker. Four borings were completed as shallow overburden groundwater monitoring wells. Soil samples recovered during the boring program were observed to generally consist of fine to coarse sand with varying amounts of gravel and silt in all borings. A majority of the borings also had traces of asphalt, brick and concrete between 0-10 ft bgs, indicating that the area has been filled. Groundwater was encountered at a depth of 8 to 13 feet bgs. A layer of petroleum impacted soil was observed in MW-7 and MW-8 from 10 to 20 feet bgs.
- 2. Thirteen soil samples, including one blind duplicate, were submitted to the laboratory and tested for volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), TPH, and/or PP-13 metals. Method 1 Industrial/Commercial Direct Exposure Criteria (I/C-DEC) exceedances for metals and certain PAHs were noted in MW-3, MW-4, BD11/28/2018, B-3, B-5, B-6, B-7 and B-11 in samples collected at depths ranging from 0 to 10 feet bgs. TPH also exceeded the I/C-DEC and GB Leachability Criteria in samples from MW-7 (10-15 feet), B-1 (5-10 feet) and B-10 (7.5-9 feet). MW-8 and B-1 are located immediately downgradient of the oil UST bunker.
- 3. One round of groundwater samples was collected from the four newly installed wells. Results showed no exceedances of the GB Groundwater Objective. TPH was detected at significant levels (6.76 and 2.61 mg/L) in MW-7 and MW-8. RIDEM has not established a GB Groundwater Objective for TPH and we compared the TPH results to the Massachusetts Contingency Plan (MCP-310 CMR 10.00) RCGW-2 Standard for TPH of 5 mg/L. The TPH concentration detected in MW-7 exceeded this criteria. It should be noted that the SIR submitted to RIDEM in April 2019 noted exceedances of the GB Groundwater Objective for benzene and ethylbenzene in MW-8. These exceedances were incorrectly noted in the report tables due to a unit conversion error. All results from this well are below the GB Objectives as shown in Table 3.
- 4. Groundwater was observed in the monitoring wells at depths ranging from 7 to 13 feet bgs.
- 5. A VI screening indicates that VI risk may be present if a building were to be constructed onsite in the future; currently the VI pathway is incomplete, as no buildings are located at the Site.

This investigation identified TPH, metals and certain PAHs in soil above the GB-Leachability Criteria and/or I/C-DEC. It was GZA's opinion that additional investigation is required to fully characterize environmental conditions at the Site and refine the proposed remedial design.

3.2 LIMITED DESIGN INVESTIGATION

An LDI was completed by GZA in October and November 2019. The LDI was divided into three tasks: 1) Further evaluate the extent of total petroleum hydrocarbon (TPH) impacted soil and groundwater in the vicinity of MW-7 and MW-8 where TPH was previously identified; 2) Complete four borings and one monitoring well in the northwestern portion of the Site which could not be completed as part of the initial site investigation; and 3) Conduct a biovent pilot test in the vicinity of the previously identified petroleum LNAPL plume.

The investigation included 14 Geoprobe[®] explorations, with two completed as groundwater monitoring wells and five completed as soil gas probes; field-screening and laboratory analysis of soil samples; collection and laboratory analysis of groundwater samples from the two newly installed groundwater monitoring wells; a wellhead elevation survey; and a biovent pilot test. The explorations are shown on **Figure 2**.

The subsurface exploration program was executed in accordance with the *Site-Specific Quality Assurance Project Plan Addendum*¹ (*SS-QAPP Addendum*) that GZA developed for this project. The *SS-QAPP Addendum* supplemented information contained in the previously approved Revised *SS-QAPP* dated November 19, 2018, and the November 2018 *Generic QAPP* (RFA 19011). The *SS-QAPP Addendum* was approved by EPA and RIDEM prior to implementation.

3.2.1 Soil Borings and Well Installations

Between October 28 and November 8, 2019 GZA observed the completion of 14 borings (B-12, B-13, B-17, B-17R, B-18, B-19, B-20, MW-14, MW-16 and SG-1 through SG-5) by Hoffman Environmental Services of North Kingstown, Rhode Island, using a direct-push/hollow stem auger Geoprobe[®] rig. Borings were advances to depths of between 5.3 and 34.5 ft bgs.

Two soil borings were completed as groundwater monitoring wells (MW-14 and MW-16) consisting of a 0.010-inch factory slotted nominal 2-inch inside diameter, flush joint, schedule 40 PVC well screen with solid PVC riser. The annular space between the well screen and the borehole was filled with a filter sand pack. The sand pack was carried to a depth of 2-feet above the slotted section of the well screen where a 2-foot thick bentonite seal was placed. Any non-contaminated drill cuttings (based on PID field screening results, described below) were then placed above the bentonite seal to ground surface.

Five soil borings were completed as soil gas monitoring probes (B-18 and SG-1 through SG-4) consisting of a 0.010-inch factory slotted nominal 1-inch inside diameter, flush joint, schedule 40 PVC well screen with solid PVC riser. The annular space between the well screen and the borehole was filled with a filter sand pack. The sand pack was carried to a depth of 2-feet above the slotted section of the well screen where a 2-foot thick bentonite seal was placed. Any non-contaminated drill cuttings (based on PID field screening results, described below) were then placed above the bentonite seal to ground surface.

A GZA field engineer was present during the exploration activities to coordinate and document the program, classify soils, prepare boring logs, field-screen soil samples and collect/prepare samples for laboratory testing. Samples were characterized in the field and boring logs maintained for each borehole. Copies of boring logs are provided in **Appendix B**.

Soil samples were collected continuously as described in GZA's SOP K-2 (refer to GZA's *Generic QAPP*) by pneumatically advancing a 5-foot, 2-inch ID steel split-spoon equipped with a dedicated acetate lining. Samples were recovered from a depth of 0 to 5, 5 to 10, 10 to 15, 15 to 20, 20 to 25, 25 to 30 and 30 to 35 feet bgs or refusal. Soil samples recovered for screening (in accordance with GZA's SOP #4.1.3, included in the *Generic QAPP*) and analysis were transferred to clean, unpreserved 8-ounce glass jars, and 40 ml methanol-preserved glass vials with septa caps, using a stainless-steel trowel. Select soil samples were submitted for laboratory analysis, as described below. The stainless-steel trowel was washed with an Alconox[®]/water solution and rinsed with distilled water between each sample. A new acetate liner was employed for each sample.

Field quality control sampling and testing included the collection of an equipment blank sample and blind duplicate.

3.2.2 Observed Subsurface Conditions

Soil samples recovered during the boring program were observed to generally consist of fine to coarse sand with varying degrees of gravel and silt in all borings. Most of the borings also had traces of asphalt, brick, concrete and glass between 0-10 ft bgs (0-15 ft on the northwestern portion of the Site at borings B-12 and MW-14), indicating that the area has been filled. Glacial till was observed in three borings (B-12, SG-1 and SG-5) at depths between 12-18.5 ft bgs. Groundwater was encountered at depths of 15 to 28 ft bgs. A layer of black, petroleum impacted soil (sheen and petroleum-like odor) was encountered in B-18, B-19, B-20, MW-16, SG-1, SG-3 and SG-4 between 4 to17.5 ft bgs; these borings are located downgradient of the oil UST bunker. A layer of brown/black impacted soil (including green staining and fibrous material) was encountered in B-18 between 6 and 8 ft bgs; this boring is also located downgradient of the oil UST bunker. We were unable to recover soil samples from two borings (B-17 and B-17R) that were located on the concrete slab in the central portion of the property due to refusal on concrete at depths of

¹ Site-Specific QAPP Addendum developed by GZA on behalf of RIDEM and signed by EPA on September 24, 2019.

approximately 4 ft bgs. Layers of brick and/or concrete were observed in six borings (B-13, B-15, B-18, B-19, B-20, SG-1) likely due to the presence of brick and/or concrete slabs at varying depths bgs. Refer to the boring logs in **Appendix B** for additional subsurface information.

3.2.3 Soil Sample Field Screening

Soil samples recovered during drilling activities were field screened for total volatile organic compounds (TVOC) using a MiniRae Model 3000 Photoionization Detector (PID) equipped with a 10.6 eV lamp and calibrated with a mixture of isobutylene in air. Soil samples from each boring were screened in accordance with GZA's SOP #4.1.3 (refer to GZA's *Generic QAPP*). TVOC screening results are provided on the boring logs attached as **Appendix B**.

The TVOC readings were generally low, i.e. below 5 ppm, except in B-18, B-19, B-20, MW-16 and SG-1 between approximately 5 and 17 feet bgs, where elevated (*i.e.*, above 10 ppm) PID screening results were observed.

3.2.4 Investigation Derived Waste

Drill cuttings with PID readings above 10 ppm were placed in 55-gallon steel drums for subsequent off-Site disposal, in accordance with the SS-QAPP. The resulting drums are temporarily stored on-Site and will be disposed offsite at a properly licensed facility.

All other soil cuttings were used as backfill in each borehole, in accordance with the SS-QAPP, as the soil TVOC screening results were below 5ppm.

3.2.5 <u>Soil Sample Analysis</u>

A total of 10 soil samples were collected as part of the LDI, including one blind duplicate sample, one trip blank, and one equipment blank, placed in laboratory provided containers, preserved as appropriate, packed in ice chests and transported under chain-of-custody protocol to ESS Laboratory in Cranston, Rhode Island. Three of the samples (MW-14², B-13 and B-14) were analyzed for the following parameters:

- VOCs via EPA Method 8260B;
- PAHs via EPA Method 8270C;
- PP-13 Metals via EPA Method 6010B;
- Mercury via EPA Method 7470;
- PCBs via EPA Method 8082; and
- TPH via EPA Method 8100M.

Seven of the samples (MW-16/S-4B, B-19/S-1C, B-20/S-4A, B-20/S-4B, SG-1/S-3B, SG-4/S-2D and SG-5/S-3B) were analyzed for TPH only. Four of these samples (B-19/S-1C, B-20/S-4A, SG-1/S-3B and SG-4/S-2D) were also submitted for TPH fingerprint laboratory analysis via EPA Method 8100M.

A sample was not collected from B-12, due to poor soil recovery during drilling. There were no other deviations from the approved SS-QAPP.

² Sample results reported as MW-15 in laboratory certificates.

3.2.6 <u>Soil Data Validation and Data Usability</u>

As required by the SS-QAPP, GZA performed a modified Tier I Plus data validation/data usability assessment for the following analytical data report:

- 19J1002 dated November 5, 2019 analysis of soil samples for VOCs, PAHs, PP-13 Metals, Mercury, TPH and PCBs; and
- 19J1092 rev1 dated November 15, 2019 analysis of soil samples for TPH and TPH fingerprint.

This assessment was completed in accordance with the *Region I, EPA-New England Data Validation Functional Guidelines for Evaluating Environmental Analyses (12/96)* and the requirements identified in GZA's Generic QAPP dated October 2018.

As indicated in the Analytical Data Report attached in **Appendix C**, all soil samples were received intact and under appropriately executed chains-of-custody. Based on review of the QA/QC documentation, we conclude the following.

3.2.6.1 Preservation

Temperatures recorded on the chains-of-custody indicated that samples were cooled to the proper temperature. All samples were preserved in the manner appropriate for the analytical method.

3.2.6.2 Holding Times

All samples were prepared and analyzed within the method-specified holding times. Thus, no results require qualification on this basis.

3.2.6.3 Trip Blanks

Report 19J1002 indicates that a trip blank was provided for VOC analysis, with only methylene chloride detected above the laboratory reporting limits. Methylene chloride was detected above the laboratory reporting limits in two other samples. All three methylene chloride results detected above laboratory reporting limits are already qualified as estimated (J). Thus, no additional qualification is required from the results.

3.2.6.4 Equipment Blanks

The soil equipment blank (E-Soil) was submitted for VOC analysis with the groundwater samples under Report 19K0746. Report 19K0746 indicates that no detects were reported above the laboratory reporting limits in the soil equipment blank. Thus, no results require qualification on this basis.

3.2.6.5 Method Blanks

No detects were reported above the laboratory reporting limits in the laboratory method blanks. Thus, no results require qualification on this basis.

3.2.6.6 Lab Control Samples

Lab control samples were prepared and analyzed for all analytes. All recovery values were within acceptable ranges for all target analytes. Thus, no results require qualification on this basis.

3.2.6.7 Surrogate Recoveries

All surrogate recovery results were acceptable for all samples. No data required qualification due to surrogate recovery.

3.2.6.8 Blind Duplicate Recoveries

Blind duplicate soil samples were prepared and analyzed as presented below.

Report 19J1002– The sample identified as BD10282019 was prepared for B-13 at a depth of 2-4 ft bgs and analyzed for VOCs, PCBs, TPH, PAHs, and PP-13 Metals. Eight metals and two VOCs were detected above the laboratory reporting limits in both samples. The RPD values for mercury and naphthalene were not within the +/-50% acceptance criteria; thus, they have been qualified estimated (J) for this sample.

3.2.6.9 Quantitation Limits

The laboratory reporting limits exceeded the project-required detection limits for a number of compounds, due to the observed onsite contamination described in Section 3.80. Given the levels of contamination observed, the quantitation limits are considered acceptable.

3.2.6.10 Project Narratives

No other deviations are noted in the project narratives.

The above described laboratory results are considered useable as qualified and are sufficient to meet the project data quality objectives.

3.2.7 Soil Sample Results

Soil results are compiled in **Table 1** and compared to the applicable Method 1 I/C-DEC and GB-Leachability Criteria as outlined in Section 1.8.3 of the Remediation Regulations. Copies of the laboratory analytical reports are attached in **Appendix C**. As shown in **Table 1**, TPH was above the I/C-DEC in three of the LDI program samples. The TPH exceedances were located downgradient of the oil UST bunker in areas where visual petroleum impacts were observed. The laboratory identified the TPH samples from B-19, B-20, SG-1 and SG-4 as "diesel fuel and lubricating oil ranges". This indicates that the contamination is likely not from a leak in the No.6 oil UST (unless the UST was used for storage of other petroleum products) and is likely from former mill activities. In addition, a benzo (a) pyrene I/C-DEC exceedance was observed in MW-14 (0-2 foot sample). Note that soil exceedances were generally located under concrete, asphalt or in vegetated areas; as such the potential entrainment of contaminants by wind or erosion is minimal.

3.2.8 Groundwater Sampling Technique

On November 22, 2019, groundwater samples were collected from newly installed wells MW-14 and MW-16. The groundwater sampling program was executed in accordance with the SS-QAPP.

Groundwater samples were collected in general accordance with EPA's September 19, 2017 *Low Stress (low flow) Purging and Sampling Procedure* (low flow SOP) and in accordance with revised GZA SOP # 3.1.2 (refer to GZA's *Generic QAPP*). As part of that sampling methodology, well stabilization was evaluated through the measurement of specific water quality parameters recorded during the purging process. A variable speed peristaltic pump was utilized to control the rate of purging and limit the drawdown caused by this operation. To avoid cross contamination, dedicated 3/8-inch-outer-diameter (OD) polyethylene tubing, installed in each of the existing wells, was utilized as the intake and discharge tubing for the pumps. Pharmaceutical grade tubing was employed as the pump head tubing and connected to the intake and discharge tubing by clamps sufficient to prevent the introduction of air into the sample.

Prior to sampling, each well was gauged for light and dense non-aqueous phase liquids (LNAPL and DNAPL); no NAPL was observed. A sheen was noted on groundwater from well MW-16.

During the sampling, field readings were recorded for pH, temperature, specific conductance, dissolved oxygen, oxygen reduction potential and turbidity using a YSI Pro Series multi-meter with a flow-through cell. Field equipment used to perform the testing was calibrated according to the manufacturer's instructions before sampling. Field readings are presented in the field sampling logs, attached as **Appendix D** and are summarized on **Table 2**. Results of field screening parameters were generally within the range expected for groundwater in Rhode Island.

As indicated on the logs, the readings generally stabilized prior to collecting the samples. The samples were collected in hydrochloric acid-preserved 40-ml glass vials with septa caps and sulfuric acid-preserved 1-L amber glass jars, packed in an ice filled cooler, and transported under chain-of-custody protocol to ESS Laboratory of Cranston, Rhode Island for analysis.

Purge water from the round of well sampling was placed in a 55-gallon steel drum for subsequent off-Site disposal. The resulting drum is temporarily stored onsite and will be properly disposed of at a licensed off-site facility.

3.2.9 Groundwater Sample Analysis

A total of two groundwater samples, one blind duplicate sample, one trip blank and one equipment blank were collected, packed in an ice chest and transported under chain-of-custody protocol to ESS Laboratory for VOC analysis.

3.2.10 Groundwater Data Validation and Usability

As required by the Site-Specific QAPP, GZA performed a modified Tier I Plus data validation/data usability assessment for the following Analytical Data Report:

• 19K0746 dated December 6, 2019 – analysis of groundwater samples for VOCs.

As indicated in the Analytical Data Report attached in **Appendix C**, water samples were received intact, within the proper temperature range and appropriately preserved.

The results for our data validation are summarized in the following subsections.

3.2.11 Trip Blanks

Report 19K0746 indicates that a trip blank was provided for VOC analysis, with no constituents detected above the laboratory reporting limits. Thus, no results require qualification on this basis.

3.2.12 Equipment Blanks

Acetone was detected at a concentration exceeding the laboratory reporting limits in the equipment blank (E-GW) associated with Report 19K0746. Acetone was not detected above the laboratory reporting limit in the associated samples. Thus, no results require qualification on this basis.

3.2.13 <u>Method Blanks</u>

No compounds were reported above the laboratory reporting limits in the laboratory method blanks. Thus, no results require qualification on this basis.

3.2.14 Lab Control Samples

Lab control samples were prepared and analyzed for all analytes. The LCS/LCSD analysis for SVOCs had one analyte (hexachloroethane) that was below the acceptable QA/QC limits. This analyte was only tested for in one sample (Drum) and

was non-detect. This non-detect results has been rejected (R). In all other cases, recovery values were within acceptable ranges for all target analytes. Thus, no results require qualification on this basis.

3.2.15 Surrogate Recovery/Internal Standards

The surrogate analysis for SVOCs had one analyte (2,4,6-tribromophenol) that exceeded the QA/QC limits. This analyte was only tested for in one sample (Drum) and was non-detect and therefore accepted without qualifications. No other surrogate recoveries were reported outside acceptable QA/QC ranges. Thus, no results require qualification on this basis.

3.2.16 Blind Duplicate Recoveries

Report 19K0746-- A blind duplicate groundwater sample was prepared for sample MW-14 and analyzed for VOCs. No VOCs were detected above the laboratory reporting limits in either sample. Thus, these results do not require qualification on this basis.

3.2.17 <u>Quantitation Limits</u>

The laboratory reporting limits generally satisfy the project-required detection limits. The laboratory reporting limits for 1,2dibromo-3-chloropropane and 1,2-dibromomethane exceeded the GA Groundwater Objectives. Note that the GA Groundwater Objectives cannot be achieved for these compounds due to the limitations of the current analytical methodologies. The laboratory reporting limits exceeded the project-required detection limits for mercury, antimony, and thallium. These metals were all non-detect in the sample tested.

3.2.18 Project Narratives

No other deviations are noted in the project narratives.

The above described laboratory results are considered useable as qualified and are sufficient to meet the project objectives.

3.2.19 Groundwater Sample Results

Groundwater samples from the newly installed wells were analyzed for VOCs by EPA Method 8260B. Analytical results are compiled in **Table 3** and compared to the GB Groundwater Objectives. As shown, no VOCs were detected above laboratory reporting limits.

3.2.20 Groundwater Elevation Survey

Depth to static groundwater on a Site-wide basis ranged from approximately 13 to 22 feet bgs, based on readings collected on November 22, 2019. Using wellhead elevation survey data collected by GZA on November 27 and 28, 2018 and January 17, 2020; groundwater elevations were found to range from 147 to 155 feet in reference to the North American Vertical Datum of 1988 (NAVD 88). Groundwater elevation measurements are summarized in the table below and shown on Figure 2. Based on the groundwater elevations, groundwater flow is inferred to be easterly, toward the Blackstone River.

Well ID	Well Type	November 22, 2019 Groundwater Elevation (feet)
MW-7	Shallow Overburden	152.6
MW-8	Shallow Overburden	155.1
MW-14	Shallow Overburden	147.9
MW-16	Shallow Overburden	155.2

We note that localized groundwater flow patterns may vary significantly from those shown due to heterogeneous subsurface conditions, the presence of underground utilities, river elevation changes, and variations in rainfall recharge.

3.2.21 Vapor Intrusion Screening

VOCs were not observed in the groundwater at the two newly installed wells (MW-14 and MW-16). VOCs were observed in groundwater in two older well locations (MW-7 and MW-8); the Massachusetts GW-2 Groundwater Standards, which are applicable for vapor intrusion (VI), are presented in **Table 3** for comparison only, as Rhode Island has not established vapor intrusion groundwater criteria. As shown, an exceedance of the GW-2 standards is present, indicating a potential vapor intrusion risk if buildings are constructed in the future over certain portions of the Site. Vapor intrusion is currently an incomplete exposure pathway, as the property is currently vacant and no buildings remain. Any future onsite buildings constructed in areas of known or suspected VOC contamination should be equipped with a sub-slab depressurization system (SSDS) to mitigate potential VI exposures.

3.2.22 Biovent Pilot Test

A limited biovent pilot test was performed by GZA on November 22, 2019 using existing and newly installed wells. Vacuums were applied at test monitoring wells MW-8 and MW-16, the resultant extraction rate, vacuum at each test location, and vacuum response in the surrounding monitoring wells was recorded. The TVOC PID readings of samples of the vapor extracted from the monitoring wells were recorded at the start, middle and end of each of the test periods. One summa canister sample was collected from each pilot test well MW-8 and MW-16 for TO-15 VOC laboratory analysis. **Appendix E** presents the field monitoring results and plots showing the vacuum response with distance from each of the test wells. The laboratory analysis for the pilot test soil vapor samples is in **Appendix C**.

3.2.23 Pilot Test Results

The pilot test results for the wells showed that at applied vacuums of approximately 5 to 8 inches water column (WC) at each of the pilot test wells and an extraction rate of 10 standard cubic feet/minute (scfm at each well operating alone, a radius of influence (ROI) of approximately 30 to 40 feet was achieved (vacuum response of at least 0.020 inches WC column at the outer limit of the ROI) within the unsaturated zone. **Appendix E** includes the vacuum responses observed at the monitoring points at these low vacuums. At these flow rates, at least 0.7 pore volume exchanges per day will be achieved within the 30-foot radius of influence of each vent well. This is judged by GZA to be more than adequate to maintain an aerobic environment within the unsaturated zone of the petroleum impacted area.

Consistent with the assumed presence of naturally occurring bacteria degrading the fuel oil, significantly depressed oxygen and elevated carbon dioxide levels were observed in the vapor samples extracted from MW-8 and MW-16. Ambient atmospheric levels of oxygen and carbon dioxide gases are approximately 21% and 0.5%, respectively. Bacteria in the subsurface will consume oxygen (by respiration) and generate carbon dioxide as they consume the fuel oil and any other biodegradable constituents that may be present naturally. Oxygen (O_2) levels, readings between 3% and 10%, and carbon dioxide (CO^2), readings between 11% and 18%, were recorded at MW-8 and MW-16. In addition, we note given the short duration of soil vapor extraction during this pilot test, we expect that these values represent the higher end of the O_2 readings and lower end of CO_2 that will be observed during long term operation as increased air flow is drawn into the subsurface and aerobic biodegradation progresses within the fuel oil impacted zone.

Laboratory analysis of the soil vapor extracted from MW-8 and MW-16, as expected and consistent with the TVOC PID readings, detected low-level concentrations of petroleum hydrocarbons. Aggregate VOC concentrations at MW-8 and MW-16 were approximately 6 and 38 ppbv, respectively. TVOC PID readings for these locations, at the time of the sampling, were approximately 4 and 7 ppmv, respectively

The test showed that at modest applied vacuums, approximately five wells will be needed to achieve the desired radius of influence and pore volume exchanges to promote aerobic degradation over the estimated 100-foot by 100-foot residual petroleum contaminated area. As no significant LNAPL accumulation was observed in the Site wells during the last year or during the test, LNAPL that may accumulate in the wells can be removed by routine bailing, if needed. If LNAPL recovery rates were to increase (not expected), the wells may be modified to incorporate automated petroleum product recovery units.

As a contingency, while we don't anticipate that we will observe any significant dissolved petroleum constituent migration after the implementation of the full-scale biovent system, GZA has constructed the new wells to allow for conversion to use as air sparge/recirculation wells below the groundwater table, if needed. These plans would only be implemented if groundwater monitoring data indicated that migration of significant petroleum hydrocarbon concentrations was occurring or if the conversion might significantly increase the rate of fuel oil removal.

3.2.24 Conclusion

Based on the LDI:

- Contamination observed in soil on the northwestern portion to the Site is similar to soil contamination observed at other areas of the Site (I/C DEC exceedances of certain metals and/or PAHs), outside the petroleum-impacted area;
- Petroleum impacts are present in an approximately 100 foot by 100-foot area downgradient of the UST bunker; and
- Based on the pilot test, bioventing should be effective in reducing the observed petroleum contamination downgradient of the UST bunker.

The recommended alternative in the SIR (oil UST removal, in-situ soil treatment, Site fencing, long-term groundwater monitoring and recording of an ELUR) should be enacted in accordance with this RAWP.

4.0 SITE DEVELOPMENT

Three Site reuse options are being considered by the City: solar array, recreational field or redevelopment (residential, commercial and/or industrial). Any future Site redevelopment will be conducted in accordance with the final Environmental Land Use Restriction (ELUR) and Soil Management Plan (SMP) (see Section 7.5).

5.0 RELEASE BACKGROUND

The Site is listed with RIDEM as a result of the presence of certain PAHs, metals and TPH in soils at concentrations above RIDEM's I/C-DEC and/or GB Leachability Criteria.

Groundwater monitoring completed at the Site included the collection of samples from six monitoring wells for VOCs and TPH. The resultant data indicated no exceedances when compared to the Method 1 GB Groundwater Objectives, though TPH was detected at significant levels in two wells. RIDEM has not established a GB Groundwater Objective for TPH.

Additional details are included in Section 3.

6.0 PROPOSED REMEDIAL ALTERNATIVE

As presented in GZA's April 24, 2019 SIR, Alternatives #3 and #4 are the recommended remedial alternatives and are presented below as Phase I (Alternative 3) and Phase II (Alternative 4). Phase I consists of:

- 1. The LDI that was completed in October and November 2019 (See Section 3);
- 2. Emptying and cleaning the oil UST to prevent any future leaks. The tank will be left in place and removed as part of Site redevelopment;
- 3. In-situ soil treatment using a biovent system to remediate observed TPH impacts;
- 4. Extending the Site fence to encompass the entire Site perimeter (except along the Blackstone River which forms a natural barrier to trespassing) to restrict Site access.
- 5. Implementing a long-term monitoring program (described in Section 7.9.3), including monthly monitoring of the biovent/bio-sparge system and monitoring of five monitoring wells; and
- 6. Implementation of an ELUR³ on the property, prohibiting future groundwater use, requiring buildings constructed onsite to include a sub-slab depressurization system and limiting land use to restricted residential activities. The ELUR will include a SMP for long-term maintenance and monitoring after the completion of remedial activities.

Phase II will be implemented when the Site is redeveloped and consists of Site capping based on the Site reuse option selected by the City. There are three Site capping options, in accordance with the three Site reuse options being considered by the City:

- 1. Solar array Site capping would be a geotextile warning barrier and 6-inches of crushed stone (or a RIDEM approved equal);
- 2. Recreation field Site capping would consist of a geotextile warning barrier and 1-foot of clean soil; and
- 3. Redevelopment (residential, commercial or industrial) We have assumed that the proposed building/parking lot will be roughly the same footprint as the former building/parking lot and the remainder of the Site will be capped with a geotextile and 1-foot of clean soil.

An Analysis of Brownfields Cleanup Alternatives (which was also included in the SIR) is included in Appendix F.

7.0 PROPOSED REMEDIAL ACTIONS

The required elements of this RAWP, as outlined in Section 6.0, are presented in detail in the following subsections. For ease of review, they are keyed to Section 1.10 of the Remediation Regulations, as appropriate.

7.1 REMEDIAL OBJECTIVES (RULE 1.10.2)

The contaminants of concern identified at the Site included certain PAHs, metals and TPH in soil, as well as TPH in groundwater.

Based on the applicable regulatory criteria and the exceedances observed at the Site, the following remedial objectives have been established.

 Reduce the potential that current and future Site occupants and visitors come into contact with soils containing contaminants at concentrations above the Residential Direct Exposure Criteria (RDEC) and I/C-DEC through the use of Engineered Controls (ECs);

³ Please note that an ELUR was filed on November 15, 1999 for 117 First Avenue (Plat 6/Lot 117). A new ELUR, consistent with the Department's current model will be recorded on the property. An ELUR has not been recorded on Plat 6 Lots 102 & 118)

- Establish procedures/protocols for soils management during the planned remedial/development activities and future Site use activities that involve disturbances of Site surfaces; and
- Protect the long-term effectiveness of the remedial measures through implementation of relevant portions of an ELUR/Institutional Control (IC).

In accordance with Section 1.10 of the Remediation Regulations, this RAWP addresses remedial objectives for all potentially impacted media (soil, groundwater, surface water/sediment and air). Remedial objectives for each of the media prescribed by the regulations are discussed below.

7.1.1 Soils (Rule 1.10.2.A3)

RDEC exceedances were limited to certain PAHs, metals and TPH. As the proposed future use of the Site is considered a commercial exposure scenario under RIDEM regulations, remedial objectives for any future soil removal and/or on-site management have been included in the SMP. The selected remedial approach is consistent with the intent of the Remediation Regulations.

The objectives of the soil remedial program will be to: 1) reduce TPH concentrations on the Site to levels compliant with the RDEC and the GB Leachability Criteria; and 2) prevent direct human exposure with contaminated surface soil through the use of an engineered cap. The first objective will be accomplished through the treatment of TPH within the source area, using the *in-situ* biovent method, which utilizes induced subsurface air flow to remove TPH from unsaturated soil. As described in Section 3.2.22 above, GZA performed an 8-hour duration pilot test for the proposed biovent system and our biovent system design, described in Section 8, is based on the result of that pilot test.

Compliance will be evaluated through the implementation of a confirmatory sampling and analytical program meeting the requirements of Section 1.10 of the Remediation Regulations. Clean-up confirmation sampling associated with the soil venting process will be conducted after a sufficient period of operation of the biovent treatment system. We anticipate that these initial confirmatory soil samples will be collected 24 to 36 months after system start-up, depending on biovent system monitoring results.

The second objective will be achieved through construction of an engineered cap. At this time, as described in Section 6.0, Site redevelopment is in the conceptual planning stages and the details of future Site capping are based on the three Site reuse options being considered by the City. Until the Site is redeveloped, the fence will be extended to encompass the entire perimeter (except along the Blackstone River which forms a natural barrier to trespassing) to restrict Site access.

7.1.2 Groundwater (Rule 1.10.2.A1)

Laboratory testing did not identify any significant degradation of groundwater quality at the Site (*i.e.,* all tested parameters were below GB Groundwater Objectives); though TPH was detected in one well above the Massachusetts RCGW-2 criteria. RIDEM has not established a GB Groundwater Objective for TPH.

The objective of the groundwater remedial program will be to reduce onsite TPH concentrations at the downgradient wells from the source area. It is likely that the TPH observed in groundwater on the Site will naturally attenuate once the TPH contaminated soil is treated by the biovent system. This will be evaluated through a long-term groundwater monitoring program.

7.1.3 <u>Air (Rule 1.10.2.A4)</u>

The contaminants present in Site soils were limited to certain PAHs, metals and TPH. In accordance with the SMP, dust control measures will be implemented during any future construction activities to mitigate the generation of wind-blown dust. VOCs

were observed in groundwater at two locations and TPH was observed in groundwater at three locations, indicating a potential VI risk if buildings are constructed in the future over certain portions of the Site. VI is currently an incomplete exposure pathway, as the property is currently vacant and no buildings remain. Any future onsite buildings constructed onsite should be equipped with a SSDS to mitigate potential VI exposures.

The objective of the current remedial program with respect to air quality is to mitigate the potential hazards associated with VI in future structures to be constructed at the Site. This will be addressed through reduction of soil contaminant concentrations to below applicable or relevant and appropriate VI benchmarks. This demonstration will be made in conjunction with the assessment of soil conditions described above in Section 1.10.

7.1.4 Surface Water/Sediment (Rule 1.10.2.A2)

Erosion controls will be established, as necessary, during any future construction projects.

7.2 PROPOSED REMEDY (RULE 1.10.3)

The following sections describe the remedial programs developed to address the remedial objectives described in Section 6.0. The recommended alternative involves a combination of active remedial measures, coupled with engineered and institutional controls, which address the requirements of applicable regulatory programs. Remedial measures are grouped into Phase I and Phase II activities, as described above.

7.2.1 Interim Engineered Controls (Phase I)

Prior to development, access to undeveloped areas of the Site will be restricted by fencing. Currently, fencing restricts access along the majority of the Site. Additional fencing will be installed to encompass the entire Site perimeter (except along the Blackstone River which forms a natural barrier to trespassing). Thereafter, as development proceeds, the City will erect and maintain such fencing as may be necessary to restrict access to any undeveloped and/or un-remediated portions of the Site. In addition, the onsite UST will be emptied and cleaned to prevent any future leaks. The tank can be left in place and removed as part of Site redevleopment

7.2.2 SVE System Design (Phase I)

The pilot test data indicates that five SVE test wells can achieve a radius of vacuum influence of 30 feet, at relatively low (5 to 8 inches WC) vacuums and flows of approximately 10 standard cubic feet per minute (scfm). We propose to install five 4-inch diameter PVC SVE wells (SVE-1 through SVE-5), within the residual petroleum area, at the approximate locations shown on **Figure 2**. The wells will be installed with their screen set from approximately 4 to 14 feet bgs, solid pipe from 14 to 17 feet, and a second screen from 17 to 22 feet below the slab surface, utilizing a Hollow Stem Auger. Ten feet is the estimated average depth of the groundwater table below ground surface. As shown in **Figure 2**, at these radii of influence, vacuum and soil vapor flow will be achieved over the estimated area over which TPH soil exceedances may exist. In addition, multiple wells operating together will have an increased vacuum response. With all wells operating it may be possible to operate at a lower flow rate and still achieve vacuum control and the maintenance of aerobic conditions across the residual fuel oil footprint. With a total of five SVE wells operating at vacuums of no more than 10 inches of WC, we anticipate total rates of vapor extraction from the entire SVE system would be approximately 50 scfm. Over the fuel oil impacted area this flow rate will result in 0.7 pore volume exchanges per day in the unsaturated zone (30-foot ROI area and thickness of 10 feet). We may adjust the system to operate at lower vacuums, if the flow, oxygen and carbon dioxide response is favorable.

The horizontal piping from the individual SVE well will run beneath the concrete floor into a future building or a shed. As shown on **Figure E1** in **Appendix E**, each line will have a soil vapor sampling port, a flow control valve, and an orifice/pitot tube flow meter port. An orifice flow meter will be installed on the combined SVE to allow for measurements of the rate of extracted soil vapor flow.

To achieve the desired flows and vacuums, we propose to install a 1-horsepower (Hp) regenerative blower in the remedial system room/shed, which will also house an inline particle filter, inline muffler, moisture knock-out drum, noise reduction enclosure, and blower control panel. The individual flow control valves will allow for adjustment of applied vacuum, vapor extraction rate, and associated radius of influence at each individual SVE well. A process and instrumentation diagram is given on **Figure E1** in **Appendix E**.

Based on the soil vapor screening and laboratory test results, at the proposed extraction rates, air emission controls should not be required to meet RIDEM Air Pollution Control requirements for discharge to the atmosphere. However, as a precaution, during start-up, we recommend operating with two 180-pound granular activated carbon (GAC) emission control vessels. Our calculations of air emissions, which are provided in **Appendix E**, indicate that the total pounds of VOCs in the extracted soil vapor will be below RIDEM limits for which controls are required. The two 180-pound granular activated carbon vessels will serve to minimize emissions and/or nuisance odors at least until additional data is gathered to show that levels remain low and/or decline further below RIDEM limits.

We will run a 4-week startup test with the two 180-pound GAC units for emission control. During the test, we will monitor TVOC PID readings and VOC levels weekly to develop an estimate of carbon consumption and at the end of the 4-weeks we will update our estimate of long-term emissions and the need for the GAC units. We will also monitor oxygen, carbon dioxide, and methane levels in the extracted soil vapor, to confirm the expected biodegradation response. Based upon the results of startup test, the unit will be registered with the Air Section of RIDEM. A copy of the blower, inline particle filter, inline muffler, moisture knock-out drum, noise reduction enclosure, and GAC unit specifications are in **Appendix E**. When the GAC unit is no longer needed and/or shown to be spent, we will test the GAC for hazardous waste characteristics prior to shipping off-Site for proper disposal at an approved facility.

During the 4-week start-up test we will also assess if the intended radius of vacuum influence has been achieved and if any adjustments or modifications to the SVE system are warranted. There is always the potential for the response to vapor extraction to vary from that observed during the pilot test. Unknown preferential pathways (e.g., subsurface utilities) and/or heterogeneous soil conditions may be present below the floor slab that will alter the estimated response. While we believe we have been conservative in selecting well locations and operating vacuums and flows, we will review the actual response and assess if applied vacuums may be reduced or may need to be increased and if additional extraction wells and/or monitoring points are warranted.

If after a period of time, the VOC levels in the extracted vapor are very low, the system may be vented directly to the atmosphere without GAC treatment, subject to RIDEM review and approval.

7.2.3 <u>Contingency Product Recovery/Air Sparge/Recirculation System Monitoring (Phase 1)</u>

If significant LNAPL thickness occurs in these proposed SVE wells, an automated product recovery system would be connected through existing underground piping to the proposed remedial shed for LNAPL storage. If dissolved constituents are a concern, these wells would be connected to a blower and/or air compressor in the remedial shed via below ground piping. The blower and/or air compressor would be used to inject air at rates of less than a few scfm to each well at intervals judged sufficient to maintain aerobic biodegradation and/or to physically air strip the petroleum constituents from the groundwater, with the soil vapor being captured within the SVE well. We don't expect this system to be required at the Site and are including it only as a contingency.

7.2.4 SVE System Monitoring (Phase i)

The following readings will be recorded on a monthly basis at each SVE well:

- Air flow rates;
- Vacuum response in inches of water column (also at soil vacuum monitoring points);

- TVOC measurements using a PID equipped with a 10.6 eV lamp;
- Oxygen, carbon dioxide and Lower Explosive Limit (LEL) measurements will be collected utilizing a Landtec infrared gas meter; and
- TVOC readings will also be collected at the GAC vessel(s) influent and effluent.

We will prepare a 4-week start-up report, a six-month data report followed by an annual report on the performance of the system for submittal to RIDEM. The first report will also include as-built plans of the system and data collected during installation work. Based upon the results of the start-up test, the GAC units will be registered with the Air Section of RIDEM. Quarterly data reports will summarize our findings during the system monitoring events. An annual report will include our opinion as to whether the desired vacuums for control of potential vapor intrusion have been maintained below the building floor and if any adjustments to operation and/or monitoring are warranted to improve performance and/or achieve control at lower energy use and/or costs.

7.2.5 Site Redevelopment (Phase II)

With regard to environmental capping, development of the Site will include design elements that will make the improvements themselves part of an environmental cap. As a result, permanent environmental capping will take place as development occurs. As jurisdictional soils and groundwater will remain onsite, an ELUR will be necessary to be recorded on the deed for the entire property (Plat Map 6 / Lots 102, 117, and 118). As an ELUR already exists for Lot 117, a revised ELUR will be recorded.

Concurrent with the Site's redevelopment, it will be capped, utilizing one of the following cap components. See **Figure 3** for the site capping specifications.

- Asphalt parking lots, concrete building slabs, and sidewalks (minimum 4-inches thick) underlain by 6-inches of clean fill (or a RIDEM approved equal).
- Any future onsite buildings constructed will be equipped with a passive sub-slab depressurization system, capable of being converted into an active system, to mitigate potential VI risk from VOCs and residual TPH contamination.
- A geotextile warning barrier, overlain by 6-inches of crushed stone (or a RIDEM approved equal). The geotextile warning barrier will meet the following technical specifications.
- A geotextile warning barrier and 12-inches of demonstrated "clean" backfill (common borrow and/or topsoil). The geotextile warning barrier will meet the following technical specifications.

MANUFACTURER	TC MIRAFI (OR EQUIVALENT)
PRODUCT NAME	N-SERIES/140-N
ТҮРЕ	NON-WOVEN GEOTEXTILE
MATERIAL OF CONSTRUCTION	POLYPROPYLENE STABLE FIBERS
APPARENT OPENING SIZE	70
ASTM D4751 (US SIEVE)	
FLOW RATE	135 GAL/MIN/FT2
ASTM D4491 (GAL/MIN/FT2)	
GRAB TENSILE STRENGTH	120 LBS
ASTM D4632 (LBS)	
PUNCTURE	120 LBS
ASTM D4833 (LBS)	

7.2.6 Off-Site Soils (Phase II)

The quality of soil brought to the Site to serve as backfill as part of Site capping will be evaluated with respect to RIDEM's RDEC.

Samples representative of the off-Site soil supply (collected as discrete grab samples or multi-aliquot composites from the source) will be required to be tested for the analyte groups described below.

Analyte	EPA Test Method
ТРН	8100M
VOCs	8260
SVOCs	8270
PP-13 Metals	6010 & 7471A
PCBs	8082

The frequency of sampling and testing (for both topsoil and each sub-grade material, if required) will be:

- Full suite of analysis for up to 2,000 cubic yards; and
- Arsenic each 500 cubic yards of material

Soil samples will be collected by GZA by/under the supervision of a qualified environmental professional at their proposed source and submitted for laboratory analysis. The contractor will be informed that the soil supply must meet the RDEC. Soils not meeting these criteria will be rejected for use at the Site. The laboratory testing results of the approved soil source(s) will be provided to RIDEM as part of the *Remedial Action Closure Report*.

7.2.7 <u>Remedial Systems Operating Log (Rule 1.10.14)</u>

An Operating Log will be developed, maintained and will be readily available at the Site during the period of active remediation and subsequent monitoring activities. Subsequent to this period, the log will be retained for a minimum period of three years.

In addition to the data recordings identified above, the Operating Log will include, at a minimum, the following information:

- Dates and time periods during which the remedial components described herein were operating;
- Records of any laboratory analysis and field screening performed as part of the remedial action;
- Description of instances under which the Contingency Plan was implemented; and
- Inspection reports detailing compliance with the remedial specifications described herein and the actions taken to address non-compliant practices/conditions.

A copy of the Operating Log will be provided to the Department at the completion of the project as part of the *Remedial Action Closure Report*.

7.2.8 Design Standards and Technical Specifications (Rule 1.10.10)

Design standards used for the SVE system are described above.

7.2.9 Site Plans and Setup Plans (Rules 1.10.9 and 1.10.11)

The following plans are provided in the Figures section of this RAWP.

- Figure 1 Locus Plan
- Figure 2 Exploration Location Plan
- Figure 3 *Site Capping Specifications*

7.2.10 Effluent Disposal (Rule 1.10.12)

As described above, extracted soil vapor will be passed through a GAC vessel registered with the OAR. On a periodic, as needed basis, the GAC vessels will be replaced with the fresh/regenerated carbon. Spent carbon will be tested and properly transported and disposed of at an off-site facility.

7.3 BEST MANAGEMENT PRACTICES

During earthwork activities conducted, the contractor will be responsible for the implementation of standard construction best management practices as appropriate, to reduce the likelihood of the release of impacted media from the Site. These will include the following practices:

- **Dust Controls** The contractor will be prepared to implement dust control measures. The contractor will have arranged for a nearby water supply source (*e.g.*, city water supply via hydrant) at the Site to control airborne dust during soil excavation, filling, grading and other earthwork activities. Initiation of dust control measure will be the responsibility of the contractor. Stockpiled imported soils (if any) will be staged on, and covered with, polyethylene sheeting to control the generation of wind-blown dusts. Excavated onsite soils will be covered with polyethylene sheeting when the stockpiles are not being actively used. As noted below, daily shut-down procedures will include the covering and securing of all stockpiled soils with polyethylene sheeting.
- Stormwater Controls To protect off-site areas from the potential run-off of impacted soils during soil excavation, the contractor will establish staked hay bales in areas of the Site susceptible to stormwater flow, *e.g.*, the downgradient excavation edge. Storm drains will be protected by the installation of either filter fabric or the placement of hay bales.
- **Cleaning of Equipment** Cleaning will be performed using "dry decon." methods, *i.e.* use of brushes and brooms to remove the soil without the use of water. All equipment will be decontaminated using this method before leaving the Site

7.4 SECURITY PROCEDURES (RULE 1.10.15)

Access to remedial areas during earthwork activities will be limited to the contractor and oversight personnel. Should the impacted soil excavation area be required to remain open while contractor personnel are not onsite on a fulltime basis (*i.e.*, after normal working hours), it will be the contractor's responsibility to protect the excavation from unauthorized access. This may be accomplished by the erection of temporary barriers and warning tape as appropriate for the size, slope and depth of the excavation. Once the fence is erected, the Site will be secure from trespassing. During Site redevelopment, the Site will be secured during non-working hours with a construction fence, if required.

7.5 INSTITUTIONAL CONTROLS AND NOTICES (RULE 1.10.17, PHASE II)

An ELUR will be applied to the property to specify the restrictions and provisions appropriate for the current and future use of the Site. Draft ELURs (one for Plat 6/Lot 117 where an ELUR was already filed, and one for Plat 6/Lots 102 and 118) and the accompanying SMPs, have been prepared and are attached as Appendix I for RIDEM review and approval.

The ELUR will serve to:

- No residential use of the Property shall be permitted that is contrary to RIDEM approvals and restrictions;
- Prohibit the use of groundwater at the Site for drinking water;
- Require RIDEM notification should soil excavation be planned in contaminated areas and implementation of a SMP for this work;
- Require buildings constructed on-Site to include a SSDS;
- Provide for long-term maintenance, monitoring and other measures necessary to assure the integrity of the remedial action;
- Provide for annual evaluations of the Site to record that the ELUR requirements are met. These evaluations will be performed by an appropriately qualified environmental professional or an officer or Director with direct knowledge of past and present conditions at the property. A report documenting the findings of each evaluation will be provided to RIDEM.

7.6 CONTRACTORS AND/OR CONSULTANTS (RULE 1.10.8)

The contractors, consultants and contacts involved in the implementation of the proposed remedy include the parties listed below.

Firm	Role	Contacts	Phone Number
GZA, GeoEnvironmental Inc.	Environmental Engineering,	Edward	401-421-4140
188 Valley Street, Suite 300	SVE System Installation,	Summerly	
Providence RI 02909	Field Oversight, Monitoring and	Richard	
	Reporting	Carlone	
Hoffman Environment Services	SVE Well Installations and SVE	Kyle	401-477-4989
	Earthwork Contractor	Hoffman	
Superior Electric	Electric Service and Control	Larry	401-556-8508
	Installation	Dercole	

Note that the above contractors are subject to change.

7.7 CONTINGENCY PLAN (RULE 1.10.13)

This Contingency Plan has been prepared to establish procedures that will be followed during the all earthwork components of the proposed remedy.

Given the types of contaminants, the historic nature of the Site and the remedial activities proposed, the risk of a new release that poses an immediate threat to human health or the environment is very low. Best management practices and appropriate health and safety procedures will be followed during the implementation of all activities. An emergency response contractor will be on call during soil/waste excavation activities to assist in the response to any unforeseen conditions.

7.7.1 Basic Health and Safety Procedures

The basic health and safety procedures outlined below will be implemented while performing excavation work at the Site. The procedures are intended as a general guideline for basic, short-term excavation and maintenance activities. The contractor conducting the work will be required to follow a health and safety plan developed for their specific activities and personnel in accordance with the OSHA requirements contained in 29 CFR Part 1910.120.

Based on the documented Site conditions, the potential routes of exposure to on-site excavation or utility repair workers include dermal contact (absorption), accidental ingestion of impacted soil and groundwater, or dust inhalation. Utilization of the

appropriate personal protective equipment (PPE) and the general safety guidelines provided below will minimize the potential for worker exposure while performing construction on the Site.

7.7.2 <u>Personal Protective Equipment (PPE)</u>

In general, the level of protection that will be used by workers will be determined by the task that the person is performing; however, at a minimum Level D PPE will be worn at all times while performing excavation activities on the property. Level D PPE will, at a minimum, consist of the following PPE:

- 1. Steel-toe work boots with over-boots as needed;
- 2. Eye protection (safety glasses or chemical splash goggles);
- 3. Work gloves;
- 4. Hard hat; and
- 5. Work clothing.

7.7.3 <u>Site Operating Procedures/Safety Guidelines</u>

Regardless of the level of PPE necessary to complete work at the Site, the following general health and safety guidelines will be followed during the performance of any excavation activities conducted at the Site. Adherence to these guidelines will reduce the potential for worker exposure to impacted media.

- 1. All work conducted onsite shall be coordinated through a designated RIDEM employee responsible for the implementation of the requirements of this plan (including all health and safety procedures);
- 2. The location of all utilities in the vicinity of the excavation will be established prior to beginning work;
- 3. All spectators will remain outside the designated Exclusion Zone (established as a 50-foot perimeter beyond the area of excavation);
- 4. A pre-work meeting will be conducted at the beginning of each day to discuss the health and safety procedures;
- 5. Practice contamination avoidance: never sit down or kneel in an excavation; never lay equipment on the ground; avoid obvious sources of contamination such as puddles; and avoid unnecessary contact with objects in an excavation;
- 6. Be alert to any unusual changes in your physical condition; never ignore warning signs. Notify the responsible employee or their designee as to suspected exposures;
- 7. All equipment used in an excavation will be properly cleaned and maintained in good working order. Equipment will be inspected for signs of defect and/or contamination before use and prior to demobilization from the Property;
- 8. Eating, drinking, chewing gum, and smoking are prohibited in active excavation areas; and
- 9. The discovery of any condition that would suggest the existence of a situation more hazardous than anticipated shall result in the evacuation of site personnel from the excavation and the re-evaluation of the hazard and the level of required protection.

7.7.4 In Case of Serious Exposure or Injury

In the event of serious chemical exposure or worker injury, the responsible employee will immediately be alerted. This person will follow the steps indicated below:

- 1. Summon appropriate emergency response agency by using the emergency phone numbers provided below. Convey the following information:
 - a. Nature of emergency,
 - b. Location of victim,
 - c. Specific information about exposure or accident (gases, chemical, asphyxiation, etc.),
 - d. Length of exposure, and

- e. Hazards which may be involved in rescue or treatment;
- 2. If taken to a hospital, notify the hospital of the background of the problem:
 - a. Potential for hospital contamination,
 - b. Any contaminated items and the nature of the contamination, and
 - c. Estimated arrival time.

7.7.5 <u>Emergency Phone Numbers</u>

Emergency telephone numbers and the directions to the nearest hospital are included below. User is cautioned that this information should be checked and updated, if necessary.

Response Agency	Phone Number
Ambulance	911 or (401) 726-2000
Police	911 or (401) 766-1212
Fire	911 or (401) 765-2500
RIDEM/Office of Compliance &	(401) 222-1360 or
Inspection/Emergency Response Program	(401) 222-3070 (non-business hours)
USEPA/Hazardous Materials Spills	(800) 424-8802
Poison Control Center	(800) 222-1222
Dig Safe (Utility Clearance)	1-888-DIGSAFE
Hosp	ital
Landmark Medical Center Emergency Department 115 Cass Ave, Woonsocket, RI 02895	(401) 769-4100
Route to	Hospital
Total Distance	ce: 2.4 Mile
Estimate Time	e: 9 Minutes
Directions	Distance
1: Turn SOUTH on 1 st Ave toward Chestnut St	0.1 mi
2: Turn LEFT onto Fairmount St	0.3 mi
3: Turn RIGHT onto River St	0.5 mi
4: Turn LEFT onto Market Square	331 ft
4: Turn LEFT onto Market Square 5: Turn RIGHT onto Bernon St	331 ft 249 ft
 5: Turn RIGHT onto Bernon St 6: Turn LEFT onto Truman Dr 7: Turn RIGHT at the 1st cross street onto 	249 ft
5: Turn RIGHT onto Bernon St 6: Turn LEFT onto Truman Dr	249 ft 0.5 mi
 5: Turn RIGHT onto Bernon St 6: Turn LEFT onto Truman Dr 7: Turn RIGHT at the 1st cross street onto Clinton St 8: Turn RIGHT onto Cumberland St 	249 ft 0.5 mi 0.4 mi 0.3 mi
 5: Turn RIGHT onto Bernon St 6: Turn LEFT onto Truman Dr 7: Turn RIGHT at the 1st cross street onto Clinton St 	249 ft 0.5 mi 0.4 mi

In the event of an emergency related to a release of hazardous materials or oil the following steps will be taken:

- 1. <u>In the event of a spill/release</u> extinguish all sources of ignition and isolate/block/cover all potential environmental receptors including drains, sumps, soil, etc., and determine if the spill/release is incidental⁴ or non-incidental⁵.
- 2. <u>Non-incidental spills/releases</u> Stop/contain the spill/release at the source without endangering yourself and others.
 - A. First isolate all potential environmental receptors including drains, sumps, soil, etc.
 - B. Notify the site supervisor immediately and try to contain spilled material.
 - C. The site supervisor or designee will conduct necessary reporting to outside agencies if:
 - 1. A spill/release exceeds the reportable quantity (RQ) and has entered the environment report to RIDEM.
 - 2. A spill/release migrates off the property and/or results in personal injury also report to the Fire and Police Departments.
 - 3. A spill/release enters a storm water drain system also report to the Fire and Police Departments and the National Response Center (NRC).
 - 4. A spill/release causes a sheen or discoloration of navigable waters or adjoining shorelines also report to the NRC.
 - D. The site supervisor will conduct follow-up written notifications to applicable agencies.
 - E. The site supervisor will ensure proper follow-up, corrective action and planning to prevent recurrence.
- 3. <u>Incidental spills/releases</u> Immediately report the spill/release to the site supervisor and conduct the following activities.
 - A. Isolate all potential environmental receptors including drains, sumps, soil, etc.
 - B. Recover material spilled and clean-up spill area, decontaminate tools and equipment, and collect all rinsate and debris.
- 4. The site supervisor will ensure proper waste disposal, follow-up, corrective action and planning to prevent recurrence.

The following provides a listing of points of contacts who will be contacted in the event of an unanticipated incident involving hazardous materials.

Firm/Entity	Contact	Address	Phone Number		
GZA, GeoEnvironmental Inc.	Edward Summerly, P.G.	188 Valley Street, Suite 300	401-421-4140		
	Richard Carlone, P.E.	Providence RI 02909			
RIDEM, Office of Waste	Rachel Simpson	235 Promenade Street,	(401) 222-2792 ext.		
Management		Providence, RI 02908	7105		

⁴ "Incidental" spill/release is defined as a spill/release which meets <u>ALL</u> of the following criteria: 1) <u>DOES NOT</u> reach the environment directly (e.g., to a ground surface other than concrete or asphalt surfaces in contained areas of the facility) or indirectly (e.g., sump, sink, floor drain); 2) a small quantity (less than 25 gallons and/or below RQ) of material is spilled/released which <u>DOES NOT</u> pose potential or actual health hazards; 3) personnel in the immediate area are familiar with the hazards associated with the spilled material and can readily absorb, neutralize, or otherwise control the spilled material at the time of release; and 4) containment/clean-up does not pose or create potential or actual health and safety hazards (e.g. fire, explosion, chemical exposure, etc.).

⁵ "Non-incidental" spills generally include one or more of the following: 1) greater than 25 gallons of spilled/released Oil and/or Hazardous Materials that <u>DOES</u> reach the environment (i.e., discharges to a floor drain, discharges to a storm drain, enters a water body, discharges to the ground surface outside the facility containment areas, etc.); 2) major spills/releases (e.g., equal to or above the reportable quantity (RQ) that cannot be readily absorbed, neutralize, or otherwise controlled at the time of release; 3) any quantity of spilled/released Oil and Hazardous Materials which personnel <u>are not familiar with or are unaware</u> of the potential or actual health and safety hazards; and 4) an injury (actual or suspected) has occurred as a result of the spill/release.

7.8 SHUT DOWN, CLOSURE & POST CLOSURE REQUIREMENTS (RULE 1.10.16)

In conjunction with an ELUR that will be recorded on the title of the property, the Owner will institute monitoring and maintenance procedures described in Sections 6.0 and 7.0, above, including maintaining all remedial systems (*i.e.,* SVE system, groundwater monitoring wells and engineered controls) in good condition. Procedures to be followed for notifying contractors of existing Site conditions in the event of utility repair or other activities that might disturb potentially contaminated soils or groundwater will also be in place as part of the SMP.

The details of all remedial system installations and start-up testing will be documented and submitted to RIDEM in quarterly progress reports and summarized in a final *Remedial Action Closure Report* (RACR). The SVE system performance monitoring program will continue until soil TPH concentrations have been reduced to below the GB Leachability Criteria, as evaluated by compliance testing, as described in Section 8, below. Groundwater monitoring will be conducted quarterly for VOCS and TPH for two years and then semi-annually for VOCs only for three years.

7.9 COMPLIANCE DETERMINATION/EVALUATION (RULES 1.10.6 & 1.10.18)

The remedial program will be considered complete when it is demonstrated that the remedial objectives provided in Section 6.0 are achieved. We understand that RIDEM will issue a *Letter of Compliance* for the Site once these conditions have been met.

7.9.1 <u>ELUR Compliance</u>

To evaluate the Site's compliance status with respect to the ELUR, a qualified environmental professional will conduct a yearly evaluation of the property. The evaluation will include a reconnaissance of the property at which time the condition of the areas of concern at the Site will be documented. Additionally, the evaluation will include visually apparent changes in the nature of Site use and observable changes to the physical conditions of the property (with respect to alterations that may affect the integrity of the engineered controls described in the RAWP and ELUR). The results of the evaluation will be presented to the RIDEM as annual reports. Inspections will commence approximately one year following RIDEM's approval of the RAWP.

7.9.2 Confirmatory Soil Sampling

The objective of the soil remedial program is to reduce contaminant concentrations in the unsaturated zone to levels complaint with RIDEM's GB Leachability Criteria; as described above, this will be accomplished by an SVE system. Compliance with the stated objectives will be demonstrated through the implementation of a confirmatory sampling and analytical program meeting the requirements of Section 1.10.10 of the Remediation Regulations. Clean-up confirmation sampling associated with the SVE process will be conducted after a sufficient period of full-time operation of the SVE system. We anticipate that initial confirmatory soil samples within the vented areas will be collected 24 to 36 months from system start-up. If the compliance criteria are not achieved at this time the Owner will continue operating the systems for an additional time period. After which time, another set of confirmatory samples will be collected and analyzed from those areas which initially had residuals above the remedial objectives.

Soil sample analysis will consist of TPH via EPA Method 8100. Samples will be collected as follows:

- 1. A geometric grid will be laid out over the treatment area prior to the start of sample collection.
- Samples will be collected using a track mounted GeoProbe[®] which utilizes a 5–foot polycarbonate liner tube inside a steel drive pipe. Continuous soil samples will be collected to a depth of 2-feet below the groundwater table at each Geoprobe exploration location. Full sample tubes will be opened and observed on-site for visual and olfactory evidence of contamination.
- 3. Samples will be field screened for TVOCs with a PID employing a 10.6 eV lamp. Soil samples for laboratory analysis will be selected based on field TVOC screening results (PID-or equivalent), visual or olfactory observations, location within the borehole (*e.g.*, at the water table, at the base of borehole, etc.), and sample volume recovered.

7.9.3 Long-Term Monitoring (Phase 1)

A monitoring program, including monitoring of the biovent/biosparge (if installed) system and monitoring of the six existing monitoring wells will be instituted to monitor contaminant levels both within areas of active treatment and at downgradient locations. This monitoring program will be used to evaluate the effectiveness of the remedial measures and attainment of remedial objectives. As stated above, the biovent monitoring will be conducted monthly for five years and the groundwater monitoring will be conducted quarterly for two years and semi-annually for an additional three years. The need for monitoring beyond that point will be evaluated in concert with GZA, the Owner and RIDEM.

Each monitoring well will be gauged for LNAPL quarterly and will be sampled annually in general accordance with EPA's September 19, 2017 *Low Stress (low flow) Purging and Sampling Procedure* (low flow SOP) and in accordance with revised GZA SOP # 3.1.2 (refer to GZA's *Generic QAPP*). Samples will be submitted for VOC and TPH laboratory analyses in accordance with EPA Method 8260B and 8100M, respectively. The groundwater monitoring results will be provided to RIDEM as part of quarterly/annual SVE system monitoring reports.

After the remedial objectives are attained, monitoring will continue for a period of two years to evaluate if contaminant rebound is occurring. Assuming no rebound is observed, monitoring will be terminated at that time, the wells will be formally closed and the SVE system decommissioned.

7.9.4 Redevelopment and Site Capping

When the Site is redeveloped, it will be capped. The specific form and extent of the cap will be based on the Site reuse option (residential, recreational, commercial, industrial, etc.) selected by the City. There are three Site capping options listed above. The Site capping will be observed and documented. A cap inspection will be conducted annually to evaluate the cap condition and if any cap disturbances have occurred.

7.10 PROJECT SCHEDULE (RULE 1.10.7)

The final ELURs and SMPs will be recorded on the property deeds within 14 days of approval by the Department and the recorded versions forwarded back to the Department within 15 days of recording.

The following table presents a tentative project schedule. Please note that this schedule is subject to change based on the availability of subcontractors, materials, weather and other factors outside of the Owners control. At this time, the SVE system and Site fence will be constructed. The remaining engineered controls (i.e., engineered cap) will be constructed during Site redevelopment and as noted in Section 7.2.1, the exact timing of Site redevelopment is unknown.

Task	Estimated Completion (after receiving RIDEM approval)					
Biovent system Installation and Startup	3 months					
Implement Groundwater Monitoring Program	3 months (first sampling event will occur					
	immediately prior to SVE System startup)					
Submit Remedial Action Closure Report	6 months following system shutdown					
Submit First ELUR Annual Status Report	12 months following recording of the ELUR with the					
	city's clerk					

8.0 CERTIFICATIONS (RULE 1.10.19)

To address Rule 1.10.19 of the Remediation Regulations, the following statements of certification are provided.

GZA GeoEnvironmental, Inc. certifies to the best of its knowledge, that this Remedial Action Work Plan is complete and accurate.

Edward A. Summerly, P.G. Principal / District Office Manager GZA GeoEnvironmental, Inc

The City of Woonsocket certifies, to the best of its knowledge, that this Remedial Action Work Plan is complete and accurate.

John DeSimon **City Solicitor** City of Woonsocket

J:\RIDEM TAC\34502.04.RAC\REPORTS\RAWP\34502.04 RAWP.DOCX

TABLES

TABLE 1SUMMARY SOIL SAMPLING RESULTSFormer Seville Dyeing Co. SiteWoonsocket, Rhode IslandJanuary 2020

		RIDEM DIRECT														
		EXPOSURE	RIDEM GB	MW-3/S-1	MW-4	MW-4 (BD)	MW-7	MW-8/S-2B	B-1 ⁵ /S-2D	B-2/S-2	B-3/S-2	B-5/S-2	B-6 ⁶	B-7/S-1	B-10	B-11/S-1
PARAMETERS	UNITS	CRITERIA		11/07/0010	11/20/2010	11/00/0010	11/00/0010	11/05/0010	11/05/0010	11/0=/0010		11/05/0010	11/00/0010		11/05/0010	11/05/0010
		Industrial/	Leachibility	11/27/2018	11/28/2018	11/28/2018	11/28/2018	11/27/2018	11/27/2018	11/27/2018	11/27/2018	11/27/2018	11/28/2018	11/27/2018	11/27/2018	11/27/2018
		Commercial	Criteria	0-5 feet	0-5 feet	0-5 feet	10-15 feet	0-5 feet	5-10 feet	5-10 feet	5-10 feet	5-10 feet	0-5 feet	0-5 feet	7.5-9 feet	0-5 feet
Metals																
Antimony	mg/kg	820	-	0.500 U	0.500 U	0.500 U	NT	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Arsenic	mg/kg	7.0	-	14.7	45.2	17.3 J	NT	5.89	5.61	10.1	8.03	<mark>7.97</mark>	8.89	10.6	0.721	6.60
Beryllium	mg/kg	1.3	-	0.857	0.0552 U	0.0560 U	NT	0.0867	0.0532 U	0.0614 U	0.0922	0.108	0.210	0.102	0.120 U	0.254 J
Cadmium	mg/kg	1,000	-	0.822	2.06	1.04 J	NT	0.108 U	0.106 U	0.603	0.328	0.399	0.228	0.479	0.239 U	0.215
Chromium	mg/kg	10,000	-	57.6	74.8	35.7 J	NT	5.85	11.4	33.9	17.9	14.4	27.9	19.9	12.6	50.6 J
Copper	mg/kg	10,000	-	176	1630	418 J	NT	4.92	3.55	42.8	45.4	54.9	27.9	55.5	35,800	31.1
Lead	mg/kg	500	-	33.9	63.3	36.7 J	NT	2.61	2.04	20.9	9.90	21.2	318	30.0	15.9	47.6 J
Nickel	mg/kg	10,000	-	47.5	118	40.1 J	NT	5.58	4.93	25.0	9.40	15.7	12.4	21.6	41.7	10.6
Selenium	mg/kg	10,000	-	0.292 U	0.276 U	0.280 U	NT	0.269 U	0.266 U	0.307 U	0.292 U	0.286 U	0.280 U	0.279 U	0.598 U	0.284 U
Silver	mg/kg	10,000	-	0.158	1.59	0.402 J	NT	0.108 U	0.106 U	0.137	0.117 U	0.114 U	0.241	0.344	3.72	4.12 J
Thallium	mg/kg	140	-	0.292 U	0.914	0.456 J	NT	0.269 U	0.266 U	0.611	0.543	0.594	0.280 U	0.279 U	0.598 U	0.284 U
Zinc	mg/kg	6,000	-	138	39.2	88.0 J	NT	13.7	7.38	36.9	19.8	34.4	98.1	79.5	10,800	69.7 J
Mercury	mg/kg	610	-	0.251	0.616	0.0452 J	NT	0.036 U	0.0351 U	0.0984	0.0386 U	0.197	0.0716	0.0368 U	0.0789 U	0.347
Polychlorinated Biphenyls																
Aroclor-1016	mg/kg	10	10	0.0117 U	0.0112 U	0.0110 U	NT	0.0107 U	0.212 U	0.0122 U	0.0116 UJ	0.0114 U	0.0112 U	0.0112 U	0.0239 U	0.0114 U
Aroclor-1221	mg/kg	10	10	0.0117 U	0.0112 U	0.0110 U	NT	0.0107 U	0.212 U	0.0122 U	0.0116 U	0.0114 U	0.0112 U	0.0112 U	0.0239 U	0.0114 U
Aroclor-1232	mg/kg	10	10	0.0117 U	0.0112 U	0.0110 U	NT	0.0107 U	0.212 U	0.0122 U	0.0116 U	0.0114 U	0.0112 U	0.0112 U	0.0239 U	0.0114 U
Aroclor-1242	mg/kg	10	10	0.0117 U	0.0112 U	0.0110 U	NT	0.0107 U	0.212 U	0.0122 U	0.0116 U	0.0114 U	0.0112 U	0.0112 U	0.0239 U	0.0114 U
Aroclor-1248	mg/kg	10	10	0.0117 U	0.0112 U	0.0110 U	NT	0.0107 U	0.212 U	0.0122 U	0.0116 U	0.0114 U	0.0112 U	0.0112 U	0.0239 U	0.0114 U
Aroclor-1254	mg/kg	10	10	0.0117 U	0.0112 U	0.0110 U	NT	0.0107 U	0.212 U	0.0122 U	0.0116 U	0.0114 U	0.0112 U	0.0112 U	0.0239 U	0.0114 U
Aroclor-1260	mg/kg	10	10	0.0117 U	0.0112 U	0.0110 U	NT	0.0107 U	0.212 U	0.0122 U	0.0116 U	0.0114 U	0.0112 U	0.0112 U	0.0239 U	0.0114 U
Aroclor-1262	mg/kg	10	10	0.0117 U	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Aroclor-1268	mg/kg	10	10	0.0117 U	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Total Petroleum Hydrocarbons																
Total Petroleum Hydrocarbons	mg/kg	2,500	2,500	518	184	417 J	4,020	170	10,800	41.2	35.8	241	1,430	271	3,670	425 U
Semi-Volatile Organic Compounds																
2-Methylnaphthalene	mg/kg	10,000	-	0.385 U	0.364 U	0.369 U	NT	0.354 U	0.701 U	0.0809 U	0.0769 U	0.377 U	0.369 U	0.368 U	4.200	0.375 U
Acenaphthene	mg/kg	10,000	-	0.385 U	0.364 U	0.369 U	NT	0.354 U	2.280	0.0809 U	0.0769 U	0.377 U	1.620	0.368 U	0.394 U	0.617
Acenaphthylene	mg/kg	10,000	-	0.385 U	0.364 U	0.369 U	NT	0.354 U	0.701 U	0.0809 U	0.0769 U	0.377 U	0.369 U	0.368 U	0.394 U	0.375 U
Anthracene	mg/kg	10,000	-	0.385 U	0.364 U	0.369 U	NT	0.354 U	1.127	0.0809 U	0.0769 U	0.415	2.500	0.368 U	0.394 U	1.640
Benzo(a)anthracene	mg/kg	7.8	-	5.770	0.710	1.320 J	NT	0.354 U	2.040	0.106	0.123	1.280	5.130	2.000	0.394 U	3.670
Benzo(a)pyrene	mg/kg	0.8	-	6.350	1.280	2.580 J	NT	0.354 U	0.701 U	0.0932	0.124	1.540	5.090	2.080	0.394 U	3.600
Benzo(b)fluoranthene	mg/kg	7.8	-	12.300	1.560	3.310 J	NT	0.354 U	0.701 U	0.137	0.150	1.880	5.820	4.060	0.394 U	4.660
Benzo(g,h,i)perylene	mg/kg	10,000	-	4.960	0.500	1.070 J	NT	0.354 U	0.701 U	0.0809 U	0.0769 U	0.781	1.530	1.520	0.394 U	1.460
Benzo(k)fluoranthene	mg/kg	78	-	4.110	0.640	1.170 J	NT	0.354 U	0.701 U	0.0809 U	0.0769 U	0.712	2.840	1.430	0.394 U	1.520
Chrysene	mg/kg	780	-	7.800	0.897	1.470	NT	0.354 U	5.350	0.104	0.119	1.320	4.740	2.680	0.394 U	3.230
Dibenzo(a,h)anthracene	mg/kg	0.8	-	1.320	0.364 U	0.369 U	NT	0.354 U	0.701 U	0.0809 U	0.0769 U	0.377 U	0.522	0.632	0.394 U	0.401
Fluoranthene	mg/kg	10,000	-	8.050	1.180	1.790	NT	0.354 U	0.701 U	0.182	0.176	2.850	9.980	2.090	0.394 U	7.260
Fluorene	mg/kg	10,000	-	0.385 U	0.364 U	0.369 U	NT	0.354 U	3.110	0.0809 U	0.0769 U	0.377 U	1.690	0.368 U	0.394 U	0.681
Indeno(1,2,3-cd)pyrene	mg/kg	7.8	-	5.030	0.555	1.150 J	NT	0.354 U	0.701 U	0.0809 U	0.0769 U	0.838	1.880	1.160	0.394 U	1.610
Naphthalene	mg/kg	10,000	-	0.385 U	0.364 U	0.369 U	NT	0.354 U	0.701 U	0.0809 U	0.0769 U	0.377 U	0.369 U	0.368 U	1.010	0.375 U
Phenanthrene Pyrene	mg/kg	10,000	-	1.820 8.160	0.364 U 1.140	0.533	NT	0.354 U 0.354 U	11.200 6.640	0.0809 U 0.168	0.0769 U 0.178	2.030	11.700	0.368 U	0.394 U 0.394 U	6.580
	mg/kg		-				NT						9.220	2.010	0.394 U	6.860

TABLE 1SUMMARY SOIL SAMPLING RESULTSFormer Seville Dyeing Co. SiteWoonsocket, Rhode IslandJanuary 2020

PARAMETERS	UNITS	RIDEM DIRECT EXPOSURE CRITERIA Industrial/ Commercial	RIDEM GB Leachibility Criteria	MW-3/S-1 11/27/2018 0-5 feet	MW-4 11/28/2018 0-5 feet	MW-4 (BD) 11/28/2018 0-5 feet	MW-7 11/28/2018 10-15 feet	MW-8/S-2B 11/27/2018 0-5 feet	B-1 ⁵ /S-2D 11/27/2018 5-10 feet	B-2/S-2 11/27/2018 5-10 feet	B-3/S-2 11/27/2018 5-10 feet	B-5/S-2 11/27/2018 5-10 feet	B-6 ⁶ 11/28/2018 0-5 feet	B-7/S-1 11/27/2018 0-5 feet	B-10 11/27/2018 7.5-9 feet	B-11/S-1 11/27/2018 0-5 feet
Volatile Organic Compounds																
1,2,4-Trimethylbenzene	mg/kg	_	-	0.021 U	0.0177 U	0.0261 U	NT	0.0218 U	0.0449	0.0215 U	0.0257 U	0.0255 U	0.0244 U	0.0247 U	0.967	0.0214 U
1,3,5-Trimethylbenzene	mg/kg	-	-	0.021 U	0.0177 U	0.0261 U	NT	0.0218 U	0.0206 U	0.0215 U	0.0257 U	0.0255 U	0.0244 U	0.0247 U	0.281	0.0214 U
1,2-Dichlorobenzene	mg/kg	-	-	0.010 U	0.00885 U	0.0131 U	NT	0.0109 U	0.0103 U	0.0107 U	0.0128 U	0.0128 U	0.0122 U	0.0124 U	0.0301	0.0107 U
4-Isopropyltoluene	mg/kg	-	-	0.010 U	0.00885 U	0.0131 U	NT	0.0109 U	0.0103 U	0.0107 U	0.0128 U	0.0128 U	0.0122 U	0.0124 U	0.0710	0.0107 U
Isopropylbenzene	mg/kg	10,000	-	0.010 U	0.00885 U	0.0131 U	NT	0.0109 U	0.126	0.0107 U	0.0128 U	0.0128 U	0.0122 U	0.0124 U	0.0762	0.0107 U
Methylene Chloride	mg/kg	760	-	0.010 U	0.00885 U	0.0131 U	NT	0.0109 U	0.0103 U	0.0107 U	0.0128 U	0.0128 U	0.0122 U	0.0124 U	0.0125 U	0.0107 U
Naphthalene	mg/kg	-	-	0.010 U	0.00885 U	0.0131 U	NT	0.0109 U	0.0103 U	0.0116	0.0128 U	0.0128 U	0.0122 U	0.0138	0.182	0.0107 U
n-Butylbenzene	mg/kg	-	-	0.010 U	0.00885 U	0.0131 U	NT	0.0109 U	0.357	0.0107 U	0.0128 U	0.0128 U	0.0122 U	0.0124 U	0.0125 U	0.0107 U
n-Propylbenzene	mg/kg	-	-	0.010 U	0.00885 U	0.0131 U	NT	0.0109 U	0.212	0.0107 U	0.0128 U	0.0128 U	0.0122 U	0.0124 U	0.151	0.0107 U
sec-Butylbenzene	mg/kg	-	-	0.010 U	0.00885 U	0.0131 U	NT	0.0109 U	0.324	0.0107 U	0.0128 U	0.0128 U	0.0122 U	0.0124 U	0.0805	0.0107 U
Toluene	mg/kg	10,000	54	0.010 U	0.00885 U	0.0131 U	NT	0.0109 U	0.0103 U	0.0107 U	0.0128 U	0.0128 U	0.0122 U	0.0124 U	0.184	0.0107 U
o-Xylene	mg/kg	-	-	0.021 U	0.00885 U	0.0261 U	NT	0.0109 U	0.015	0.0107 U	0.0128 U	0.0128 U	0.0244 U	0.0124 U	0.191	0.0107 U
m,p-Xylene	mg/kg	-	-	0.010 U	0.0177 U	0.0131 U	NT	0.0218 U	0.0206 U	0.0215 U	0.0257 U	0.0255 U	0.0122 U	0.0247 U	0.307	0.0214 U
Remaining VOCs	mg/kg			ND	ND	ND	U	U	U	U	U	U	U	U	U	U

Notes:

1: For the complete list of target analytes refer to the attached laboratory certificates of analysis.

2. Bold values indicate the constituent was detected above the laboratory reporting limit. Orange highlight indicates an exceedence of RIDEM's GB Leachability Criteria. Yellow highlight indicates an exceedance of RIDEM's I/C DEC Criteria.

3. "U" indicates that the parameter is not detected.

4. "NT" indicates that the parameter was not tested.

5. Sample results under MW-9 in laboratory certificates.

6. Sample results under MW-6 in laboratory certificates.

7. "D" indicates that the parameter was diluted.

8. "J" indicates that the constituent was detected at a level between the reporting limit and the method detection limit, and the value shown is an estimated quantity.

9. Sample results under MW-15 in laboratory certificates.

TABLE 1SUMMARY SOIL SAMPLING RESULTSFormer Seville Dyeing Co. SiteWoonsocket, Rhode IslandJanuary 2020

		RIDEM DIRECT		0														
		EXPOSURE	MW-1	4'	MW-16/S-4B	B-13		B-13 (E	BD)	B-14		B-19/S-1C	B-20/S-4A	B-20/S-4B	SG-1/S-3B	SG-4/S-2D	SG-5/S-3B	Trip Blank
PARAMETERS	UNITS	CRITERIA Industrial/ Commercial	10/28/2019 0-2 feet		10/29/2019	10/28/2019 2-4 feet		10/28/2019 2-4 feet		10/28/2019 2-4 feet		10/28/2019 3-5 feet	10/28/2019 15-17 feet	10/28/2019 17-19 feet	10/29/2019 12-14 feet	10/29/2019 8-10 feet	10/29/2019 12-15 feet	10/28/2019
					16.5-20 feet													
Metals																		
Antimony	mg/kg	820	4.05	U	NT	4.12	U	4.27	U	3.08	U	NT	NT	NT	NT	NT	NT	NT
Arsenic	mg/kg	7.0	3.72	0	NT	2.65		3.01		2.11	0	NT	NT	NT	NT	NT	NT	NT
Beryllium	mg/kg	1.3	0.21		NT	0.13		0.14		0.12		NT	NT	NT	NT	NT	NT	NT
Cadmium	mg/kg	1,000	0.41	U	NT	0.41	U	0.43	U	0.31	U	NT	NT	NT	NT	NT	NT	NT
Chromium	mg/kg	10.000	8.34	0	NT	3.9		3.17	0	3.29		NT	NT	NT	NT	NT	NT	NT
Copper	mg/kg	10,000	23.8		NT	3.51		3.15		3.58		NT	NT	NT	NT	NT	NT	NT
Lead	mg/kg	500	<u> </u>		NT	13.8	$ \longrightarrow $	13		5.61		NT	NT	NT	NT	NT	NT	NT
Nickel	mg/kg	10,000	0.055		NT	0.234	$ \longrightarrow $	0.179		0.268		NT	NT	NT	NT	NT	NT	NT
Selenium	mg/kg	10,000	8.43		NT	3.04		2.51		2.21		NT	NT	NT	NT	NT	NT	NT
Silver	mg/kg	10,000	4.05	U	NT	4.12	U	4.27	U	3.08	U	NT	NT	NT	NT	NT	NT	NT
Thallium	mg/kg	140	0.41	U	NT	0.41	U	0.43	U	0.31	U	NT	NT	NT	NT	NT	NT	NT
Zinc	mg/kg	6.000	4.05	U	NT	4.12	U	4.27	U	3.08	U	NT	NT	NT	NT	NT	NT	NT
Mercury	mg/kg	610	73.8	0	NT	15.6	J	7.76	J	9.87		NT	NT	NT	NT	NT	NT	NT
Polychlorinated Biphenyls	mg/kg								<u> </u>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
Aroclor-1016	mg/kg	10	0.05	U	NT	0.05	U	0.05	U	0.05	U	NT	NT	NT	NT	NT	NT	NT
Aroclor-1221	mg/kg	10	0.05	U	NT	0.05	U	0.05	U	0.05	U	NT	NT	NT	NT	NT	NT	NT
Aroclor-1221 Aroclor-1232	mg/kg	10	0.05	U	NT	0.05	U	0.05	U	0.05	U	NT	NT	NT	NT	NT	NT	NT
Aroclor-1232 Aroclor-1242	mg/kg	10	0.05	U	NT	0.05	U	0.05	U	0.05	U	NT	NT	NT	NT	NT	NT	NT
Aroclor-1248	mg/kg	10	0.05	U	NT	0.05	U	0.05	U	0.05	U	NT	NT	NT	NT	NT	NT	NT
Aroclor-1254	mg/kg	10	0.05	U	NT	0.05	U	0.05	U	0.05	U	NT	NT	NT	NT	NT	NT	NT
Aroclor-1260	mg/kg	10	0.05	U	NT	0.05	U	0.05	U	0.05	U	NT	NT	NT	NT	NT	NT	NT
Aroclor-1262	mg/kg	10	0.05	U	NT	0.05	U	0.05	U	0.05	U	NT	NT	NT	NT	NT	NT	NT
Aroclor-1268	mg/kg	10	0.05	U	NT	0.05	U	0.05	U	0.05	U	NT	NT	NT	NT	NT	NT	NT
Total Petroleum Hydrocarbons	mg/kg	10	0.05	0		0.05		0.05		0.05	0							
Total Petroleum Hydrocarbons	mg/kg																	
Semi-Volatile Organic Compounds		2.500	477		46	39.7	U	38.7	U	39	U	1.430	4.340	68.9	12.500 D	5.140 D	44.3	NT
		2,500	477		46	39.7	U	38.7	U	39	U	1,430	4,340	68.9	12,500 D	5,140 D	44.3	NT
ŭ .	s			II														
2-Methylnaphthalene	s mg/kg	10,000	0.368	U	NT	0.361	U	0.33	U	0.347	U	NT	NT	NT	NT	NT	NT	NT
2-Methylnaphthalene Acenaphthene	s mg/kg mg/kg	10,000 10,000	0.368 0.368	U	NT NT	0.361 0.361	U U	0.33 0.33	U U	0.347 0.347	U U	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
2-Methylnaphthalene Acenaphthene Acenaphthylene	s mg/kg mg/kg mg/kg	10,000 10,000 10,000	0.368 0.368 0.368		NT NT NT NT	0.361 0.361 0.361	U U U	0.33 0.33 0.33	U U U	0.347 0.347 0.347	U U U	NT NT NT NT	NT NT NT NT	NT NT NT	NT NT NT NT	NT NT NT NT	NT NT NT NT	NT NT NT
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene	s mg/kg mg/kg mg/kg mg/kg mg/kg	10,000 10,000 10,000 10,000	0.368 0.368 0.368 0.656	U	NT NT NT NT	0.361 0.361 0.361 0.361	U U U U	0.33 0.33 0.33 0.33	U U U U	0.347 0.347 0.347 0.347	U U	NT NT NT NT NT	NT NT NT NT	NT NT NT NT	NT NT NT NT NT	NT NT NT NT NT	NT NT NT NT	NT NT NT NT
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene	s mg/kg mg/kg mg/kg mg/kg mg/kg	10,000 10,000 10,000 10,000 7.8	0.368 0.368 0.368 0.656 1.58	U	NT NT NT NT NT NT	0.361 0.361 0.361 0.361 0.361 0.361	U U U U U	0.33 0.33 0.33 0.33 0.33 0.33	U U U U U	0.347 0.347 0.347 0.347 0.3 47 0.611	U U U	NT NT NT NT NT NT	NT NT NT NT NT NT	NT NT NT NT NT NT	NT NT NT NT NT NT	NT NT NT NT NT NT	NT NT NT NT NT NT	NT NT NT NT NT NT
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene	s mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	10,000 10,000 10,000 10,000 7.8 0.8	0.368 0.368 0.368 0.656 1.58 1.3	U	NT NT NT NT NT NT NT	0.361 0.361 0.361 0.361 0.361 0.361 0.361	U U U U U U	0.33 0.33 0.33 0.33 0.33 0.33 0.166	U U U U U U	0.347 0.347 0.347 0.347 0.347 0.611 0.454	U U U	NT NT NT NT NT NT NT	NT NT NT NT NT NT NT	NT NT NT NT NT NT NT	NT NT NT NT NT NT NT	NT NT NT NT NT NT NT	NT NT NT NT NT NT NT	NT NT NT NT NT NT NT
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	s mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	10,000 10,000 10,000 7.8 0.8 7.8	0.368 0.368 0.368 0.656 1.58 1.3 1.44	U	NT NT NT NT NT NT NT	0.361 0.361 0.361 0.361 0.361 0.361 0.181 0.361	U U U U U U U U	0.33 0.33 0.33 0.33 0.33 0.166 0.33	U U U U U U U U	0.347 0.347 0.347 0.347 0.611 0.454 0.422	U U U U	NT NT NT NT NT NT NT NT	NT NT NT NT NT NT NT NT	NT NT NT NT NT NT NT NT	NT NT NT NT NT NT NT NT NT	NT NT NT NT NT NT NT NT	NT NT NT NT NT NT NT NT	NT NT NT NT NT NT NT
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene	s mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	10,000 10,000 10,000 7.8 0.8 7.8 10,000	0.368 0.368 0.368 0.656 1.58 1.3 1.44 0.87	U	NT NT NT NT NT NT NT NT	0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361	U U U U U U U U U U U	0.33 0.33 0.33 0.33 0.33 0.33 0.166 0.33 0.33	U U U U U U U U U U U	0.347 0.347 0.347 0.347 0.611 0.454 0.422 0.347	U U U U U	NT NT NT NT NT NT NT NT	NT NT NT NT NT NT NT NT	NT NT NT NT NT NT NT NT	NT NT NT NT NT NT NT NT NT	NT NT NT NT NT NT NT NT	NT NT NT NT NT NT NT NT	NT NT NT NT NT NT NT NT
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	s mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	10,000 10,000 10,000 7.8 0.8 7.8 10,000 78	0.368 0.368 0.368 0.656 1.58 1.3 1.44	U	NT NT NT NT NT NT NT NT NT NT	0.361 0.361 0.361 0.361 0.361 0.361 0.181 0.361	U U U U U U U U U U U U U U	0.33 0.33 0.33 0.33 0.33 0.33 0.166 0.33 0.33 0.33	U U U U U U U U	0.347 0.347 0.347 0.347 0.611 0.454 0.422 0.347 0.347	U U U U	NT NT NT NT NT NT NT NT NT NT	NT NT NT NT NT NT NT NT NT NT	NT NT NT NT NT NT NT NT NT	NT NT NT NT NT NT NT NT NT NT	NT NT NT NT NT NT NT NT NT NT	NT NT NT NT NT NT NT NT	NT NT NT NT NT NT NT NT NT
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene	s mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	10,000 10,000 10,000 7.8 0.8 7.8 10,000	0.368 0.368 0.368 0.656 1.58 1.3 1.44 0.87 0.852	U	NT NT NT NT NT NT NT NT NT NT	0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361	U U U U U U U U U U U	0.33 0.33 0.33 0.33 0.33 0.33 0.166 0.33 0.33	U U U U U U U U U U U U U	0.347 0.347 0.347 0.347 0.611 0.454 0.422 0.347	U U U U U	NT NT NT NT NT NT NT NT NT NT	NT NT NT NT NT NT NT NT	NT NT NT NT NT NT NT NT NT NT	NT NT NT NT NT NT NT NT NT	NT NT NT NT NT NT NT NT NT NT NT	NT NT NT NT NT NT NT NT NT NT	NT NT NT NT NT NT NT NT NT NT
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene	s mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	10,000 10,000 10,000 10,000 7.8 0.8 7.8 10,000 7.8 0.8 7.8 0.00 0.8 7.8 0.00 0.8 0.8 0.8 0.8	0.368 0.368 0.368 0.656 1.58 1.3 1.44 0.87 0.852 1.45 0.285	U	NT NT NT NT NT NT NT NT NT NT NT	0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.181 0.181	U U U U U U U U U U U U U U U U	0.33 0.33 0.33 0.33 0.33 0.33 0.166 0.33 0.33 0.33 0.166 0.166	U U U U U U U U U U U U U U U U	0.347 0.347 0.347 0.347 0.611 0.454 0.422 0.347 0.347 0.347 0.347 0.347	U U U U U U U	NT NT NT NT NT NT NT NT NT NT NT	NT NT NT NT NT NT NT NT NT NT NT	NT NT NT NT NT NT NT NT NT NT NT	NT NT NT NT NT NT NT NT NT NT NT NT	NT NT NT NT NT NT NT NT NT NT NT NT	NT NT NT NT NT NT NT NT NT NT NT	NT NT NT NT NT NT NT NT NT NT NT
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene	s mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	10,000 10,000 10,000 10,000 7.8 0.8 7.8 10,000 7.8 0.8 7.8 10,000 78 780 0.8 10,000	0.368 0.368 0.368 0.656 1.58 1.3 1.44 0.87 0.852 1.45	UUU	NT	0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361	U U U U U U U U U U U U U U	0.33 0.33 0.33 0.33 0.33 0.33 0.166 0.33 0.33 0.33 0.166	U U U U U U U U U U U U U U	0.347 0.347 0.347 0.347 0.347 0.454 0.454 0.422 0.347 0.347 0.347	U U U U U U U	NT NT NT NT NT NT NT NT NT NT NT NT	NT NT NT NT NT NT NT NT NT NT	NT NT NT NT NT NT NT NT NT NT NT NT	NT	NT NT NT NT NT NT NT NT NT NT NT NT NT	NT NT NT NT NT NT NT NT NT NT NT NT	NT
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene	s mg/kg	10,000 10,000 10,000 10,000 7.8 0.8 7.8 10,000 78 780 0.8 10,000	0.368 0.368 0.368 0.656 1.58 1.3 1.44 0.87 0.852 1.45 0.285 2.92	U	NT	0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.181 0.361	U U U U U U U U U U U U U U U U U	0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33	U U U U U U U U U U U U U U U U U U	0.347 0.347 0.347 0.347 0.611 0.454 0.452 0.347 0.347 0.347 0.347 0.518 0.174 1.51	U U U U U U U	NT NT NT NT NT NT NT NT NT NT NT NT NT	NT NT NT NT NT NT NT NT NT NT NT NT	NT NT NT NT NT NT NT NT NT NT NT NT NT	NT NT NT NT NT NT NT NT NT NT NT NT	NT NT NT NT NT NT NT NT NT NT NT NT NT N	NT NT NT NT NT NT NT NT NT NT NT	NT
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene	s mg/kg mg/kg	10,000 10,000 10,000 10,000 7.8 0.8 7.8 10,000 7.8 0.8 7.8 10,000 78 780 0.8 10,000	0.368 0.368 0.368 0.656 1.58 1.3 1.44 0.87 0.852 1.45 0.285 2.92 0.368	UUU	NT NT	0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361	U U U U U U U U U U U U U U U U U U	0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33	U U U U U U U U U U U U U U U U U U U	0.347 0.347 0.347 0.347 0.347 0.454 0.454 0.452 0.347 0.347 0.347 0.518 0.174 1.51 0.347	U U U U U U U U U	NT NT NT NT NT NT NT NT NT NT NT NT	NT NT NT NT NT NT NT NT NT NT NT NT NT	NT NT NT NT NT NT NT NT NT NT NT NT	NT NT	NT NT	NT NT NT NT NT NT NT NT NT NT NT NT NT	NT
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene	s mg/kg	10,000 10,000 10,000 10,000 7.8 0.8 7.8 10,000 78 780 0.8 10,000 78 780 0.8 10,000 7.8	0.368 0.368 0.368 0.656 1.58 1.3 1.44 0.87 0.852 1.45 0.285 2.92 0.368 0.779	UUUUU	NT	$\begin{array}{c} 0.361\\ 0.361\\ 0.361\\ 0.361\\ 0.361\\ 0.361\\ 0.361\\ 0.361\\ 0.361\\ 0.181\\ 0.181\\ 0.361\\ 0.361\\ 0.361\\ 0.361\\ \end{array}$	U U U U U U U U U U U U U U U U U U U	0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33	U U U U U U U U U U U U U U U U U U U	0.347 0.347 0.347 0.347 0.347 0.347 0.347 0.347 0.347 0.347 0.347	U U U U U U U U U U U	NT NT	NT NT NT NT NT NT NT NT NT NT NT NT NT N	NT NT NT NT NT NT NT NT NT NT NT NT NT	NT NT	NT NT NT NT NT NT NT NT NT NT NT NT NT N	NT NT NT NT NT NT NT NT NT NT NT NT NT N	NT NT

TABLE 1 SUMMARY SOIL SAMPLING RESULTS Former Seville Dyeing Co. Site Woonsocket, Rhode Island January 2020

PARAMETERS	UNITS	RIDEM DIRECT EXPOSURE CRITERIA Industrial/	MW-1 10/28/2	:019	MW-16/S-4B 10/29/2019	B-13 10/28/2	019	B-13 (I 10/28/2	019	B-14 10/28/2	019	B-19/S-1C 10/28/2019	B-20/S-4A 10/28/2019	B-20/S-4B 10/28/2019	SG-1/S-3B 10/29/2019	SG-4/S-2D 10/29/2019	SG-5/S-3B 10/29/2019	Trip Blank 10/28/2019
		Commercial	0-2 fe	et	16.5-20 feet	2-4 fe	et	2-4 fe	et	2-4 fe	et	3-5 feet	15-17 feet	17-19 feet	12-14 feet	8-10 feet	12-15 feet	
Volatile Organic Compounds																		
1,2,4-Trimethylbenzene	mg/kg	-	0.226	U	NT	0.173	U	0.18	U	0.159	U	NT	NT	NT	NT	NT	NT	0.200 U
1,3,5-Trimethylbenzene	mg/kg	-	0.226	U	NT	0.173	U	0.18	U	0.159	U	NT	NT	NT	NT	NT	NT	0.200 U
1,2-Dichlorobenzene	mg/kg	-	0.226	U	NT	0.173	U	0.18	U	0.159	U	NT	NT	NT	NT	NT	NT	0.200 U
4-Isopropyltoluene	mg/kg	-			NT	0.173	U	0.18	U	0.159	U	NT	NT	NT	NT	NT	NT	0.200 U
Isopropylbenzene	mg/kg	10,000	0.226	U	NT	0.173	U	0.18	U	0.159	U	NT	NT	NT	NT	NT	NT	0.200 U
Methylene Chloride	mg/kg	760	0.451	U	NT	0.0952	J	0.0971	J	0.318	U	NT	NT	NT	NT	NT	NT	0.110 J
Naphthalene	mg/kg	-	0.298		NT	1.42	J	0.473	J	0.391		NT	NT	NT	NT	NT	NT	0.200 U
n-Butylbenzene	mg/kg	-	0.226	U	NT	0.173	U	0.18	U	0.159	U	NT	NT	NT	NT	NT	NT	0.200 U
n-Propylbenzene	mg/kg	-	0.226	U	NT	0.173	U	0.18	U	0.159	U	NT	NT	NT	NT	NT	NT	0.200 U
sec-Butylbenzene	mg/kg	-	0.226	U	NT	0.173	U	0.18	U	0.159	U	NT	NT	NT	NT	NT	NT	0.200 U
Toluene	mg/kg	10,000	0.226	U	NT	0.173	U	0.18	U	0.159	U	NT	NT	NT	NT	NT	NT	0.200 U
o-Xylene	mg/kg	-	0.226	U	NT	0.173	U	0.18	U	0.159	U	NT	NT	NT	NT	NT	NT	0.200 U
m,p-Xylene	mg/kg	-	0.451	U	NT	0.346	U	0.36	U	0.318	U	NT	NT	NT	NT	NT	NT	0.400 U
Remaining VOCs	mg/kg		U		U	ND		ND		U		U	U	U	U	U	U	U

Notes:

For the complete list of target analytes refer to the attached laboratory
 Bold values indicate the constituent was detected above the laboratory

3. "U" indicates that the parameter is not detected.

S. The indicates that the parameter is not detected.
 "NT" indicates that the parameter was not tested.
 Sample results under MW-9 in laboratory certificates.
 Sample results under MW-6 in laboratory certificates.

7. "D" indicates that the parameter was diluted.

8. "J" indicates that the constituent was detected at a level between the re

9. Sample results under MW-15 in laboratory certificates.

TABLE 2 SUMMARY OF GROUNDWATER SCREENING PARAMETERS Former Seville Dyeing Co. Site Woonsocket, Rhode Island January 2020

PARAMETERS	UNITS	MW-3 11/30/2018 Result	MW-4 11/30/2018 Result	MW-7 11/30/2018 Result	MW-8 11/30/2018 Result	MW-14 11/22/2019 Result	MW-16 11/22/2019 Result
рН	SU	6.5	6.8	NM	6.5	6.5	6.5
Temperature	(oC)	14.2	14.3	NM	13.1	12.7	14.1
Specific Conductivity	mS/cm	0.503	0.421	NM	0.703	0.350	1.114
Dissolved Oxygen	mg/L	3.6	3.3	NM	1.4	0.28	0.31
Oxidation Reduction Potential	mV	75.7	140.5	NM	-312.9	-42.3	-65.3
Turbidity	NTU	3.9	1.4	NM	36.6	4.4	2.6
Depth to water	feet	12.50	9.01	12.75	7.95	22.45	13.68

Notes 1. The above readings, with the exception of depth to water, were collected using a YSI Pro Series multi-meter with a flow-through cell and represent readings collected immediately prior to well sampling, i.e. were collected when well purging was complete. Depth to water readings shown are initial readings, i.e. were collected before well purging began.

2. NM = Not Measured.

TABLE 3 SUMMARY OF GROUNDWATER SAMPLING RESULTS Former Seville Dyeing Co. Site Woonsocket, Rhode Island January 2020

PARAMETERS	UNITS	RIDEM GB GROUNDWATER OUALITY	MASSACHUSETTS GW-2 STANDARDS	MW-	.3	MW-	4	MW-7	'	MW-8	MW-8 BD (BD11302018)		Trip Blank	E-1	5	E-2 ⁷		MW-14	MW- (BD112		MW-16		E-Soil ⁶		E-GV	W ⁷	Trip B	lank
		STANDARD	GW-2 STANDARDS	11/30/2	018	11/30/2	018	11/30/20	18	11/30/2018	11/30/2018		11/30/2018	11/30/2	018	11/30/20	18	11/22/2019	11/22/	2019	11/22/201	.9	11/22/202	19	11/22/2	2019	11/22/2	2019
Volatile Organic Compounds																												
1,2,4-Trimethylbenzene	mg/L	-	100	0.001	U	0.001	U	0.001	U	0.00259	0.00248		0.001 U	0.001	U	0.001	U	0.001 U	0.001	U	0.001	U	0.001	U	0.001	U	0.001	U
4-Chlorotoluene	mg/L	-	10	0.001	U	0.001	U	0.0143		0.001 U	0.001 U	J	0.001 U	0.001	U	0.001	U	0.001 U	0.001	U	0.001	U	0.001	U	0.001	U	0.001	U
Acetone	mg/L	-	50	0.005	U	0.005	U	0.0133	U	0.013 U	0.0148 U	J 0	.00673 U	0.0095		0.0107		0.01 U	0.01	U	0.01	U	0.01	U	0.0169		0.01	U
Benzene	mg/L	0.14	1	0.001	U	0.001	U	0.001	U	0.00341	0.0032		0.001 U	0.001	U	0.001	U	0.001 U	0.001	U	0.001	U	0.001	U	0.001	U	0.001	U
Ethylbenzene	mg/L	1.6	5	0.001	U	0.001	U	0.001	U	0.0145	0.0143		0.001 U	0.001	U	0.001	U	0.001 U	0.001	U	0.001	U	0.001	U	0.001	U	0.001	U
Isopropylbenzene	mg/L	-	100	0.001	U	0.001	U	0.00187		0.00274	0.00255		0.001 U	0.001	U	0.001	U	0.001 U	0.001	U	0.001	U	0.001	U	0.001	U	0.001	U
Naphthalene	mg/L	-	0.7	0.001	U	0.001	U	0.0084		0.0728	0.0702		0.001 U	0.001	U	0.001	U	0.001 U	0.001	U	0.001	U	0.001	U	0.001	U	0.001	U
n-Propylbenzene	mg/L	-	1	0.001	U	0.001	U	0.00139		0.00314	0.00319		0.001 U	0.001	U	0.001	U	0.001 U	0.001	U	0.001	U	0.001	U	0.001	U	0.001	U
sec-Butylbenzene	mg/L	-	-	0.001	U	0.001	U	0.00263		0.00124	0.00118		0.001 U	0.001	U	0.001	U	0.001 U	0.001	U	0.001	U	0.001	U	0.001	U	0.001	U
Toluene	mg/L	1.7	40	0.001	U	0.001	U	0.001	U	0.00106	0.0012		0.001 U	0.001	U	0.001	U	0.001 U	0.001	U	0.001	U	0.001	U	0.001	U	0.001	U
m,p-Xylene	mg/L	-	-	0.001	U	0.001	U	0.001	U	0.00330	0.00303		0.001 U	0.001	U	0.001	U	0.001 U	0.001	U	0.001	U	0.001	U	0.001	U	0.001	U
o-Xylene	mg/L	-	-	0.001	U	0.001	U	0.001	U	0.00248	0.00223		0.001 U	0.001	U	0.001	U	0.002 U	0.002	U	0.002	U	0.002	U	0.002	U	0.002	U
Remaining VOCs	mg/L			ND		ND		ND		ND	ND		ND	ND		ND		ND	N	\mathbf{D}	ND		ND		NE)	ND)
Total Petroleum Hydrocarbons																												
Total Petroleum Hydrocarbons	mg/L	-	5	0.100	U	0.100	U	6.76		2.61	3.64		NT	NT		NT		NT	N	Г	NT		0.19	U	NT		NT	

Notes:

For the complete list of target analytes refer to the attached laboratory certificates of analysis.
 Bold values indicate the constituent was detected above the laboratory reporting limit. Yellow highlight indicates an exceedance of RIDEM's GB Groundwater Quality

Criteria.

3. "U" indicates that the parameter is not detected.

4. "ND" indicates that the parameter is not detected.

ND indicates that the parameter is not detected.
 "NT" indicates that the parameters was not tested.
 E-1 and E-Soil are the soil sample equipment blanks.
 E-2 and E-GW are the GW sample equipment blanks.

TABLE 4 SUMMARY OF SOIL VAPOR ANALYTICAL RESULTS

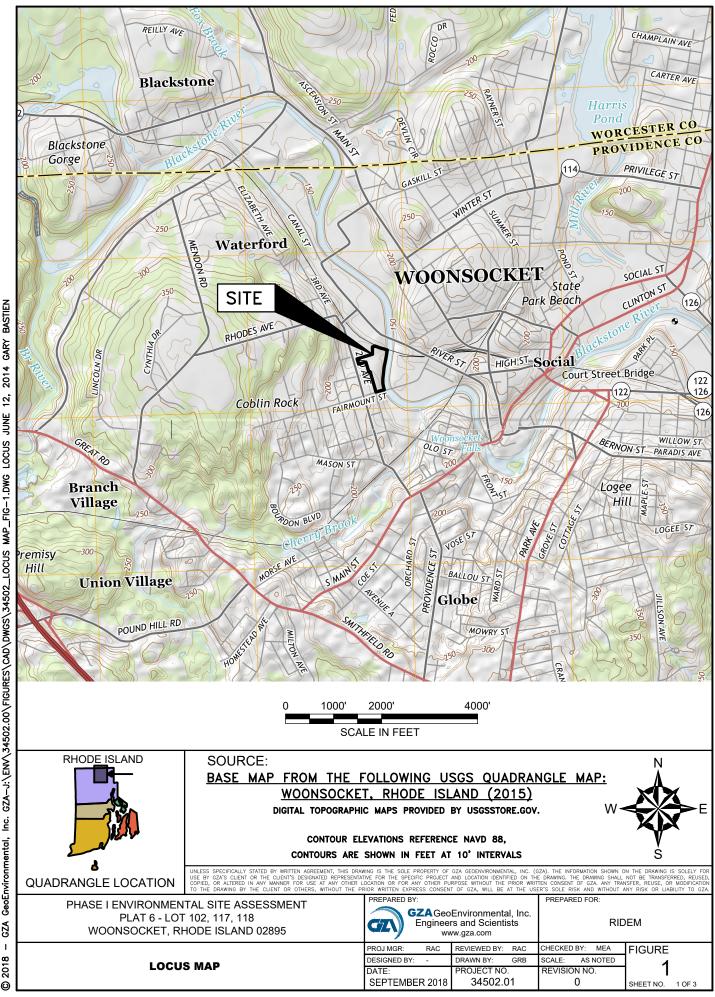
Former Seville Dyeing Co. Site Woonsocket, Rhode Island January 2020

Detected Constituent of Concern	Screenin	etts Soil Gas g Criteria er 2016	MW-8	MW-16
	Residential	Commercial	Novembe	r 22, 2019
Method EPA TO-15	(pj	obv)	(pr	obv)
Propylene	NA	NA	0.804	16.4
Dichlorodifluoromethane (Freon 12)	NA	NA	0.462	0.400
Chloromethane	NA	NA	0.548	0.526
Ethyl Alcohol	NA	NA	< 5.00	11.7
Acetone	2,700	21,000	2.98	4.25
Trichlorofluoromethane	NA	NA	0.394	3.49
Isopropyl Alcohol	NA	NA	< 5.00	0.774
n-Hexane	NA	NA	0.212	0.227
Benzene	50	250	0.367	0.354
Toluene	1,000	82,000	0.509	0.542
		Aggregate VOCs:	6.3 ppbv	38.3 ppbv

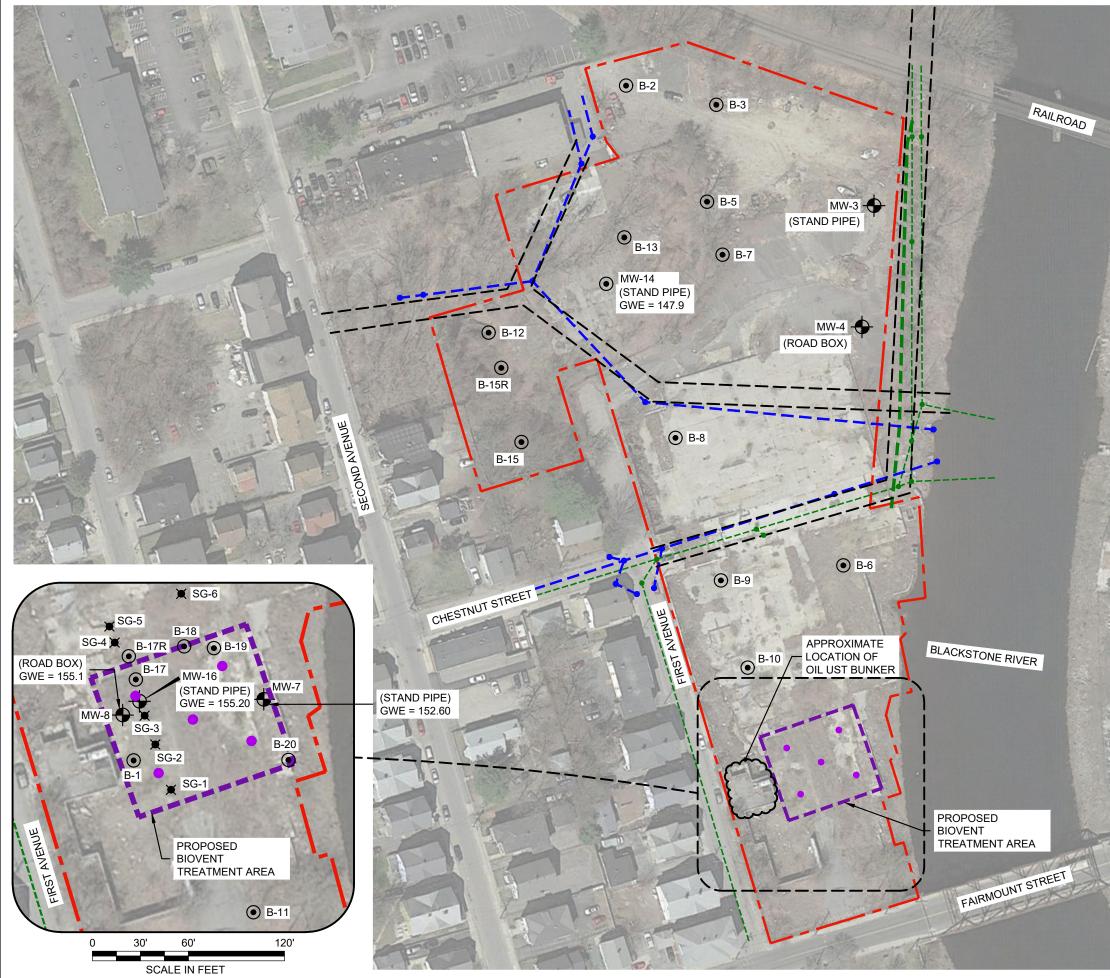
Notes:

1. NA - indicates that the MassDEP has not established a sub-slab soil gas screening value for the parameter.

2. Samples were collected in Summa Canisters and analyzed by Method TO-15.

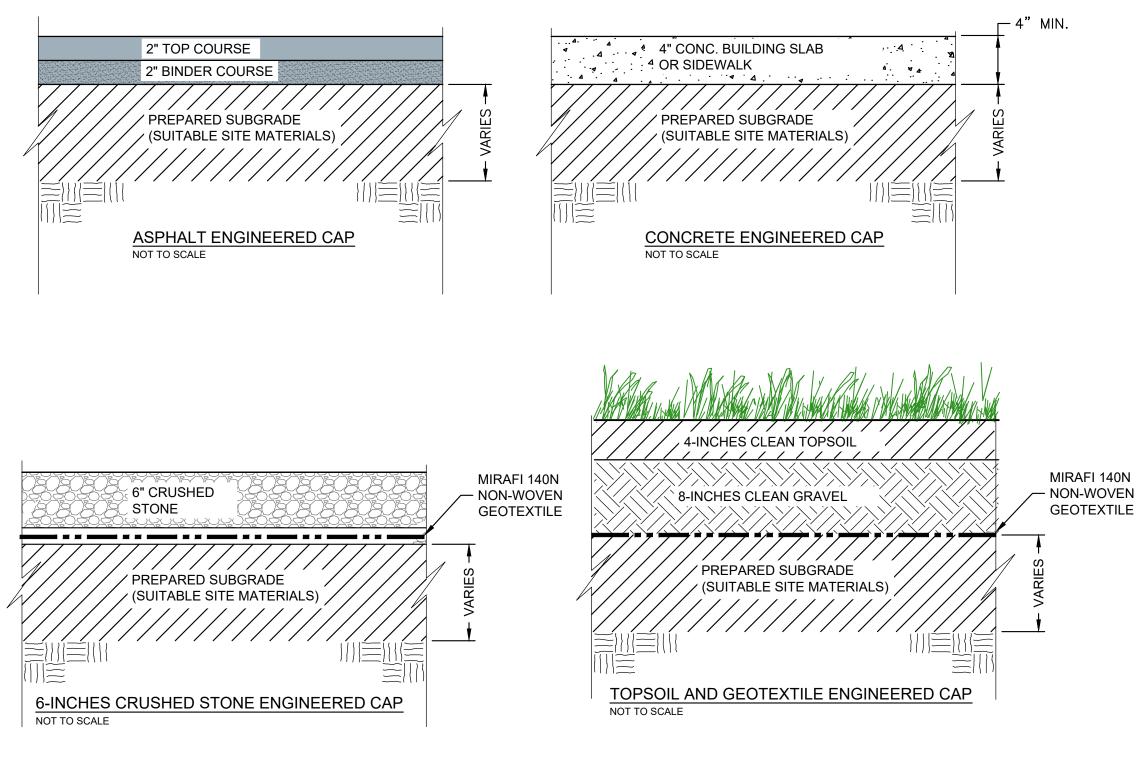

3. The Massachusetts Department of Environmental Protection (MassDEP) developed sub-slab soil gas screening values in October 2016.

- Indicates an exceedance of the Massachusetts (October 2016) Residential Sub-Slab Soil Gas Screening Criteria.


- Indicates an exceedance of the Massachusetts (October 2016) Residential & Commercial Sub-Slab Soil Gas Screening Criteria.

FIGURES

2014 GARY BASTIEN GeoEnvironmental, Inc. GZA-J:\ENV\34502.00\FIGURES\CAD\DWGS\34502_LOCUS MAP_FIG-1.DWG LOCUS JUNE 12, GZA T 2018


REFERENCE NOTES: BASE MAP DEVELOPED FROM A GOOGLE 1. PROFESSIONAL ELECTRONIC IMAGE FILE. DIGITAL AERIAL ORTHOPHOTOGRAPHY WAS PUBLISHED ON APRIL 2018. 2. THE LOCATION OF THE EXPLORATIONS WERE APPROXIMATELY DETERMINED USING A LEICA ZENO 20 HANDHELD & AS-12 ANTENNA (MAST MOUNTED) WITH RTK CORRECTION ACCURAY OF 1 CM HORIZONTAL & 2 CM VERTICAL BY GZA PERSONNEL DURING A SITE VISIT ON NOVEMBER 11, 2018 AND JANUARY 17, 2020. 3. EXPLORATIONS PERFORMED BY HOFFMAN ENVIRONMENTAL SERVICES FROM NOVEMBER 27-28, 2018 AND OCTOBER 28 TO NOVEMBER 8, 2019, AND OBSERVED BY GZA PERSONNEL. LEGEND: APPROXIMATE PROPERTY BOUNDARY - EASEMENT LINE SEWER LINE ____ SEWER FORCE MAIN DRAINAGE LINE \odot BORING B-1 \bullet MONITORING WELL MW-3 X SOIL GAS PROBES SG-1 PROPOSED BIOVENT WELL 200' 50' 100' SCALE IN FEET NO. ISSUE/DESCRIPTION BY DATE NLESS SPECIFICALLY STATED BY WRITTEN AGREEMENT, THIS DRAWING IS THE SOLE PROPERTY FORNVIRONMENTAL INC. (CZA) THE INFORMATION SHOWN ON THE DRAWING IS SOLELY FOR USE A REMEDIAL ACTION WORK PLAN PLAT 6 - LOT 102, 117, 118 WOONSOCKET, RHODE ISLAND 02895 **EXPLORATION LOCATION PLAN** REPARED BY REPARED FOR: GZA GeoEnvironmental, Inc. RIDEM GZ Engineers and Scientists www.gza.com PROJ MGR: RAC REVIEWED BY: EAS CHECKED BY: MEA FIGURE DESIGNED BY: RAC DRAWN BY: GRB SCALE: AS NOTED 2 DATE: OJECT NC EVISION NO

JANUARY, 2020

34502.04

0

SHEET NO.

REFERENCE NOTES:

1. FOUR BASIC ENGINEERED CAP DETAILS SUGGESTED FOR USE ON SEVILLE DYE SITE OR AS DIRECTED.

NO.		ISSUE/DESCRIPTION		BY	DATE
GEOENVIRG CLIENT OR THE DRAW USE AT AN TRANSFER,	DNMENTAL, INC. THE CLIENT'S DI ING. THE DRAWIN IY OTHER LOCATIO REUSE, OR MOD	ATED BY WRITTEN AGREEM (GZA). THE INFORMATION SF ESIGNATED REPRESENTATIVE F G SHALL NOT BE TRANSFERR NO RF FOR ANY OTHER PURP IFICATION TO THE DRAWING E IFICATION TO THE DRAWING E WILL BE AT THE USER'S S	HOWN ON THE DRAWING IS FOR THE SPECIFIC PROJECT RED, REUSED, COPIED, OR OSE WITHOUT THE PRIOR W BY THE CLIENT OR OTHERS,	SOLEL AND LO ALTERED RITTEN (WITHOU	Y FOR USE BY GZA'S DCATION IDENTIFIED ON IN ANY MANNER FOR CONSENT OF GZA. ANY IT THE PRIOR WRITTEN
	wo	REMEDIAL ACTI PLAT 6 - LOT DONSOCKET, RH	102, 117, 118	-	
		SITE CAPPI	NG DETAILS		
PREPARE	D BY:		PREPARED FOR:		
GZ	Engineer	Environmental, Inc. s and Scientists w.gza.com	RI	DEM	
PROJ MG	R: RAC	REVIEWED BY: EAS	CHECKED BY: MEA	FIC	GURE
DESIGNE	D BY: RAC	DRAWN BY: GRB	SCALE: AS NOTED	7	0
DATE:		PROJECT NO.	REVISION NO.	7	3
JANU/	ARY, 2020	34502.04	0	SHE	ET NO.

APPENDIX A

LIMITATIONS

REMEDIAL COST OPINION LIMITATIONS

Use of Report

 GeoEnvironmental, Inc. (GZA) prepared this Report on behalf of, and for the exclusive use of our Client at the stated time for the stated purpose(s) and location(s) identified in the Report. Use of this Report, in whole or in part, at other locations, or for other purposes, may lead to inappropriate conclusions; and we do not accept any responsibility for the consequences of such use(s). Further, reliance by any party not identified in the agreement, for any use, without our prior written permission, shall be at that party's sole risk, and without any liability to GZA.

Standard of Care

- 2. GZA's findings and conclusions are based on the work conducted as part of the Scope of Services set forth in the Report and/or proposal, and reflect our professional judgment. These findings and conclusions must be considered not as scientific or engineering certainties, but rather as our professional opinions concerning the limited data gathered during the course of our work.
- 3. GZA's services were performed using the degree of skill and care ordinarily exercised by qualified professionals performing the same type of services at the same time, under similar conditions, and at the same or a similar property. No warranty, expressed or implied, is made.

Basis of Opinion of Cost

- 4. GZA's opinion of cost is based on limited data which may not be sufficient to identify each and every condition existing at the site which may constitute noncompliance with applicable governmental statutes, rules, and regulations or constitute a release of oil or hazardous materials and/or may require remediation.
- 5. The costs on which the preliminary opinion of cost is based are limited to those conditions which were described in the Report.
- 6. Observations described in the Report were made under the conditions stated therein. Where access to portions of a structure or site was unavailable or limited, GZA renders no opinion as to the condition of those portions of the site or structure.
- 7. The conclusions presented in the Report were based solely upon the services described therein, and not on scientific tasks or procedures beyond the scope of described services or the time and budgetary constraints imposed by the Client.

Cost Assumptions

- 8. While the preliminary opinion of cost represents our professional judgment in this matter, actual conditions encountered during remediation may result in higher or lower costs.
- 9. The preliminary opinion of cost includes only those cost items identified, and should not be

assumed to include other costs such as legal, administrative, permitting or others. The preliminary opinion of cost also does not include any costs with respect to third-party claims, fines, penalties, or other charges which may be assessed against any responsible party because of either the existence of present conditions or the future existence or discovery of any such conditions.

10. The Report contains approximate cost opinions for purposes of evaluating alternative remedial programs. These estimates involve approximate quantity evaluations. Actual quantities and unit costs may vary. A preliminary cost opinion of this nature is likely to vary substantially from Contractors' Bid Prices and is not to be considered the equivalent of nor as reliable as Contractors' Bid Prices. Prices for similar work undertaken in the future will be subject to variations in market pricing, which are not within GZA's control. Detailed quantity and cost estimating should be performed by professional, experienced cost estimators to determine actual cost.

Reliance on Information provided by Others

11. In preparing the Report, GZA may have relied on certain information provided by the Client, state and local officials, and other parties referenced therein available to GZA at the time of the evaluation. GZA did not attempt to independently verify the accuracy or completeness of all information reviewed or received during the course of this evaluation.

Codes and Regulations

- 12. GZA used reasonable care in identifying and interpreting codes and regulations which are relevant to the costs estimated. These codes and regulations are subject to various, and possibly contradictory, interpretations. Compliance with codes and regulations by other parties is beyond our control.
- 13. Governmental agencies' interpretations, requirements, and enforcement policies vary from region to region, district office to district office, from state to state, and between federal and state agencies. In addition, statutes, rules, standards, and regulations may be legislatively changed and inter-agency and intra-agency policies may be changed from present practices. GZA has used its experience and judgment in making assumptions as to how anticipated changes in regulatory policies may affect remediation costs.

Additional Services

14. It is recommended that GZA be retained to provide engineering services during any final design, construction and/or implementation of any remedial measures recommended in this report. This will allow us the opportunity to: i) observe conditions and compliance with our design concepts and opinions; ii) allow for changes in the event that conditions are other than anticipated; iii) provide modifications to our design; and iv) assess the consequences of changes in technologies and/or regulations.

USE OF REPORT

 GZA GeoEnvironmental, Inc. (GZA) prepared this report on behalf of, and for the exclusive use of our Client for the stated purpose(s) and location(s) identified in the Proposal for Services and/or Report. Use of this report, in whole or in part, at other locations, or for other purposes, may lead to inappropriate conclusions; and we do not accept any responsibility for the consequences of such use(s). Further, reliance by any party not expressly identified in the agreement, for any use, without our prior written permission, shall be at that party's sole risk, and without any liability to GZA.

STANDARD OF CARE

- 2. GZA's findings and conclusions are based on the work conducted as part of the Scope of Services set forth in the Proposal for Services and/or Report and reflect our professional judgment. These findings and conclusions must be considered not as scientific or engineering certainties, but rather as our professional opinions concerning the limited data gathered during the course of our work. Conditions other than described in this report may be found at the subject location(s).
- 3. GZA's services were performed using the degree of skill and care ordinarily exercised by qualified professionals performing the same type of services, at the same time, under similar conditions, at the same or a similar property. No warranty, expressed or implied, is made. Specifically, GZA does not and cannot represent that the Site contains no hazardous material, oil, or other latent condition beyond that observed by GZA during its study. Additionally, GZA makes no warranty that any response action or recommended action will achieve all of its objectives or that the findings of this study will be upheld by a local, state or federal agency.
- 4. In conducting our work, GZA relied upon certain information made available by public agencies, Client and/or others. GZA did not attempt to independently verify the accuracy or completeness of that information. Inconsistencies in this information which we have noted, if any, are discussed in the Report.

SUBSURFACE CONDITIONS

- 5. The generalized soil profile(s) provided in our Report are based on widely-spaced subsurface explorations and are intended only to convey trends in subsurface conditions. The boundaries between strata are approximate and idealized, and were based on our assessment of subsurface conditions. The composition of strata, and the transitions between strata, may be more variable and more complex than indicated. For more specific information on soil conditions at a specific location refer to the exploration logs. The nature and extent of variations between these explorations may not become evident until further exploration or construction. If variations or other latent conditions then become evident, it will be necessary to reevaluate the conclusions and recommendations of this report.
- 6. Water level readings have been made, as described in this Report, in and monitoring wells at the specified times and under the stated conditions. These data have been reviewed and interpretations have been made in this report. Fluctuations in the level of the groundwater however occur due to temporal or spatial variations in areal recharge rates, soil heterogeneities, the presence of subsurface utilities, and/or natural or artificially induced perturbations. The observed water table may be other than indicated in the Report.

COMPLIANCE WITH CODES AND REGULATIONS

7. We used reasonable care in identifying and interpreting applicable codes and regulations necessary to execute our scope of work. These codes and regulations are subject to various, and possibly contradictory, interpretations. Interpretations and compliance with codes and regulations by other parties is beyond our control.

SCREENING AND ANALYTICAL TESTING

- 8. GZA collected environmental samples at the locations identified in the Report. These samples were analyzed for the specific parameters identified in the report. Additional constituents, for which analyses were not conducted, may be present in soil, groundwater, surface water, sediment and/or air. Future Site activities and uses may result in a requirement for additional testing.
- 9. Our interpretation of field screening and laboratory data is presented in the Report. Unless otherwise noted, we relied upon the laboratory's QA/QC program to validate these data.
- 10. Variations in the types and concentrations of contaminants observed at a given location or time may occur due to release mechanisms, disposal practices, changes in flow paths, and/or the influence of various physical, chemical, biological or radiological processes. Subsequently observed concentrations may be other than indicated in the Report.

INTERPRETATION OF DATA

11. Our opinions are based on available information as described in the Report, and on our professional judgment. Additional observations made over time, and/or space, may not support the opinions provided in the Report.

ADDITIONAL INFORMATION

12. In the event that the Client or others authorized to use this report obtain additional information on environmental or hazardous waste issues at the Site not contained in this report, such information shall be brought to GZA's attention forthwith. GZA will evaluate such information and, on the basis of this evaluation, may modify the conclusions stated in this report.

ADDITIONAL SERVICES

13. GZA recommends that we be retained to provide services during any future investigations, design, implementation activities, construction, and/or property development/ redevelopment at the Site. This will allow us the opportunity to: i) observe conditions and compliance with our design concepts and opinions; ii) allow for changes in the event that conditions are other than anticipated; iii) provide modifications to our design; and iv) assess the consequences of changes in technologies and/or regulations.

APPENDIX B

BORING LOGS

GZ		SZA SeoE	nvironm ars and Sci	n enta entists	l, Inc	-		RIDEM Seville Dyeing (117 & 229 First Woonsocke	Company Avenue		EXPLORAT SHEET: PROJECT N REVIEWED	1 of IO: 03.0	[:] 1)034	502.04	
Drilli		Hoffn	an Hayes nan Envirc Hoffman	onmen	tal Ser	vices	Rig Mo Drilling	f Rig: Geoprobe del: 7822DT g Method: st Push	Ground S Final Bor	ocation: See Surface Elev ing Depth (f t - Finish:10	. (ft.): t.): 20	10/28/20)19	H. Datum: V. Datum:	
Hamı Hamı	mer Ty mer We mer Fal er or Ca	eight (l l (in.):		a (in.):	2"		Sample Sample	er Type: Acetate Si er O.D. (in.): er Length (in.): Core Size:	eeve	Date Not Measured	Ground Time	dwater I Stab.	•		Casing
, ugo	Casing	onig (mple	2								1 E		atum
Depth (ft)	Blows/ (Core Rate)	No.	Depth (ft.)	Pen. (in)	Rec. (in)	Blows (per 6 in	SPT .)Value		ified Burmis	Description ster Classific	ation)		Remark	a ∉ Desc	atum ription U PSOIL
				60	18			Top 4": Brown, topsoil S-1 (Bottom 14"): Darl trace Silt, trace Brick,	k brown, fine		D, little fine G	ravel,	1	<u>0.5</u> 10F	
 10 	· · ·	S-2 S-3	5.0-10.0	60	2 36			S-2: Dark brown, fine S-3: Light gray-black, trace Brick, trace Meta	fine to coars	e SAND, some	fine Gravel, t			F	ILL
- 15		S-4A	15.0-20.0	60	60			S-4A: (Top 44"): Ligh Gravel, trace Silt, trac S-4B (Bottom 16")": G Gravel, trace weathere	e Asphalt ray, fine to m					18.5 GLAC	IAL TILL
20								End of exploration at	20 feet.				2	20	
- 25 -															
0 C	Detector	(PID)	pace of so) equipped 20ft on gla	with a	a 10.6 e	eV lamp.	ND ind	Total Volatile Organi icates non-detected	ic Compour I reading be	nds (TVOCs Now the instr) using a Mi rument's de	niRae m tection c	nodel of app	3000 Photo proximately	bionizatior 0.1ppm.
See	Log K	ey fo	r explorat	ion of	f samp	le descr	iption	and identification p Actual transitions n . Fluctuations of gro	procedures.	Stratificatio	on lines re	present	E	Exploratio B-12	

GZ		SZA SeoE Engine	nvir onn ers and Sci	n enta entists	I, Inc	-		RIDEM Seville Dyeing (117 & 229 First Woonsocke	Company Avenue		EXPLORAT SHEET: PROJECT N REVIEWED	1 of IO: 03.0	1)0345	502.04	
	ng Co.:	Hoffn	an Hayes nan Enviro Hoffman	onmen	tal Ser	vices	Rig Mo Drilling	f Rig: Geoprobe del: 7822DT g Method: tt Push	Ground S Final Bo	ocation: Se Surface Elev ring Depth (rt - Finish:1	v. (ft.):	10/28/20)19	H. Datum: V. Datum:	
Hamr Hamr	mer Ty mer We mer Fa er or Ca	eight (l ll (in.):		a (in.):	2"		Sample Sample	er Type: Acetate Sl er O.D. (in.): er Length (in.): Core Size:	eeve	Date Not Measured	Time	dwater [Stab.]			Casing
Depth (ft)	Casing Blows/ (Core Rate)	No.	Sa Depth (ft.)	mple Pen. (in)	Rec. (in)	Blows (per 6 in				Description ster Classifi	cation)		Remark	de ∉ Desc Ω	
-				60	39			Top 4": Red brick Next 12": Grey, concre S-1 (Bottom 23"): Brow Silt		arse SAND, tr	ace fine, Grave	el, trace		0.0	CRETE
5		S-2	5.0-10.0	60	44			S-2: Dark brown-black trace Brick	<, fine to coa	rse SAND, littl	e fine Gravel, t	race Silt,		F	ILL
- 10								End of exploration at	10 feet.				2	10	
- - 15 _ -															
- - 20 _ -															
- - 25 _ -															
თ D)etecto	r (PID)	pace of sc) equipped loration at	l with a	i 10.6 e	as screer eV lamp.	ned for ⁻ ND ind	Fotal Volatile Organi icates non-detected	c Compou reading be	nds (TVOC: elow the ins	s) using a Mi trument's de	niRae m tection c	nodel of app	3000 Photo proximately	pionizatio 0.1ppm.
See	Log K	ey fo boun	r explorat daries bet	ion of ween	samp soil and	le desc d bedrocl	ription k types.	and identification p Actual transitions n . Fluctuations of gro	procedures hay be grad	. Stratificati dual. Water	ion lines re level reading	present gs have	E	Exploratio B-13	

G		SZA SeoE Enginee	n vir onn ers and Sci	n enta	I, Inc	-		RIDEM Seville Dyeing (117 & 229 First Woonsocke	Company Avenue		EXPLORAT SHEET: PROJECT I REVIEWED	1 of NO: 03.0	[:] 1)0345	502.04	
Drilli		Hoffn	n Hayes nan Enviro Hoffman	onmen	tal Ser	vices	Rig Mo Drilling	f Rig: Geoprobe del: 7822DT g Method: xt Push	Ground S Final Bor	ocation: See Surface Elev ing Depth (f rt - Finish:10	. (ft.): t.): 7)/28/2019 -			H. Datum: V. Datum:	
	mer Ty							er Type: Acetate Sl	eeve	Date	Groun Time	dwater I Stab.		, , , , , , , , , , , , , , , , , , ,	Casino
Ham	mer We mer Fa er or Ca	ll (in.):	,	a (in.):	2"		Sample	er O.D. (in.): er Length (in.): Core Size:		Not Measured				Water	
Depth (ft)	Casing Blows/ (Core Rate)	No.	Sa Depth (ft.)	Pen. (in)	(in)	Blows (per 6 in			fied Burmis	Description ster Classific	ation)		Remark	Stra Desc Desc	
-	-			60	32			Top 9": Gray concrete S-1A (Next 4"): Dark b Silt, trace Concrete (Next 6"): Grey concret S-1B (Next 2"): Dark b Gravel, trace Concrete	prown, fine to ete prown, fine to	coarse SAND,	little Silt, trac		1	F	ILL
5	-	S-2	5.0-7.0	24	24			S-1C (Next 9"): Brown S-1D (Bottom 2"): Brown S-2: (Top 22"): Gray,	wn-gray, fine fine SAND, tr	to medium SA	,			5 GLACI	AL TILL
-	-							Bottom 2": Grey, rock Refusal at 7 feet					2	<u>/</u>	
0 D	Detecto	r (PID)	pace of so equipped 7ft bgs on	l with a	a 10.6 e	eV lamp.	ND ind	Total Volatile Organi icates non-detected	ic Compour reading be	nds (TVOCs blow the inst) using a M rument's de	iniRae n	nodel of app	3000 Photo proximately	oionizatio 0.1ppm.
 See	Log K	ey for	explorat	tion of	f samp	le desc	ription a	and identification p	procedures.	Stratificatio	on lines re	present	E	Exploratio	n No.:
	ovimate	hound	tarias hat	woon	ooil on	hodroo	k'typos	Actual transitions m Fluctuations of gro	hav ba grad	hual Water	aval readin	de have	1 -	B-15	

G		GZA GeoEi Enginee	nvironn ærs and Sci	n enta ientists	l, Inc	-		RIDEM Seville Dyeing C 117 & 229 First Woonsocke	Company Avenue		EXPLORAT SHEET: PROJECT N REVIEWED	1 of NO: 03.0	[:] 1)034	502.04	
Dril		: Hoffn	an Hayes nan Enviro Hoffman	onmen	tal Ser	vices	Rig Mo Drilling	f Rig: Geoprobe odel: 7822DT g Method: ct Push	Ground S Final Bor	ocation: See Surface Elev ing Depth (f rt - Finish:10	. (ft.): t.): 10.6 //28/2019 -			H. Datum: V. Datum:	
	nmer Ty							er Type: Acetate Sle	eeve	Date	Groun Time	dwater I Stab.			Casing
Han	nmer We nmer Fa jer or Ca	ll (in.):		a (in.):	2"		Sample	er O.D. (in.): er Length (in.): Core Size:		Not Measured		otab.		Water	Casing
Depti (ft)	Casing Blows/ (Core Rate)	No.	Sa Depth (ft.)	Pen. (in)	Rec. (in)	Blows (per 6 in	SPT)Value	(Modi		Description ster Classific	ation)	1	Remark	Desc Desc	atum
	- Rate)	S-1	0.0-5.0	60	0			S-1: No recovery							
	-														
5_	-			60	58			S-2A (Top 6"): Brown-o trace Silt	orange, fine t	to medium SAN	ND, little fine (Gravel,	1	F	ILL
	-							S-2B (Next 4"): Dark b trace Silt (Next 4"): Gray, concre		coarse SAND,	trace fine Gra	avel,			
10 _	-							S-2C (Next 26"): Gray, S-2D (Bottom 18"): Lig Gravel, trace Silt				e fine		10.6	
	-							End of exploration at	10.6 feet.						
15	-														
	-														
	-														
20 _	-														
	-														
25 _	-														
	-														
30			_							1 (mm) (= = =)	<u> </u>				
REMARKS	1 - The Detecto	neadsj r (PID)	pace of so	bil sam I with a	ples wa a 10.6 e	as screer eV lamp.	ned for ⊺ ND ind	Total Volatile Organi licates non-detected	c Compou reading be	nds (TVOCs blow the instr) using a Mi rument's de	INIRAE m	nodel of ap	3000 Photo proximately	oonizatioi 0.1ppm.
See	Log K	ley for	r explorat	tion of	f samp	le descr	iption a	and identification p Actual transitions m . Fluctuations of gro	orocedures.	Stratificatio	on lines re	present	E	Exploratio	n No.:

									TEST BORIN	G LOG						
	GZ		GZA GeoE	nvironn ars and Sci	ienta entists	l, Inc	•		RIDEM Seville Dyeing C 117 & 229 First Woonsocke	Company Avenue		EXPLORAT SHEET: PROJECT I REVIEWED	1 of NO: 03.0	1 0034	502.04	
		ng Co.:	Hoffr	an Hayes nan Enviro Hoffman	onmen	tal Ser	vices	Rig Mo Drilling	f Rig: Geoprobe del: 7822DT J Method: tt Push	Ground S Final Bo	ocation: Se Surface Ele ring Depth rt - Finish:1	v. (ft.): (ft.): 4 0/28/2019 -			H. Datum: V. Datum:	
		mer Ty		ш. \.					er Type: Acetate Sl	eeve	Date	Groun Time	dwater I Stab.	-		Casing
	Ham		l (in.):		a (in.):	2"		Sample	er O.D. (in.): er Length (in.): Core Size:		Not Measured					
Ī		Casing Blows/		Sa Depth	mple Pen.	Rec.	Blows	SPT		Sample	Description	·	1	Remark	Stra Desci Desci	itum
_	(ft)	(Core Rate)	No. S-1	(ft.) 0.0-4.0	(in) 48	(in) 0		n.)Value	(Modi S-1: No Recovery	fied Burmi	ster Classif	ication)		Re		
	-														CONC	RETE
	-								Refusal at 4 feet					1	4	
COMPANY.GP	5															
	- - 10															
S/345UZ.04 SE	-															
	- 15 -															
11:43 - J:/GIN I PRC	_ _ _20															
9.6UI - 1/31/20	-															
	- 25 -															
LUG DAL																
162A TEMPLATE TEST BOKING - 62A PLOG DATA TEMPLATE 03-20-18:601 - 1/3/1/20 11:43 - J./GINT PROJECT DATABASES/0450/2/14 SEVILLE DYEING COMPANY:647		- Refu	sal at	4 ft bgs or	i conc	rete. Ei	nd of exp	bloration								
GZA LEMPLAL	appro	oximate made	boun at the	daries bet	ween : d unde	soil and er the c	d bedroc condition	k types. s stated	and identification p Actual transitions m . Fluctuations of gro nade.	nay be grad	dual. Water	level readin	ġş have	-	Exploratio B-17	

									TEST BORIN	G LOG						
	GZ		GZA GeoE	nvir onn ərs and Sci	nenta entists	l, Inc	-		RIDEM Seville Dyeing (117 & 229 First Woonsocke	Company Avenue		EXPLORAT SHEET: PROJECT I REVIEWED	1 of NO: 03.0	[:] 1)0345	502.04	
	Logg Drilli Fore	ng Co.:	Hoffr	an Hayes nan Enviro Hoffman	onmen	tal Ser	vices	Rig Mo Drilling	f Rig: Geoprobe del: 7822DT J Method: t Push	Ground S Final Bo	ocation: S Surface Ele ring Depth rt - Finish:	ev. (ft.):	10/28/20)19	H. Datum: V. Datum:	
	Ham	mer Ty	oe:					Sample	er Type: Acetate Sl	eeve			dwater I	-		
	Ham	mer We	eight (l					Sample	er O.D. (in.):		Date Not	Time	Stab.	Time	Water	Casing
		mer Fal er or Ca		D.D./I.D Di	a (in.):	2"			er Length (in.): Core Size:		Measure	d				
Ē		Casing		Sa	mple									۲.	Stra	atum 💉 -
	Depth (ft)	(Core	No.	Depth (ft.)	Pen. (in)	Rec. (in)	Blows	s SPT n.)Value	(Modi		Description ster Classif			Remark	Stra Desci Desci	ription a ∉
-		Rate)	S-1	0.0-4.0	48	0			S-1: No Recovery						_	
	-															
	-														CONC	RETE
	_														4	
۔	- 5								Refusal at 4 feet					1	-	
ים. צו	°															
NHAN	-															
0.0	-															
LEIN C	-															
Ċ H	10															
šEVIL																
2.04	-															
34502	-															
SES/	-															
IABA	- 15															
NA I																
DIEC	-															
L PRC	-															
NGIN	_															
- c+	20															
7.L.L. O																
131/2	_															
-	-															
18.6	_															
-02-50	25 _															
	_															
MPL	_															
AIE	_															
E DA	_															
ЪГС	30															
- GZA		- Refu	sal at	4ft bgs on	concr	ete. Er	id of exp	loration.								
SING	REMARKS															
г С	MA															
IESI	R															
AIE AIE																
EMPL	appro	oximate	e boun	daries bet	ween	soil and	d bedroc	k types.	and identification p Actual transitions m	nay be grad	dual. Wate	r level readin	ġş have	E	Exploratio B-17F	n No.:
	been	made	at the		d unde	er the c	condition	s stated	. Fluctuations of gro						D-1/1	`
L														1		

GZ		GZA GeoE Engine	nvironn ərs and Sci	n enta entists	l, Inc			RIDEM Seville Dyeing (117 & 229 First Woonsocke	Company Avenue		EXPLORAT SHEET: PROJECT N REVIEWED	1 of NO: 03.0	1)034	502.04	
Drilli		Hoffn	an Hayes nan Enviro Hoffman	onmen	tal Serv	vices	Rig Mo Drilling	f Rig: Geoprobe del: 7822DT g Method: t Push	Ground S Final Bor	ocation: See Surface Elev ing Depth (f t - Finish:10	. (ft.): t.): 14 //28/2019 -			H. Datum: V. Datum:	
	mer Ty							er Type: Acetate Sl	eeve	Date	Groun Time	dwater [Stab. ⁻			Casing
Ham	mer We mer Fa er or Ca	ll (in.):	,	a (in.):	2"		Sample	er O.D. (in.): er Length (in.): Core Size:		Not Measured		Clubi			
Depth (ft)	Casing Blows/ (Core Rate)	No.	Sa Depth (ft.)	mple Pen. (in)		Blows (per 6 in		(Modi		Description ster Classific	ation)		Remark	Desc Desc	atum
-				60	39			Top 12": Grey, concre S-1A (Middle 3"): Dark trace Silt S-1B (Bottom 24"): Bro Silt, trace Brick	t brown, fine t				1		CRETE
5 - - -		S-2A	5.0-10.0	60	19			S-2A: (Top 4"): Brown trace Brick S-2B (Next 6"):Brown- Silt, green stained fibro S-2C (Next 4"): Black, odor, fibrous material	black, fine to ous material	coarse SAND,	little fine Gra	vel, trace	2	F	ILL
10 - -		S-3A	10.0-14.0	48	46			S-3A: (Top 16"): Black Silt, petroleum odor S-3B (Bottom 30"): Gr Gravel, trace Silt							CRETE
15 - 20 - 25								Refusal at 14 feet					3		
SY 2	Detecto 2 - Soil	r (PID) gas pr	equipped	l with a /C) ins	a 10.6 e stalled a	eV lamp. at 9ft bgs	ND ind	Fotal Volatile Organi icates non-detected ned from 9'-4' bgs.	ic Compour reading be	nds (TVOCs slow the instr) using a Mi 'ument's de	iniRae m tection c	node of ap	I 3000 Photo proximately	oionizatio 0.1ppm.
See appro	Log k	ey fo boun	r explorat daries bet	ion of ween	samp	le desci	ription a	and identification p Actual transitions m . Fluctuations of gro	procedures.	Stratificatio	on lines re	present	1	Exploratio B-18	

GZ		BZA BeoEi	nvironn ers and Sci	n enta entists	l, Inc			RIDEM Seville Dyeing O 117 & 229 First Woonsocke	Company Avenue		EXPLORAT SHEET: PROJECT N REVIEWED	1 of IO: 03.0	1)0345	502.04	
Drilli		Hoffn	an Hayes nan Enviro Hoffman	onmen	tal Serv	vices	Rig Mo Drilling	f Rig: Geoprobe del: 7822DT J Method: tt Push	Ground S Final Bor	ocation: Se Surface Elev ing Depth (f t - Finish:10	r. (ft.): f t.): 5.25 0/28/2019 - 1			H. Datum: V. Datum:	
Hamr Hamr	mer Ty mer We mer Fal er or Ca	eight (l I (in.):		a (in.):	2"		Sample Sample	er Type: Acetate Sk er O.D. (in.): er Length (in.): Core Size:	eeve	Date Not Measured	Ground Time	dwater E Stab. 1		<u>, , , , , , , , , , , , , , , , , , , </u>	Casing
Depth (ft)	Casing Blows/ (Core Rate)	No.	Sa Depth (ft.)	mple Pen. (in)	Rec. (in)	Blows (per 6 ir		(Modi		Description ster Classific	cation)		Remark	Stra de U Desc	atum . ription a
- - - - - - - - - - - - - - - - - - -				60	43			Top 10": Gray, concret S-1A (Next 10"): Brown Silt (Next 12"): Gray, cond S-1B (Next 7"): Brown S-1C (Bottom 4"): Blad Silt, petroleum odor Refusal at 5.25 feet	n, fine to coa crete , fine to coars	se SAND, som	e fine Gravel,	trace Silt		2 3 CONO	ILL CRETE
- - - 20 _ - - - - - - - - - - - - - - - - - - -															
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	etector	r (PID) sal on	equippec concrete	I with a at ±5.2	10.6 e 25' bgs;	V lamp. End of	ND ind explorati	Fotal Volatile Organi icates non-detected ion. and identification p Actual transitions m . Fluctuations of gro	reading be	elow the inst	rument's def	tection c	of app	3000 Photo proximately	0.1ppm.

GZ		GZA GeoE	nvironn ərs and Sci	n enta ientists	I, Inc			RIDEM Seville Dyeing C 117 & 229 First Woonsocke	Company Avenue		EXPLORAT SHEET: PROJECT N REVIEWED	1 of NO: 03.0	[:] 1)0345	502.04	
Drilli		: Hoffn	an Hayes nan Enviro Hoffman	onmen	tal Serv	/ices	Rig Mo Drilling	f Rig: Geoprobe del: 7822DT g Method: xt Push	Ground S Final Bor	ocation: Se Surface Elev ing Depth (i t - Finish:10	/. (ft.): ft.): 19	10/28/20)19	H. Datum: V. Datum:	
Ham	mer Ty	pe:						er Type: Acetate Sl	eeve	Data		dwater		<u>``</u>	Casing
Ham	mer We mer Fa er or Ca	ll (in.):		a (in.):	2"		Sample	er O.D. (in.): er Length (in.): Core Size:		Date Not Measured	Time	Stab.	<u>i ime</u>	Water	Casinç
Depth (ft)	(Core	No.	Sa Depth (ft.)	Pen. (in)	Rec. (in)	Blows (per 6 ir		(Modi		Description ster Classific	cation)		Remark	Stra G Desc Desc	atum
	<u>Rate)</u>	S-2A S-3A S-4A	(TT.) 5.0-10.0 10.0-15.0 15.0-19.0	60 60 48	(111) 38 31 60 48			Top 17": Gray concrets S-1A (Next 14"): brown trace Silt, trace Brick, 1 S-1B (Next 3"): Orange trace Silt S-1C (Bottom 4"): Brown trace Silt, trace Brick, 1 S-2A: (Top 8"): Brown trace Silt, trace Brick, 1 S-2B (Bottom 23"): Brassit, trace Asphalt S-3A: (Top 9"): Black, trace Asphalt S-3B (Bottom 23"): Brassit, trace Asphalt S-3B (Bottom 23"): Brassit, trace Silt S-4A: (Top 30"): Black petroleum like odor S-4B (Bottom 18"): Gravel	e n-black, fine t trace Glass e-brown, fine trace Glass /black, fine to trace Glass ack, fine to coars bwn/gray/whi c, fine to coars	to coarse SAN to coarse SAI e to coarse SAN o coarse SAND, tr warse SAND, trace te, fine to coar	D, some fine (ND, trace fine ND, some fine D, some fine G race fine Gravel, t se SAND, son	Gravel, e Gravel, Gravel, el, trace trace Silt, ne fine	1	1 CON(ILL AL TILL
	Detecto	r (PID)	pace of sc) equipped ±19' bgs c	I with a	i 10.6 e	V lamp.	ND ind	Refusal at 19 feet Total Volatile Organi icates non-detected	c Compou reading be	nds (TVOCs slow the inst	s) using a Mi rument's de	iniRae n tection o	2, nodel	3000 Photo proximately	oionizatior 0.1ppm.
See appro	Log k oximate made	ey for bound at the	r explorat daries bet times and t at the tim	ion of ween s	samp soil and ar the c	le desc l bedroc ondition	ription k types. s stated	and identification p Actual transitions m . Fluctuations of gro	procedures hay be grad bundwater	Stratificati dual. Water may occur o	on lines re level readin due to other	epresent gs have factors	E	Exploratio B-20	

G		ngine	nviro r ers and S	Scient		Inc.		RIDEN Seville Dyeing 117 & 229 Firs Woonsock	Company t Avenue et, RI			EXPLORATI SHEET: PROJECT N REVIEWED	1 o O: 03.	f 2 0034	502.04 arlone	
Drilli		Hoffn	an Haye nan Env Hoffmar	ironn	nental	Services	Ri Dr	ype of Rig: Geoprobe tig Model: 7822DT brilling Method: Direct Push		Surfa	ace Ele Depth	See Plan ev. (ft.): (ft.): 34.5 10/29/2019 -	10/29/:	2019	H. Datum: V. Datum:	
	mer Tyj							ampler Type: Acetate Sl	eeve		Date	Ground Time	lwater Stab.		<u>, , ,</u>	Casir
Ham	mer We mer Fal er or Ca	I (in.):		Dia (i	n.): 2		Sa	ampler O.D. (in.): ampler Length (in.): Rock Core Size:		10/	28/201		Stab.	IIIIe	28	Cash
epth (ft)	Casing Blows/ (Core Rate)	No.	Depth (ft.)	(in)	Rec. (in)	Blows (RQD)	SPT Value	Manufacture in the second seco		Remark	Field Test Data	E G G G G Stratum G G Stratum G Stratum G Stratum G Stratum G Stratum	(ff.) (ff.)		Equipment I	nstalled
-		S-1	0.0-5.0	60	26			S-1: Top 2": Brown topsoil S-1A (Next 8"): Gray-white, S-1B (Next 8"): Black, fine t SAND, some fine Gravel, tr	o coarse		1.2	0.5 TOPSOIL				ad Box
- 5_		S-2A	5.0-	60	45			S-1C (Bottom 8"): Gray-bro coarse SAND, little fine Gra Silt, trace Brick	vel, trace	1	0.5 0.6					
-			10.0					S-2A: (Top 17"): Tan, fine SAND, trace fine Gravel, tra S-2B (Bottom 28"): Dark bru fine to coarse SAND, little fi trace Silt, trace Brick, trace	ace Silt own-black, ne Gravel,		6.6					
10 _ - -		S-3A	10.0- 15.0	60	41			S-3A: (Top 12"): Tan-gray, coarse SAND, little fine Gra Silt S-3B (Bottom 29"): Dark bro	vel, trace own-black,		1.1	FILL			RC ← Nat	ive Sand
- 15 _ -		S-4A	15.0- 20.0	60	33			fine to coarse SAND, little fi trace Silt, trace Brick, trace trace Asphalt S-4A: Top 15": Gray, fine t SAND, trace fine Gravel, tra trace Glass S-4B (Bottom 18"): Dark bro	Glass, o coarse ace Silt,		9.3 3.0 2.6					
- _ 20 _ _		S-5	20.0- 25.0	60	24			fine to coarse SAND, little S fine Gravel, trace Glass S-5: Dark gray, fine to coar some Silt, trace fine Gravel	Silt, trace		0.3	20			- Ber Sea	ntonite
- _25 -		S-6A	25.0- 30.0	60	38			S-6A: (Top 6"): Dark gray, coarse SAND, little Silt, trac Gravel S-6B (Bottom 32"): Dark gra	e fine		5.3	GLACIAL T	ILL			
- - <u>30</u>								coarse SAND, some fine G Silt, wet	ravel, trace	2					≤ We	er Sand Il Screer
s	10.6 eV 2 - Groun	lamp. dwater	ND indica observed	ates no at ±2	on-dete 8' bgs.	cted reading	g below	I Volatile Organic Compounds w the instrument's detection of ned from 34.5' to 24.5' bgs.				e model 3000 Ph	otoioniza	ation D	etector (PID)	equipped
See	Log K	ey foi	r explor	ation	of s	ample de	script	tion and identification p ypes. Actual transitions m stated. Fluctuations of gro	rocedures.	St	ratifica	tion lines rep	present	E	Exploratio MW-1	on No.:

									TEST BORING	G LOG				
	- -7	<u>()</u>	SZA SeoE Engine	nvir or ers and S	nmei Scient	n tal, ists	Inc.		RIDEM Seville Dyeing 0 117 & 229 First Woonsock	Company Avenue			EXPLORATION SHEET: 2 PROJECT NO: 0 REVIEWED BY:	2 of 2 03.0034502.04
D	rilli	ed By: ng Co.: man:	Hoffr	an Haye man Env Hoffmai	/ironn	nenta	I Services	Ri	ype of Rig: Geoprobe Rig Model: 7822DT Drilling Method: Direct Push	Boring L Ground S Final Bor Date Star	Surfa ring	ace El Depth	ev. (ft.): (ft.): 34.5 10/29/2019 - 10/2	
		mer Ty							ampler Type: Acetate Sle	eve		Date		er Depth (ft.) b. Time Water Casing
H	amı		ll (in.):	0.D./I.D			2"	S	Sampler O.D. (in.): Sampler Length (in.): Rock Core Size:		10/	28/201	19 12:23	28
	epth ft)	Casing Blows/ (Core Rate)	No. S-7	Depth (ft.) 30.0-	Samp Pen. (in) 54	Rec.	Blows (RQD)	SPT Valu		on er	ა Remark	Field Test Data	fa fe	Equipment Installed
	-		3-1	34.5	34				S-7. NO RECOVERT		3		GLACIAL TILL	
3	5_								End of exploration at 34.5	feet.	4			
	-													
4	0_													
	-													
4	_ 5 _													
	-													
5	0													
	-													
5	- 5													
	-													
5 6 SAVENSA Sabt	4	- End of	l f explor	tion at ±	 34.5' b	jgs.	<u> </u>	_			<u> </u>	<u> </u>		
S a b tł	ppro een	pximate made	e boun at the	daries b times a	etwe	en so nder	il and bed the condit	rock ty ions s	tion and identification protypes. Actual transitions m stated. Fluctuations of growere made.	ay be grad	dual	. Wate	r level readings ha	ave have a

G		GZA GeoE	nvir onn ers and Sci	n enta ientists	I, Inc			RIDEM Seville Dyeing C 117 & 229 First Woonsocke	company Avenue		EXPLORAT SHEET: PROJECT I REVIEWED	1 of NO: 03.0	1 0034	502.04	
Drilli		Hoffn	an Hayes nan Enviro Hoffman	onmen	tal Ser	vices	Rig Mo Drilling	f Rig: Geoprobe del: 7822DT j Method: t Push/ HSA	Ground S Final Bor	ocation: Se Surface Elev ring Depth (rt - Finish:1	v. (ft.): ft.): 20 0/29/2019 -			H. Datum: V. Datum:	
	mer Ty							er Type: Acetate Sle	eeve	Date	Groun	dwater I Stab.			Casing
Ham	mer We mer Fa er or Ca	ll (in.):	,	a (in.):	2"		Sample	er O.D. (in.): er Length (in.): Core Size:		10/29/2019				15	
Depth (ft)	Casing Blows/ (Core Rate)	No.	Sa Depth (ft.)	Pen. (in)		Blows (per 6 in		,		Description ster Classifi	cation)		Remark	Desc (t; Desc Desc	
- - 5 _ - - - - - - - - - - - - - - - - - - -		S-2A S-3A S-4A	5.0-10.0 10.0-15.0 15.0-20.0	60 60 60	45 48 52 60			Top 2": Brown, topsoil S-1A (Next 6"): Gray, c fine to coarse GRAVEI S-1B (Next 6"): Black, S-1C (Next 15"): Black, S-1C (Next 15"): Black, S-1D (Next 5"): Black, S-1E (Bottom 6"): Dark Sand, trace fine Grave S-2A: (Top 16"): Dark trace fine Gravel, trace S-2B (Next 19"): Light Gravel, trace Silt S-3C (Bottom 13"): Bla GRAVEL, trace Silt S-3B (Bottom 44"): Bla Gravel, trace Silt, petro S-4A: (Top 18"): Black trace Silt, wet, petroleu	, trace Silt fine to coars fine to coars fine to coars for to coars for the coars for	e SAND,, trace e SAND, little e SAND, trace to medium SA to medium SA SAND, little co e to coarse SA o coarse SAND parse SAND, sittl oleum staining	e fine Gravel, fine to coarse fine Gravel, t AND, trace coa ND, trace coa arse Gravel, lii AND, little fine O, little fine Gra come fine to co ning e fine to coars	2		-SOIL -ILL	
- - 20 _	-							S-4B (Bottom 42"): Gre Gravel, little Silt, weath			and, little fine	to coarse			ial till
- - - 25 _ -	-							End of exploration at	20 feet.						
ARKS	Detecto 2 - Grou 3 - Obse	r (PID) indwat ervatio) equipped	l with a ed at ± PVC) ii	a 10.6 e :15' bgs nstalleo	V lamp.	ND ind	Fotal Volatile Organi icates non-detected ened from 20' to 5' b	reading be	nds (TVOC: elow the inst	s) using a M trument's de	iniRae m etection o	nodel of app	3000 Photo proximately	oionizatior 0.1ppm.
appr	oximate 1 made	e boun at the	r explorat daries bet times and t at the tim	ween d unde	f samp soil and er the c	le desci bedroci onditions	ription k types. s stated	and identification p Actual transitions m . Fluctuations of gro	rocedures ay be grad	. Stratificati dual. Water	on lines re level readin	epresent gs have	E	Exploratio MW-1	

G		GZA GeoE	nvironm ars and Sci	n enta entists	l, Inc	-		RIDEM Seville Dyeing C 117 & 229 First Woonsocke	Avenue		EXPLORAT SHEET: PROJECT N REVIEWED	1 of NO: 03.0	i 1 0034	502.04	
Drilli		Hoffn	an Hayes nan Envirc Hoffman	onmen	tal Ser	vices	Rig Mo Drilling	f Rig: Geoprobe odel: 7822DT g Method: ct Push	Ground S Final Bor	ocation: Se Surface Elev ing Depth (f t - Finish:10	/. (ft.): f t.): 14 D/29/2019 - 1			H. Datum: V. Datum:	
Ham	mer Ty mer We mer Fa	eight (l					Sample	er Type: Acetate Sle er O.D. (in.): er Length (in.):	eeve	Date Not	Ground Time	dwater Stab.			Casing
			D.D./I.D Dia	a (in.): mple	2"		•	Core Size:		Measured			1×		
Depth (ft)	Blows/ (Core Rate)	No.	Depth (ft.)	Pen. (in)	Rec. (in)	Blows (per 6 in		(Modi		Description ster Classific	cation)		Remark	Uepti Dest Dest Dest	
- - 5_ -		S-2A	5.0-10.0	60	42			Top 6" Dark brown, top S-1A (Next 29"): Black trace Brick, trace Woo Next 3": Gray concrete S-1B (Bottom 4"): Dark trace Silt S-2A: (Top 9"): Brown S-2B (Next 6"): Dark b S-2C (Next 26"): Light	, fine to coard d, trace Meta k brown, fine , fine SAND, rown, fine S/ brown, fine S	al, trace Debris to coarse SAN trace Silt, trac AND, little Silt SAND, trace fir	ND, trace fine (Conce Organics The Gravel, trace	Gravel, ce Silt	1	4F	PSOIL FILL ICRETE
- - 10 -		S-3A	10.0-14.0	48	43			S-2D (Bottom 8"): Tan Gravel, trace Silt S-3A: (Top 9"): Tan, fi trace Silt S-3B (Next 17"): Black	ne to coarse	SAND, some	fine to coarse	Gravel,	2 3	12	FILL
- - 15 _								trace Silt, petroleum or S-3C (Bottom 17"): Gro little Silt, weathered roo End of exploration at	een-gray, fine ck shale	•	ND, little fine (Gravel,	4	GLAC , 14	CIAL TILL
- - 20 _ - -															
- 25 _ - -															
ARKS	Detecto 2 - Petro 3 - Soil	r (PID) bleum gas pr	equipped odor/stain	with a ing ob /C) ins	a 10.6 e served stalled a	V lamp. in S-3B.	ND ind	Total Volatile Organi licates non-detected ned from 9-4' bgs.	c Compour reading be	nds (TVOCs low the inst	s) using a Mi rument's de	iniRae n tection o	node of ap	I 3000 Phot proximately	oionizatio v 0.1ppm.
See	Log K	ey fo	r explorat	ion of	samp	le desci	ription	and identification p Actual transitions m Fluctuations of gro	rocedures.	Stratificati	on lines re	present		Exploration	on No.: ·1

GZ		GZA GeoE Enginee	nvironn ərs and Sci	n enta entists	l, Inc			RIDEM Seville Dyeing C 117 & 229 First Woonsocke	Company Avenue		EXPLORAT SHEET: PROJECT I REVIEWED	1 of NO: 03.	1 00345	502.04	
Drilli		: Hoffn	an Hayes nan Enviro Hoffman	onmen	tal Ser	/ices	Rig Mo Drilling	f Rig: Geoprobe del: 7822DT J Method: t Push	Ground S Final Bor	ocation: See Surface Elev ring Depth (f rt - Finish:10	. (ft.): t.): 10)/29/2019 -			H. Datum: V. Datum:	
	mer Ty	•						er Type: Acetate Sl	eeve	Date	Groun Time	dwater		i (ft.) Water	Casing
Ham	mer W mer Fa er or Ca	ll (in.):		a (in.):	2"		Sample	er O.D. (in.): er Length (in.): Core Size:		Not Measured				Water	Casing
Depth (ft)	Casing Blows/ (Core Rate)	No.	Sa Depth (ft.)	mple Pen. (in)		Blows (per 6 ir		(Modi		Description ster Classific	ation)		Remark	Stra Gebt Desc	atum ription a
		S-2A	5.0-10.0	60	34			Top 5": Brown, topsoil S-1A (Next 7"): Dark b Gravel, trace Silt S-1B (Next 11"): Brow trace Silt, trace Glass S-1C (Next 22"): Black trace Silt, trace Wood, S-1D (Bottom 9"): Bro Gravel, trace Silt S-2A: Top 23": Dark I Organics, trace Wood S-2B (Bottom 11"): Lig medium Gravel Refusal at 10 feet	rown, fine to n-orange, fin trace Plastic own, fine to rr brown, fine to	e to coarse SA se SAND, little s, trace Brick, tr nedium SAND, o medium SAN	ND, little fine fine to coarse race Ash trace fine to r D, little Silt, tr	Gravel, e Gravel, nedium ace	2		ILL
25	- - - - -	heads	pace of sc	il sam	ples wa	as scree	ned for T	Fotal Volatile Organi	c Compou	nds (TVOCs) using a M	iniRae n	nodel	3000 Photo	pionizatior
SY 2	Detecto 2 - Soil	r (PID) gas pr	equipped	l with a /C) ins	a 10.6 e stalled a	V lamp. at ±9' bg	ND ind	icates non-detected ned from 9-4' bgs.	reading be	elow the inst	rument's de	etection of	of app	proximately	0.1ppm.
See appro	Log k	key for e boun	r explorat daries bet	ion of ween	f samp soil and	le desc I bedroc	ription a	and identification p Actual transitions m . Fluctuations of gro	procedures	. Stratificatio	on lines re evel readin	epresent gs have	E	Exploration SG-2	

GZ			nvir onn ærs and Sci			•		RIDEM Seville Dyeing C 117 & 229 First Woonsocke	Avenue		EXPLORAT SHEET: PROJECT I REVIEWED	1 of NO: 03.0	1 00345	602.04	
	ng Co.:	Hoffn	an Hayes nan Enviro Hoffman	onmen	tal Ser	/ices	Rig Mo Drilling	f Rig: Geoprobe del: 7822DT g Method: ct Push	Ground S Final Bor	ocation: Se Surface Elev ing Depth (i t - Finish:10	v. (ft.): f t.): 10 0/29/2019 -			H. Datum: V. Datum:	
	mer Ty							er Type: Acetate Sle	eeve	Date	Groun Time	dwater [Stab. ⁻		(ft.) Water	Casing
Hamı	mer We mer Fa er or Ca	ll (in.):		a (in.):	2"		Sample	er O.D. (in.): er Length (in.): Core Size:		Not Measured					
Depth (ft)	Casing Blows/ (Core Rate)	No.	Sa Depth (ft.)	mple Pen. (in)	Rec. (in)	Blows (per 6 ir		(Modi		Description ster Classific	cation)	1	Remark	Stra Gebtu Desc	atum . ription 👜
	Rate)		(11.)	60	34	(por o n	iii) Valuo	Top 5": Brown, topsoil		0.4115					SOIL
- - 5 -		S-2A	5.0-10.0	60	36			S-1A (Next 6"): Dark b trace Silt, trace Ash S-1B (Next 10"): Black Silt, trace Brick, trace A S-1C (Bottom 13"): Bro Gravel, trace Silt S-2A: Top 8": Dark bro S-2B (Next 12"): Brow S-3C (Bottom 16"): Wh coarse Gravel, trace S	, fine to coar Ash own-gray, fine own, fine SAI n, fine SAND nite-black, fin	se SAND, trac e to coarse SA ND, little Silt, t , little Silt e to coarse S/	e fine Gravel, ND, little fine race fine Grav ND, some fin	trace to coarse rel	1	F	ILL
- 10													2	10	
 15 20 22 															
SX 2	Detecto	r (PID) gas pr	equipped	l with a /C) ins	a 10.6 e stalled a	V lamp. at ±9' bg	ND ind	Fotal Volatile Organi icates non-detected ned from 9-4' bgs.	c Compour reading be	nds (TVOCs low the inst	:) using a M rument's de	iniRae m	nodel of app	3000 Photo roximately	oionizatior 0.1ppm.
See	log K	ev fo		ion of	samr	le desc	ription a	and identification p Actual transitions m . Fluctuations of gro	rocedures.	Stratificati	on lines re	epresent	E	Exploratic SG-3	

GZ		SZA SeoE Engine	nvironn ərs and Sci	n enta Tentists	l, Inc			RIDEM Seville Dyeing C 117 & 229 First Woonsocke	Company Avenue		EXPLORAT SHEET: PROJECT REVIEWED	1 of NO: 03.0	i 1 00345	602.04	
Drilli		Hoffn	an Hayes nan Enviro Hoffman	onmen	tal Ser	vices	Rig Mo Drilling	f Rig: Geoprobe del: 7822DT g Method: st Push	Ground S Final Bor	ocation: See Surface Elev ing Depth (f rt - Finish:10	7. (ft.): t.): 10	10/29/20)19	H. Datum: V. Datum:	
	mer Ty							er Type: Acetate Sl	eeve	Date	Groun Time	dwater Stab.		(ft.) Water	Caping
Hami	mer We mer Fa er or Ca	ll (in.):	,	a (in.):	2"		Sample	er O.D. (in.): er Length (in.): Core Size:		Not Measured	Time	Stab.	<u>i iiile</u>	vvaler	Casino
Depth (ft)	Casing Blows/ (Core Rate)	No.	Sa Depth (ft.)	mple Pen. (in)	Rec. (in)	Blows (per 6 in		(Modi		Description ster Classific	ation)	1	Remark	Stra (tf Desc Desc	atum . ription <u>a</u>
-				60	28			Top 1": Dark brown, to S-1A (Next 9"): Tan, fir little Brick, trace Silt S-1B (Bottom 3"): Brow	ne to coarse		e to coarse G	Gravel,	1	<u>0.5</u> TOF	PSOIL
5	S-2A 5.0-10.0 60 51 S-2A: Top 14": Brown-dark brown, fine SAND, little Silt, trace Org S-2B S-2A: Top 14": Brown-dark brown, fine SAND, little Silt S-2B (Next 15"): Light brown, fine SAND, little Silt S-2B S-2C (Next 10"): Tan, fine to coarse SAND, little fine to coarse Git S-2D (Bottom 12"): Black, fine to coarse SAND, little fine to coarse										0	2	F	ILL	
- - 10 _	trace Silt S-2D (Bottom 12"): Black, fine to coarse SAND, little fine to coa Gravel, trace Silt, petroleum odor, petroleum staining, wet										Irse	3 4 5	10		
-								End of exploration at	10 feet.						
- 15															
- - 20															
-															
- 25															
-															
WARKS	Detecto 2 - Pipe 3 - Soil 9 - Perc	r (PID) with ir gas pr hed wa) equipped rsulation a obe (1" P\	l with a and voi /C) ins leum s	a 10.6 e id enco stalled a staining	eV lamp. untered at ±8' bgs	ND ind at 4.5' b s; scree	L Fotal Volatile Organi icates non-detected gs. ned from 8-3' bgs. at ±9.5'-10' bgs.	c Compou reading be	nds (TVOCs alow the inst) using a M rument's de	iniRae n	l nodel of app	3000 Photo proximately	ionizatio 0.1ppm.

G		SZA SeoE	nvironm ars and Sci	ienta entists	l, Inc			RIDEM Seville Dyeing C 117 & 229 First Woonsocke	Company Avenue		EXPLORAT SHEET: PROJECT I REVIEWED	1 of NO: 03.0	1)034	502.04	
Drilli		Hoffn	an Hayes nan Enviro Hoffman	onmen	tal Ser	/ices	Rig Mo Drilling	f Rig: Geoprobe del: 7822DT g Method: xt Push	Ground S Final Bor	ocation: See Surface Elev ing Depth (f t - Finish:10	. (ft.): t.): 15 //29/2019 -			H. Datum: V. Datum:	
	mer Ty						Sample	er Type: Acetate Sl	eeve	Dete	1	dwater [0
Ham	mer We mer Fa er or Ca	l (in.):		a (in.):	2"		Sample	er O.D. (in.): er Length (in.): Core Size:		Date Not Measured	Time	Stab.	Inne	Water	Casing
Depth (ft)	Casing Blows/ (Core Rate)	No.	Depth (ft.)	mple Pen. (in)	. ,	Blows (per 6 in	SPT)Value			Description ster Classific	ation)		Remark	Stra () Desc	atum . ription Ш
_		S-1	0.0-5.0	60	0			S-1: No recovery							
-													1	UNKI	NOWN
-	-														
5		S-2A	5.0-10.0	60	43			S-2A: (Top 19"): Light S-2B (Next 8"): Tan, fi S-2C (Bottom 16"): Bla	ne SAND, tra	ice Silt				5	
-								Gravel, trace Silt, trace						F	ILL
10	-	S-3A	10.0-15.0	60	58			S-3A: (Top 22"): Whit trace Silt, trace Brick	e-black, fine	to coarse SAN	D, little fine G	iravel,			
-								S-3B (Bottom 36"): Gru little Silt, weathered roo		e to coarse SA	ND, little fine	Gravel,		12 GLACI	AL TILL
- 15													3	15	
- - - 20 _ - - - - 25 _ -								End of exploration at	10 feet.						
	Detecto 2 - Linei	r (PID) melte	pace of so equipped d for S-1 u loration at	with a unable	10.6 e to reco	V lamp.	ND ind	Fotal Volatile Organi icates non-detected	c Compour reading be	nds (TVOCs Now the instr) using a M rument's de	iniRae m tection c	nodel of app	3000 Photo proximately	oionizatioi 0.1ppm.
See appro	Log K oximate	ey fo boun	r explorat daries bet	ion of ween	samp	le descr I bedrock	iption a	and identification p Actual transitions m Fluctuations of gro	procedures.	Stratificatio	on lines re evel readin	epresent as have	E	Exploration SG-4	

APPENDIX C

LABORATORY CERTIFICATES

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Richard Carlone GZA GeoEnvironmental, Inc. 188 Valley Street Providence, RI 02909

RE: Seville Dyeing Company (03.0034502.04) ESS Laboratory Work Order Number: 19J1092

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director

Analytical Summary

REVIEWED By ESS Laboratory at 3:20 pm, Nov 15, 2019

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company

ESS Laboratory Work Order: 19J1092

SAMPLE RECEIPT

The following samples were received on October 30, 2019 for the analyses specified on the enclosed Chain of Custody Record.

Revision 1 November 15, 2019: This report has been revised to include TPH Fingerprint analysis to samples 19J1092-01, -02, -05, and -06 per client's request.

Lab Number	Sample Name	<u>Matrix</u>	<u>Analysis</u>
19J1092-01	B-19 S-1C	Soil	8100M, N/A
19J1092-02	B-20 S-4A	Soil	8100M, N/A
19J1092-03	B-20 S-4B	Soil	8100M
19J1092-04	MW-16 S-4B	Soil	8100M
19J1092-05	SG-1 S-3B	Soil	8100M, N/A
19J1092-06	SG-4 S-2D	Soil	8100M, N/A
19J1092-07	SG-5 S-3B	Soil	8100M

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company

ESS Laboratory Work Order: 19J1092

PROJECT NARRATIVE

8100M Total Petroleum Hydrocarbons

19J1092-05

Surrogate recovery(ies) outside of criteria due to matrix (UCM/coelution/matrix is present) (SM).

O-Terphenyl (330% @ 40-140%)

No other observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company

ESS Laboratory Work Order: 19J1092

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint 6010C - ICP 6020A - ICP MS 7010 - Graphite Furnace 7196A - Hexavalent Chromium 7470A - Aqueous Mercury 7471B - Solid Mercury 8011 - EDB/DBCP/TCP 8015C - GRO/DRO 8081B - Pesticides 8082A - PCB 8100M - TPH 8151A - Herbicides 8260B - VOA 8270D - SVOA 8270D SIM - SVOA Low Level 9014 - Cyanide 9038 - Sulfate 9040C - Aqueous pH 9045D - Solid pH (Corrosivity) 9050A - Specific Conductance 9056A - Anions (IC) 9060A - TOC 9095B - Paint Filter MADEP 04-1.1 - EPH MADEP 18-2.1 - VPH

Prep Methods

3005A - Aqueous ICP Digestion
3020A - Aqueous Graphite Furnace / ICP MS Digestion
3050B - Solid ICP / Graphite Furnace / ICP MS Digestion
3060A - Solid Hexavalent Chromium Digestion
3510C - Separatory Funnel Extraction
3520C - Liquid / Liquid Extraction
3540C - Manual Soxhlet Extraction
3541 - Automated Soxhlet Extraction
3546 - Microwave Extraction
3580A - Waste Dilution
5030B - Aqueous Purge and Trap
5030C - Aqueous Purge and Trap
5035A - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: B-19 S-1C Date Sampled: 10/28/19 14:00 Percent Solids: 93 Initial Volume: 19.8 Final Volume: 1 Extraction Method: 3546

ESS Laboratory Work Order: 19J1092 ESS Laboratory Sample ID: 19J1092-01 Sample Matrix: Soil Units: mg/kg dry Analyst: CAD Prepared: 10/30/19 20:36

<u>Analyte</u> Total Petroleum Hydrocarbons	Results (MRL) MDL 1430 (40.7)	<u>Method</u> 8100M	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 10/31/19 17:01	Sequence C9J0625	<u>Batch</u> CJ93071
	%Recovery	Qualifier	Limits				
Surrogate: O-Terphenyl	95 %		40-140				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: B-19 S-1C Date Sampled: 10/28/19 14:00 Percent Solids: 93 Initial Volume: 19.8 Final Volume: 1 Extraction Method: 3546

<u>Analyte</u> Fingerprint ESS Laboratory Work Order: 19J1092 ESS Laboratory Sample ID: 19J1092-01 Sample Matrix: Soil Units: N/A Analyst: CAD Prepared: 10/30/19 20:36

Fingerprint ID

<u>Results (MRL)</u> MDI	<u>Method</u>	<u>Limit</u>	DF	<u>Analyst</u>	Analyzed	Sequence	Batch
Resembles: Diesel Fuel & Lub	icating Oil Ranges.						

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: B-20 S-4A Date Sampled: 10/28/19 15:15 Percent Solids: 92 Initial Volume: 19.7 Final Volume: 1 Extraction Method: 3546

ESS Laboratory Work Order: 19J1092 ESS Laboratory Sample ID: 19J1092-02 Sample Matrix: Soil Units: mg/kg dry Analyst: CAD Prepared: 10/30/19 20:36

<u>Analyte</u> Total Petroleum Hydrocarbons	Results (MRL) MI 4340 (41.3) 1000000000000000000000000000000000000	<u>Method</u> 8100M	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 10/31/19 17:38	Sequence C9J0625	<u>Batch</u> CJ93071
	%Recover)	Qualifier	Limits				
Surrogate: O-Terphenyl	134 %		40-140				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: B-20 S-4A Date Sampled: 10/28/19 15:15 Percent Solids: 92 Initial Volume: 19.7 Final Volume: 1 Extraction Method: 3546

<u>Analyte</u> Fingerprint ESS Laboratory Work Order: 19J1092 ESS Laboratory Sample ID: 19J1092-02 Sample Matrix: Soil Units: N/A Analyst: CAD Prepared: 10/30/19 20:36

Fingerprint ID

<u>Results (MRL)</u> <u>M</u>	1DL	Method	<u>Limit</u>	DF	<u>Analyst</u>	Analyzed	Sequence	Batch
Resembles: Diesel Fuel & I	Lubricatii	ng Oil Ranges.						

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: B-20 S-4B Date Sampled: 10/28/19 15:30 Percent Solids: 89 Initial Volume: 19.5 Final Volume: 1 Extraction Method: 3546

ESS Laboratory Work Order: 19J1092 ESS Laboratory Sample ID: 19J1092-03 Sample Matrix: Soil Units: mg/kg dry Analyst: CAD Prepared: 10/30/19 20:36

<u>Analyte</u> Total Petroleum Hydrocarbons	Results (MRL) MDL 68.9 (43.4)	<u>Method</u> 8100M	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 10/31/19 18:14	Sequence C9J0625	<u>Batch</u> CJ93071
	%Recovery	Qualifier	Limits				
Surrogate: O-Terphenyl	93 %		40-140				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: MW-16 S-4B Date Sampled: 10/29/19 11:45 Percent Solids: 88 Initial Volume: 19.8 Final Volume: 1 Extraction Method: 3546

ESS Laboratory Work Order: 19J1092 ESS Laboratory Sample ID: 19J1092-04 Sample Matrix: Soil Units: mg/kg dry Analyst: CAD Prepared: 10/30/19 20:36

<u>Analyte</u> Total Petroleum Hydrocarbons	Results (MRL) MDL 46.0 (43.0)	<u>Method</u> 8100M	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 10/31/19 18:50	Sequence C9J0625	<u>Batch</u> CJ93071
	%Recovery	Qualifier	Limits				
Surrogate: O-Terphenyl	77 %		40-140				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: SG-1 S-3B Date Sampled: 10/29/19 14:15 Percent Solids: 95 Initial Volume: 19.9 Final Volume: 1 Extraction Method: 3546

ESS Laboratory Work Order: 19J1092 ESS Laboratory Sample ID: 19J1092-05 Sample Matrix: Soil Units: mg/kg dry Analyst: CAD Prepared: 10/30/19 20:36

<u>Analyte</u> Total Petroleum Hydrocarbons	<u>Results (MRL)</u> <u>MD1</u> 12500 (399)	<u>Method</u> 8100M	<u>Limit</u>	<u>DF</u> 10	<u>Analyzed</u> 10/31/19 20:03	Sequence C9J0625	<u>Batch</u> CJ93071
	%Recovery	Qualifier	Limits				
Surrogate: O-Terphenyl	330 %	SM	40-140				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: SG-1 S-3B Date Sampled: 10/29/19 14:15 Percent Solids: 95 Initial Volume: 19.9 Final Volume: 1 Extraction Method: 3546

<u>Analyte</u> Fingerprint ESS Laboratory Work Order: 19J1092 ESS Laboratory Sample ID: 19J1092-05 Sample Matrix: Soil Units: N/A Analyst: CAD Prepared: 10/30/19 20:36

Fingerprint ID

<u>Results (MRL)</u> <u>MDL</u>	Method	<u>Limit</u>	DF	<u>Analyst</u>	Analyzed	Sequence	Batch
Resembles: Diesel Fuel & Lubricatin	g Oil Ranges.						

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: SG-4 S-2D Date Sampled: 10/29/19 15:05 Percent Solids: 94 Initial Volume: 19.5 Final Volume: 1 Extraction Method: 3546

ESS Laboratory Work Order: 19J1092 ESS Laboratory Sample ID: 19J1092-06 Sample Matrix: Soil Units: mg/kg dry Analyst: CAD Prepared: 10/30/19 20:36

<u>Analyte</u> Total Petroleum Hydrocarbons	Results (MRL) MDL 5140 (407)	<u>Method</u> 8100M	<u>Limit</u>	<u>DF</u> 10	<u>Analyzed</u> 10/31/19 20:39	Sequence C9J0625	<u>Batch</u> CJ93071
	%Recovery	Qualifier	Limits				
Surrogate: O-Terphenyl	116 %		40-140				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: SG-4 S-2D Date Sampled: 10/29/19 15:05 Percent Solids: 94 Initial Volume: 19.5 Final Volume: 1 Extraction Method: 3546

<u>Analyte</u> Fingerprint ESS Laboratory Work Order: 19J1092 ESS Laboratory Sample ID: 19J1092-06 Sample Matrix: Soil Units: N/A Analyst: CAD Prepared: 10/30/19 20:36

Fingerprint ID

<u>Results (MRL)</u> <u>MDL</u>	Method	<u>Limit</u>	DF	Analyst	Analyzed	Sequence	Batch
Resembles: Diesel Fuel & Lubricat	ing Oil Ranges.						

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: SG-5 S-3B Date Sampled: 10/29/19 15:30 Percent Solids: 86 Initial Volume: 19.6 Final Volume: 1 Extraction Method: 3546

ESS Laboratory Work Order: 19J1092 ESS Laboratory Sample ID: 19J1092-07 Sample Matrix: Soil Units: mg/kg dry Analyst: CAD Prepared: 10/30/19 20:36

<u>Analyte</u> Total Petroleum Hydrocarbons	Results (MRL) M ND (44.3) M	<u>DL</u> <u>Method</u> 8100M	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 10/31/19 19:27	Sequence C9J0625	<u>Batch</u> CJ93071
	%Recove	ry Qualifier	Limits				
Surrogate: O-Terphenyl	91 %	5	40-140				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company

ESS Laboratory Work Order: 19J1092

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
		8100M Tot	al Petroleum	Hydroca	rbons					
Batch CJ93071 - 3546										
Blank										
Decane (C10)	ND	0.2	mg/kg wet							
Docosane (C22)	ND	0.2	mg/kg wet							
Dodecane (C12)	ND	0.2	mg/kg wet							
Eicosane (C20)	ND	0.2	mg/kg wet							
Hexacosane (C26)	ND	0.2	mg/kg wet							
Hexadecane (C16)	ND	0.2	mg/kg wet							
Nonadecane (C19)	ND	0.2	mg/kg wet							
Nonane (C9)	ND	0.2	mg/kg wet							
Octacosane (C28)	ND	0.2	mg/kg wet							
Octadecane (C18)	ND	0.2	mg/kg wet							
Tetracosane (C24)	ND	0.2	mg/kg wet							
Tetradecane (C14)	ND	0.2	mg/kg wet							
Total Petroleum Hydrocarbons	ND	37.5	mg/kg wet							
Triacontane (C30)	ND	0.2	mg/kg wet							
Surrogate: O-Terphenyl	4.79		mg/kg wet	5.000		96	40-140			
.CS										
Decane (C10)	1.9	0.2	mg/kg wet	2.500		74	40-140			
Docosane (C22)	2.4	0.2	mg/kg wet	2.500		98	40-140			
Dodecane (C12)	2.0	0.2	mg/kg wet	2.500		79	40-140			
Eicosane (C20)	2.4	0.2	mg/kg wet	2.500		95	40-140			
Hexacosane (C26)	2.4	0.2	mg/kg wet	2.500		97	40-140			
Hexadecane (C16)	2.2	0.2	mg/kg wet	2.500		86	40-140			
Nonadecane (C19)	2.4	0.2	mg/kg wet	2.500		98	40-140			
Nonane (C9)	1.6	0.2	mg/kg wet	2.500		63	30-140			
Octacosane (C28)	2.5	0.2	mg/kg wet	2.500		98	40-140			
Octadecane (C18)	2.3	0.2	mg/kg wet	2.500		92	40-140			
Tetracosane (C24)	2.4	0.2	mg/kg wet	2.500		98	40-140			
Tetradecane (C14)	2.1	0.2	mg/kg wet	2.500		83	40-140			
Total Petroleum Hydrocarbons	31.3	37.5	mg/kg wet	35.00		89	40-140			
Triacontane (C30)	2.4	0.2	mg/kg wet	2.500		98	40-140			
Surrogate: O-Terphenyl	4.69		mg/kg wet	5.000		94	40-140			
LCS Dup										
Decane (C10)	1.9	0.2	mg/kg wet	2.500		78	40-140	4	25	
Docosane (C22)	2.6	0.2	mg/kg wet	2.500		102	40-140	4	25	
Dodecane (C12)	2.0	0.2	mg/kg wet	2.500		82	40-140	4	25	
Eicosane (C20)	2.5	0.2	mg/kg wet	2.500		100	40-140	5	25	
lexacosane (C26)	2.5	0.2	mg/kg wet	2.500		100	40-140	3	25	
Hexadecane (C16)	2.3	0.2	mg/kg wet	2.500		90	40-140	5	25	
Nonadecane (C19)	2.6	0.2	mg/kg wet	2.500		102	40-140	5	25	
Nonane (C9)	1.7	0.2	mg/kg wet	2.500		66	30-140	5	25	
Octacosane (C28)	2.5	0.2	mg/kg wet	2.500		100	40-140	2	25	
Octadecane (C18)	2.4	0.2	mg/kg wet	2.500		96	40-140	5	25	

Tel: 401-461-7181 Dependability •

Fax: 401-461-4486

Service

•

Quality

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company

ESS Laboratory Work Order: 19J1092

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
		01001110		riyuroca						
Batch CJ93071 - 3546										
Tetracosane (C24)	2.5	0.2	mg/kg wet	2.500		102	40-140	4	25	
Tetradecane (C14)	2.2	0.2	mg/kg wet	2.500		87	40-140	4	25	
Total Petroleum Hydrocarbons	32.4	37.5	mg/kg wet	35.00		92	40-140	3	25	
Triacontane (C30)	2.5	0.2	mg/kg wet	2.500		99	40-140	1	25	
Surrogate: O-Terphenyl	4.78		mg/kg wet	5.000		96	40-140			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company

ESS Laboratory Work Order: 19J1092

Notes and Definitions

Z-01	Resembles: Diesel Fuel & Lubricating Oil Ranges.
U	Analyte included in the analysis, but not detected
SM	Surrogate recovery(ies) outside of criteria due to matrix (UCM/coelution/matrix is present) (SM).
D	Diluted.
ND	Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
MDL	Method Detection Limit
MRL	Method Reporting Limit
LOD	Limit of Detection
LOQ	Limit of Quantitation
DL	Detection Limit
I/V	Initial Volume
F/V	Final Volume
8	Subcontracted analysis; see attached report
1	Range result excludes concentrations of surrogates and/or internal standards eluting in that range.
2	Range result excludes concentrations of target analytes eluting in that range.
3	Range result excludes the concentration of the C9-C10 aromatic range.
Avg NR	Results reported as a mathematical average. No Recovery
[CALC]	Calculated Analyte
SUB	Subcontracted analysis; see attached report
RL	Reporting Limit
EDL	Estimated Detection Limit
MF	Membrane Filtration
MPN	Most Probably Number
TNTC	Too numerous to Count
CFU	Colony Forming Units
010	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company

ESS Laboratory Work Order: 19J1092

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental health/environmental laboratories/pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

> Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

ESS Laboratory Sample and Cooler Receipt Checklist

1

			e, RI - GZA/H	IDM	Date		19J1092	
Shipped/D	elivered Via:		Client			Due Date: for Project:	11/6/2019 5 Day	_
	anifest prese			No	6. Does COC	match bottles?		Yes
2. Were cu	istody seals p	present?	۵	No		mplete and correct?		Yes
3. Is radiati	ion count <10	0 CPM?	C	Yes		ples received intact?		Yes
	ler Present?	Iced with:		Yes		Informed about short h analyses received outsi		Yes / No (NA) Yes / No
5. Was CC	C signed and	dated by cl	ient?	Yes				
	bcontracting i Sample IDs: Analysis: TAT:		Yes /		a. Air bubble	As received? s in aqueous VOAs? hanol cover soil complete	ly?	Yes / 🏠 Yes / No Yes / No / NA
a. If metals	e samples pro s preserved u vel VOA vials	pon receipt:	ved?	V No Date: Date:	Time: Time:	By		_
Sample Re	ceiving Notes	S:						
					<i>•</i>			
	re a need to		iject Manager dient?	? Date:	Yes / No Yes / No Time: _	Ву	:	
			<u> </u>					
Sample Number	Container ID	Proper Container	Air Bubbles Present	Sufficient Volume	Container Type	Preservative	Record pH (Cy Pestic	
01	406966	Yes	NA	Yes	4 oz. Jar - Unpres	NP		
02 03	406965 406964	Yes Yes	NA NA	Yes Yes	4 oz. Jar - Unpres 4 oz. Jar - Unpres	NP NP		
04 05	406963 406962	Yes Yes	NA NA	Yes Yes	4 oz. Jar - Unpres 4 oz. Jar - Unpres	NP NP		
06 07	406961 406960	Yes Yes	NA NA	Yes Yes	4 oz. Jar - Unpres 4 oz. Jar - Unpres	NP NP NP		
Are barcode Are all Flas Are all Hex Are all QC	ontainers sca e labels on co	orrect contains rs attached/c kers attached hed?	ners? container ID # 1?	circled?	Initials Yes / No Yes / No / NA Yes / No / NA Yes / No / NA Yes / No / NA			
Completed By: Reviewed		A			Date & Time:	130/19 100		
By: Delivered	Uf		-		Date & Time:	A/XV/7 [Ă.	14	

ESS Laboratory Sample and Cooler Receipt Checklist											
Client:	GZA - Providence, RI - GZA/HDM	ESS Project ID:	19J1092								
By:	ker -	10/33/(9 Date Received:	10/30/2019								
· <u> </u>											

157092		ker see Specify)																					Please specify "Other" preservative and containers types in this space	11/8/19 LLB	Received By: (Signature, Date & Time)			Received By: (Signature, Date & Time)		
ESS Lab #	Reporting Limits	Electonic (X) Data Checker Deliverables (X) other (Please Specify	<u> </u>		LDL	юĄ	Hd F		×	×	7	7	Xx	××	X			S-Sterile V-Vial		120 11-0ther* I	er Sample:		specify "Other" preservative a	added per client 11/	Software to a Science treas Time)	by (bigliature) pare a time)		Relinquished By: (Signature, Date & Time)		
CHAIN OF CUSTODY	5 Days	tate ∠ ∠ Is this project for any of the following?: CT BCP O MA MCP O RGP	Project Name	Jewilt Dyc	Valuer Ph. Suth bu	Zip Code +0.#	Michard . Continue failor	Sample ID	B-19/5-1C	B-au/s-4A	3h-s/0e-a	MW-16/5-4B	26-1/2-36	56-4/S- 2D	95-5/5-36			C-Cubitainer J-Jar O-Other P-Poly S-SI	6-1L 7-VOA 8-2 oz 9-4 oz	6-Methanot 7-Na2S2O3 8-ZnAce, NaOH 9-NH4Cl 10-DI H2O	Number of Containers per Sample:	Sampled by : 20wan Hawel	Comments: Please s	*REV1 TPH Fingerprint ac		Received By: (Signature, Date & Lime) Relinquisited of			10/30/3 1607	ł
0	Turn Time	Is this Contract Is this	Project #	H0-205h2	3,21	State	FAX Number	Sample Matrix	Soil	ડિલંની	Soil	Sal	511	soul	Con1			ISS B-BOD Bottle	4	4-HNO3 5-NaOH 6-M						Received By:	l'and	Redeived By:		
		10 186				ω Ζ	FAXI	Sample Type	(Sred)	(Larl)	charlo	(LINEL)	(141-	(mah	-me	2		tte AG-Amber Glass		3-H2SO4		Laboratory Use Only	O Drop Off	O Pickup	°	ate & Time)	1130/10 1100	ate & Time)	-10/30/19	
	EGG Laboratory Division of Thielsch Engineering, Inc.	185 Frances Avenue, Cranston RI 02910 Tei. (401) 461-7181 Fax (401) 461-4486	www.esslaboratory.com Company Name	(5th	Dichard Contact Person	Phoneirur	Telephone Number	ESS Lab Collection Collection in Date Time	1012819	2 10/20/19 1515	2 10120101 530			_	1		- Ma	Container Tyne: AC-Air Cassette	Container Volume: 1-100 mL 2	15		Laborator	Conter Present:	Seals Intact:	Cooler Temperature:	Relinquished by: (Signature, Date & Time)	Thus Ale	Relinquished by: (Signature, Date & Time)	Sp. Mar	S - M

177092		Pred Fred	() TOP																					Please specify "Other" preservative and containers types in this space		Received By: (Signature, Date & Time)		Received By: (Signature, Date & Time)		
ESS Lab #	Reporting		Electonic (N Data Unexter Deliverables S Other (Please Specify		sis	ilen 4	(Hd		×	×	7	7	X	7	×			S-Sterile V-Vial AG	÷	H20 11-Other* 1	ier Sample:		specify "Other" preservative a		Relinquished By: (Signature, Date & Time)		Relinquished By: (Signature, Date & Time)		
CHAIN OF CUSTODY	5 Days	21	Is this project for any of the following?: CT RCP O MA MCP O RGP	Foull C Duc	Internet Gutte Sco	ZIP Code	0.240% Email Address	Michard . continue farcun	Sample ID	B-19/5-1C	B-auls-4A	gh-sloe-a	MW-16/S-4B	98-2/ 1-92	56-4/5- 2D	95-5/5-36			C Cuthteiner Luar O-Other P-Polv S-S	6-11 7-VOA 8-2 oz 9-4 oz 10	ol 7-Na2S2O3 8-ZnA		Sampled by : Rowan Hawel			Received By: (Signature, Date & Time) Relinquished I	1020	Redeived By: (Signature, Date & Time) Relinquished t	10/30/2 (cer	
Ľ.	Turn Time	Regulatory State	Is this O CT RCP	Project #	0.0	State	5	FAX Number	Sample Matrix	Soil	Sei-1	Soil	Cal	511	link	Chill			1	4.200 ml 5-500 ml	-HNO3 5-NaOH					Received By:	.74	Redeived By:		, ,
		10	86			S	z	FAX	Sample Type	Greek	(JARL)	chero	(LINEL-	144)	(mab	-141				TE AG-AMDEL GIASS	3-H2SO4		Laboratory Use Only	O Drop Off	O Pickup	C ta & Time)	110.11	1 00 100	~ 10/30/19 H:07	
	ESS Laboratory Division of Thielsch Engineering, Inc.	185 Frances Avenue. Cranston RI 02910	Tel. (401) 461-7181 Fax (401) 461-4486	Company Name	Contact Person	Richard Carlond	providence	Telephone Number	ESS Lab Collection Collection in Date Time	1012819	2121 PILOCION C	2 10130 (10) 530				1	<u> </u>			81	Container Volume: 1-100 Itt. 2-2.3 gat	Fless valuation code.	Laboraton	Cooler Present:	X	Cooler Temperature:		Belindinished hy (Signature, Date & Time)	Charler	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Richard Carlone GZA GeoEnvironmental, Inc. 188 Valley Street Providence, RI 02909

RE: Seville Dyeing Company (03.0034502.04) ESS Laboratory Work Order Number: 19K0746

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director

Analytical Summary

REVIEWED By ESS Laboratory at 4:14 pm, Dec 06, 2019

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company

ESS Laboratory Work Order: 19K0746

SAMPLE RECEIPT

The following samples were received on November 22, 2019 for the analyses specified on the enclosed Chain of Custody Record.

Lab Number 19K0746-01	Sample Name MW-14	Matrix Ground Water	Analysis 8260B
19K0746-02	MW-16	Ground Water	8260B
19K0746-03	E-Soil	Ground Water	6010C, 6020A, 7010, 7470A, 8082A, 8100M,
			8260B, 8270D SIM PAH
19K0746-04	E-GW	Ground Water	8260B
19K0746-05	Drum	Ground Water	2540D, 8260B, 8270D, 8270D SIM
19K0746-06	BD11222019	Ground Water	8260B
19K0746-07	Trip Blank	Ground Water	8260B

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company

ESS Laboratory Work Order: 19K0746

PROJECT NARRATIVE

8082A Polychlorinated Biphenyls (PCB)

CK92702-BSD1 Relative percent difference for duplicate is outside of criteria (D+). Aroclor 1016 (23% @ 20%)

8270D Semi-Volatile Organic Compounds

C9K0419-CCV2	Calibration required quadratic regression (Q).
	2,4-Dinitrophenol (117% @ 80-120%), 4,6-Dinitro-2-Methylphenol (110% @ 80-120%), Benzoic Acid
	(93% @ 80-120%)
C9K0419-CCV2	Continuing Calibration %Diff/Drift is above control limit (CD+).
	Hexachlorocyclopentadiene (39% @ 20%)
C9K0419-CCV2	Initial Calibration Verification recovery is below lower control limit (ICV-).
	2,4-Dinitrotoluene
CK92556-BS1	<u>Blank Spike recovery is below lower control limit (B-).</u>
	Hexachloroethane (38% @ 40-140%)
CK92556-BSD1	Blank Spike recovery is below lower control limit (B-).
	Hexachloroethane (34% @ 40-140%)
CK92556-BSD1	Relative percent difference for duplicate is outside of criteria (D+).
	Pyridine (25% @ 20%)

8270D(SIM) Semi-Volatile Organic Compounds

C9K0451-CCV1	<u>Calibration required quadratic regression (Q).</u>
	2,4,6-Tribromophenol (134% @ 80-120%), Pentachlorophenol (99% @ 80-120%)
C9K0451-CCV1	Continuing Calibration %Diff/Drift is above control limit (CD+).
	2,4,6-Tribromophenol (34% @ 20%)
CK92556-BS2	<u>Surrogate recovery(ies) above upper control limit (S+).</u>
	2,4,6-Tribromophenol (132% @ 15-110%)
CK92556-BSD2	<u>Surrogate recovery(ies) above upper control limit (S+).</u>
	2,4,6-Tribromophenol (134% @ 15-110%)

No other observations noted.

End of Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company

ESS Laboratory Work Order: 19K0746

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters Semivolatile Organics Internal Standard Information Semivolatile Organics Surrogate Information Volatile Organics Internal Standard Information Volatile Organics Surrogate Information EPH and VPH Alkane Lists

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint 6010C - ICP 6020A - ICP MS 7010 - Graphite Furnace 7196A - Hexavalent Chromium 7470A - Aqueous Mercury 7471B - Solid Mercury 8011 - EDB/DBCP/TCP 8015C - GRO/DRO 8081B - Pesticides 8082A - PCB 8100M - TPH 8151A - Herbicides 8260B - VOA 8270D - SVOA 8270D SIM - SVOA Low Level 9014 - Cyanide 9038 - Sulfate 9040C - Aqueous pH 9045D - Solid pH (Corrosivity) 9050A - Specific Conductance 9056A - Anions (IC) 9060A - TOC 9095B - Paint Filter MADEP 04-1.1 - EPH MADEP 18-2.1 - VPH

Prep Methods

3005A - Aqueous ICP Digestion
3020A - Aqueous Graphite Furnace / ICP MS Digestion
3050B - Solid ICP / Graphite Furnace / ICP MS Digestion
3060A - Solid Hexavalent Chromium Digestion
3510C - Separatory Funnel Extraction
3520C - Liquid / Liquid Extraction
3540C - Manual Soxhlet Extraction
3541 - Automated Soxhlet Extraction
3580A - Waste Dilution
5030B - Aqueous Purge and Trap
5030C - Aqueous Purge and Trap
5035A - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: MW-14 Date Sampled: 11/22/19 12:04 Percent Solids: N/A Initial Volume: 5 Final Volume: 5 Extraction Method: 5030B

ESS Laboratory Work Order: 19K0746 ESS Laboratory Sample ID: 19K0746-01 Sample Matrix: Ground Water Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

Analyte 1,1,1,2-Tetrachloroethane	<u>Results (MRL)</u> ND (0.0010)	MDL <u>Method</u> 8260B	Limit <u>DF</u>	<u>Analyzed</u> 11/26/19 16:36	Sequence C9K0432	<u>Batch</u> CK92632
1,1,1-Trichloroethane	ND (0.0010)	8260B	1	11/26/19 16:36	C9K0432	CK92632
1,1,2,2-Tetrachloroethane	ND (0.0010) ND (0.0005)	8260B	1	11/26/19 16:36	C9K0432	CK92632
1,1,2-Trichloroethane	ND (0.0003) ND (0.0010)	8260B	1	11/26/19 16:36	C9K0432	CK92632
1.1-Dichloroethane	ND (0.0010)	8260B	1	11/26/19 16:36	C9K0432	CK92632
1,1-Dichloroethene	ND (0.0010)	8260B	1	11/26/19 16:36	C9K0432	CK92632
1,1-Dichloropropene	ND (0.0020)	8260B	1	11/26/19 16:36	C9K0432	CK92632
1,2,3-Trichlorobenzene	ND (0.0010)	8260B	1	11/26/19 16:36	C9K0432	CK92632
1,2,3-Trichloropropane	ND (0.0010)	8260B	1	11/26/19 16:36	C9K0432	CK92632
1,2,4-Trichlorobenzene	ND (0.0010)	8260B	1	11/26/19 16:36	C9K0432	CK92632
1,2,4-Trimethylbenzene	ND (0.0010)	8260B	1	11/26/19 16:36	C9K0432	CK92632
1,2-Dibromo-3-Chloropropane	ND (0.0050)	8260B	1	11/26/19 16:36	C9K0432	CK92632
1,2-Dibromoethane	ND (0.0010)	8260B	1	11/26/19 16:36	C9K0432	CK92632
1.2-Dichlorobenzene	ND (0.0010)	8260B	1	11/26/19 16:36	C9K0432	CK92632
1.2-Dichloroethane	ND (0.0010)	8260B	1	11/26/19 16:36	C9K0432	CK92632
1,2-Dichloropropane	ND (0.0010)	8260B	1	11/26/19 16:36	C9K0432	CK92632
1,3,5-Trimethylbenzene	ND (0.0010)	8260B	1	11/26/19 16:36	C9K0432	CK92632
1.3-Dichlorobenzene	ND (0.0010)	8260B	1	11/26/19 16:36	C9K0432	CK92632
1,3-Dichloropropane	ND (0.0010)	8260B	1	11/26/19 16:36	C9K0432	CK92632
1,4-Dichlorobenzene	ND (0.0010)	8260B	1	11/26/19 16:36	C9K0432	CK92632
1,4-Dioxane - Screen	ND (0.500)	8260B	1	11/26/19 16:36	C9K0432	CK92632
1-Chlorohexane	ND (0.0010)	8260B	1	11/26/19 16:36	C9K0432	CK92632
2,2-Dichloropropane	ND (0.0010)	8260B	1	11/26/19 16:36	C9K0432	CK92632
2-Butanone	ND (0.0100)	8260B	1	11/26/19 16:36	C9K0432	CK92632
2-Chlorotoluene	ND (0.0010)	8260B	1	11/26/19 16:36	C9K0432	CK92632
2-Hexanone	ND (0.0100)	8260B	1	11/26/19 16:36	C9K0432	CK92632
4-Chlorotoluene	ND (0.0010)	8260B	1	11/26/19 16:36	C9K0432	CK92632
4-Isopropyltoluene	ND (0.0010)	8260B	1	11/26/19 16:36	C9K0432	CK92632
4-Methyl-2-Pentanone	ND (0.0250)	8260B	1	11/26/19 16:36	C9K0432	CK92632
Acetone	ND (0.0100)	8260B	1	11/26/19 16:36	C9K0432	CK92632
Benzene	ND (0.0010)	8260B	1	11/26/19 16:36	C9K0432	CK92632
Bromobenzene	ND (0.0020)	8260B	1	11/26/19 16:36	C9K0432	CK92632

Tel: 401-461-7181 Dependability • Quality Fax: 401-461-4486 Service

٠

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: MW-14 Date Sampled: 11/22/19 12:04 Percent Solids: N/A Initial Volume: 5 Final Volume: 5 Extraction Method: 5030B

ESS Laboratory Work Order: 19K0746 ESS Laboratory Sample ID: 19K0746-01 Sample Matrix: Ground Water Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

Analyte Bromochloromethane	<u>Results (MRL)</u> ND (0.0010)	MDL <u>Method</u> 8260B	Limit <u>DF</u>	<u>Analyzed</u> 11/26/19 16:36	Sequence C9K0432	<u>Batch</u> CK92632
Bromodichloromethane	ND (0.0006)	8260B	1	11/26/19 16:36	C9K0432	CK92632
Bromoform	ND (0.0010)	8260B	1	11/26/19 16:36	C9K0432	CK92632
Bromomethane	ND (0.0020)	8260B	1	11/26/19 16:36	C9K0432	CK92632
Carbon Disulfide	ND (0.0010)	8260B	1	11/26/19 16:36	C9K0432	CK92632
Carbon Tetrachloride	ND (0.0010)	8260B	1	11/26/19 16:36	C9K0432	CK92632
Chlorobenzene	ND (0.0010)	8260B	1	11/26/19 16:36	C9K0432	CK92632
Chloroethane	ND (0.0020)	8260B	1	11/26/19 16:36	C9K0432	CK92632
Chloroform	ND (0.0010)	8260B	1	11/26/19 16:36	C9K0432	CK92632
Chloromethane	ND (0.0020)	8260B	1	11/26/19 16:36	C9K0432	CK92632
cis-1,2-Dichloroethene	ND (0.0010)	8260B	1	11/26/19 16:36	C9K0432	CK92632
cis-1,3-Dichloropropene	ND (0.0004)	8260B	1	11/26/19 16:36	C9K0432	CK92632
Dibromochloromethane	ND (0.0010)	8260B	1	11/26/19 16:36	C9K0432	CK92632
Dibromomethane	ND (0.0010)	8260B	1	11/26/19 16:36	C9K0432	CK92632
Dichlorodifluoromethane	ND (0.0020)	8260B	1	11/26/19 16:36	C9K0432	CK92632
Diethyl Ether	ND (0.0010)	8260B	1	11/26/19 16:36	C9K0432	CK92632
Di-isopropyl ether	ND (0.0010)	8260B	1	11/26/19 16:36	C9K0432	CK92632
Ethyl tertiary-butyl ether	ND (0.0010)	8260B	1	11/26/19 16:36	C9K0432	CK92632
Ethylbenzene	ND (0.0010)	8260B	1	11/26/19 16:36	C9K0432	CK92632
Hexachlorobutadiene	ND (0.0006)	8260B	1	11/26/19 16:36	C9K0432	CK92632
Hexachloroethane	ND (0.0010)	8260B	1	11/26/19 16:36	C9K0432	CK92632
Isopropylbenzene	ND (0.0010)	8260B	1	11/26/19 16:36	C9K0432	CK92632
Methyl tert-Butyl Ether	ND (0.0010)	8260B	1	11/26/19 16:36	C9K0432	CK92632
Methylene Chloride	ND (0.0020)	8260B	1	11/26/19 16:36	C9K0432	CK92632
Naphthalene	ND (0.0010)	8260B	1	11/26/19 16:36	C9K0432	CK92632
n-Butylbenzene	ND (0.0010)	8260B	1	11/26/19 16:36	C9K0432	CK92632
n-Propylbenzene	ND (0.0010)	8260B	1	11/26/19 16:36	C9K0432	CK92632
sec-Butylbenzene	ND (0.0010)	8260B	1	11/26/19 16:36	C9K0432	CK92632
Styrene	ND (0.0010)	8260B	1	11/26/19 16:36	C9K0432	CK92632
tert-Butylbenzene	ND (0.0010)	8260B	1	11/26/19 16:36	C9K0432	CK92632
Tertiary-amyl methyl ether	ND (0.0010)	8260B	1	11/26/19 16:36	C9K0432	CK92632
Tetrachloroethene	ND (0.0010)	8260B	1	11/26/19 16:36	C9K0432	CK92632

Tel: 401-461-7181 Dependability • Quality Fax: 401-461-4486 Service

٠

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: MW-14 Date Sampled: 11/22/19 12:04 Percent Solids: N/A Initial Volume: 5 Final Volume: 5 Extraction Method: 5030B

ESS Laboratory Work Order: 19K0746 ESS Laboratory Sample ID: 19K0746-01 Sample Matrix: Ground Water Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

<u>Analyte</u> Tetrahydrofuran	<u>Results (MRL)</u> ND (0.0050)	MDL	<u>Method</u> 8260B	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 11/26/19 16:36	Sequence C9K0432	<u>Batch</u> CK92632
Toluene	ND (0.0010)		8260B		1	11/26/19 16:36	C9K0432	CK92632
trans-1,2-Dichloroethene	ND (0.0010)		8260B		1	11/26/19 16:36	C9K0432	CK92632
trans-1,3-Dichloropropene	ND (0.0004)		8260B		1	11/26/19 16:36	C9K0432	CK92632
Trichloroethene	ND (0.0010)		8260B		1	11/26/19 16:36	C9K0432	CK92632
Trichlorofluoromethane	ND (0.0010)		8260B		1	11/26/19 16:36	C9K0432	CK92632
Vinyl Acetate	ND (0.0050)		8260B		1	11/26/19 16:36	C9K0432	CK92632
Vinyl Chloride	ND (0.0010)		8260B		1	11/26/19 16:36	C9K0432	CK92632
Xylene O	ND (0.0010)		8260B		1	11/26/19 16:36	C9K0432	CK92632
Xylene P,M	ND (0.0020)		8260B		1	11/26/19 16:36	C9K0432	CK92632
Xylenes (Total)	ND (0.00200)		8260B		1	11/26/19 16:36		[CALC]
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		110 %		70-130				
Surrogate: 4-Bromofluorobenzene		87 %		70-130				
Surrogate: Dibromofluoromethane		104 %		70-130				
Surrogate: Toluene-d8		102 %		70-130				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: MW-16 Date Sampled: 11/22/19 13:04 Percent Solids: N/A Initial Volume: 5 Final Volume: 5 Extraction Method: 5030B

ESS Laboratory Work Order: 19K0746 ESS Laboratory Sample ID: 19K0746-02 Sample Matrix: Ground Water Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

<u>Analyte</u> 1,1,1,2-Tetrachloroethane	<u>Results (MRL)</u> ND (0.0010)	MDL Method 8260B	Limit DF	Analyzed 11/26/19 17:02	Sequence C9K0432	<u>Batch</u> CK92632
1,1,1-Trichloroethane	ND (0.0010)	8260B	1	11/26/19 17:02	C9K0432	CK92632
1,1,2,2-Tetrachloroethane	ND (0.0005)	8260B	1	11/26/19 17:02	C9K0432	CK92632
1,1,2-Trichloroethane	ND (0.0010)	8260B	1	11/26/19 17:02	C9K0432	CK92632
1,1-Dichloroethane	ND (0.0010)	8260B	1	11/26/19 17:02	C9K0432	CK92632
1,1-Dichloroethene	ND (0.0010)	8260B	1	11/26/19 17:02	C9K0432	CK92632
1,1-Dichloropropene	ND (0.0020)	8260B	1	11/26/19 17:02	C9K0432	CK92632
1,2,3-Trichlorobenzene	ND (0.0010)	8260B	1	11/26/19 17:02	C9K0432	CK92632
1,2,3-Trichloropropane	ND (0.0010)	8260B	1	11/26/19 17:02	C9K0432	CK92632
1,2,4-Trichlorobenzene	ND (0.0010)	8260B	1	11/26/19 17:02	C9K0432	CK92632
1,2,4-Trimethylbenzene	ND (0.0010)	8260B	1	11/26/19 17:02	C9K0432	CK92632
1,2-Dibromo-3-Chloropropane	ND (0.0050)	8260B	1	11/26/19 17:02	C9K0432	CK92632
1,2-Dibromoethane	ND (0.0010)	8260B	1	11/26/19 17:02	C9K0432	CK92632
1,2-Dichlorobenzene	ND (0.0010)	8260B	1	11/26/19 17:02	C9K0432	CK92632
1,2-Dichloroethane	ND (0.0010)	8260B	1	11/26/19 17:02	C9K0432	CK92632
1,2-Dichloropropane	ND (0.0010)	8260B	1	11/26/19 17:02	C9K0432	CK92632
1,3,5-Trimethylbenzene	ND (0.0010)	8260B	1	11/26/19 17:02	C9K0432	CK92632
1,3-Dichlorobenzene	ND (0.0010)	8260B	1	11/26/19 17:02	C9K0432	CK92632
1,3-Dichloropropane	ND (0.0010)	8260B	1	11/26/19 17:02	C9K0432	CK92632
1,4-Dichlorobenzene	ND (0.0010)	8260B	1	11/26/19 17:02	C9K0432	CK92632
1,4-Dioxane - Screen	ND (0.500)	8260B	1	11/26/19 17:02	C9K0432	CK92632
1-Chlorohexane	ND (0.0010)	8260B	1	11/26/19 17:02	C9K0432	CK92632
2,2-Dichloropropane	ND (0.0010)	8260B	1	11/26/19 17:02	C9K0432	CK92632
2-Butanone	ND (0.0100)	8260B	1	11/26/19 17:02	C9K0432	CK92632
2-Chlorotoluene	ND (0.0010)	8260B	1	11/26/19 17:02	C9K0432	CK92632
2-Hexanone	ND (0.0100)	8260B	1	11/26/19 17:02	C9K0432	CK92632
4-Chlorotoluene	ND (0.0010)	8260B	1	11/26/19 17:02	C9K0432	CK92632
4-Isopropyltoluene	ND (0.0010)	8260B	1	11/26/19 17:02	C9K0432	CK92632
4-Methyl-2-Pentanone	ND (0.0250)	8260B	1	11/26/19 17:02	C9K0432	CK92632
Acetone	ND (0.0100)	8260B	1	11/26/19 17:02	C9K0432	CK92632
Benzene	ND (0.0010)	8260B	1	11/26/19 17:02	C9K0432	CK92632
Bromobenzene	ND (0.0020)	8260B	1	11/26/19 17:02	C9K0432	CK92632

Tel: 401-461-7181 Dependability • Quality Fax: 401-461-4486 Service

٠

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: MW-16 Date Sampled: 11/22/19 13:04 Percent Solids: N/A Initial Volume: 5 Final Volume: 5 Extraction Method: 5030B

ESS Laboratory Work Order: 19K0746 ESS Laboratory Sample ID: 19K0746-02 Sample Matrix: Ground Water Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

Analyte Bromochloromethane	Results (MRL) ND (0.0010)	MDL <u>Method</u> 8260B	Limit <u>DF</u>	<u>Analyzed</u> 11/26/19 17:02	Sequence C9K0432	<u>Batch</u> CK92632
Bromodichloromethane	ND (0.0006)	8260B	1	11/26/19 17:02	C9K0432	CK92632
Bromoform	ND (0.0010)	8260B	1	11/26/19 17:02	C9K0432	CK92632
Bromomethane	ND (0.0020)	8260B	1	11/26/19 17:02	C9K0432	CK92632
Carbon Disulfide	ND (0.0010)	8260B	1	11/26/19 17:02	C9K0432	CK92632
Carbon Tetrachloride	ND (0.0010)	8260B	1	11/26/19 17:02	C9K0432	CK92632
Chlorobenzene	ND (0.0010)	8260B	1	11/26/19 17:02	C9K0432	CK92632
Chloroethane	ND (0.0020)	8260B	1	11/26/19 17:02	C9K0432	CK92632
Chloroform	ND (0.0010)	8260B	1	11/26/19 17:02	C9K0432	CK92632
Chloromethane	ND (0.0020)	8260B	1	11/26/19 17:02	C9K0432	CK92632
cis-1,2-Dichloroethene	ND (0.0010)	8260B	1	11/26/19 17:02	C9K0432	CK92632
cis-1,3-Dichloropropene	ND (0.0004)	8260B	1	11/26/19 17:02	C9K0432	CK92632
Dibromochloromethane	ND (0.0010)	8260B	1	11/26/19 17:02	C9K0432	CK92632
Dibromomethane	ND (0.0010)	8260B	1	11/26/19 17:02	C9K0432	CK92632
Dichlorodifluoromethane	ND (0.0020)	8260B	1	11/26/19 17:02	C9K0432	CK92632
Diethyl Ether	ND (0.0010)	8260B	1	11/26/19 17:02	C9K0432	CK92632
Di-isopropyl ether	ND (0.0010)	8260B	1	11/26/19 17:02	C9K0432	CK92632
Ethyl tertiary-butyl ether	ND (0.0010)	8260B	1	11/26/19 17:02	C9K0432	CK92632
Ethylbenzene	ND (0.0010)	8260B	1	11/26/19 17:02	C9K0432	CK92632
Hexachlorobutadiene	ND (0.0006)	8260B	1	11/26/19 17:02	C9K0432	CK92632
Hexachloroethane	ND (0.0010)	8260B	1	11/26/19 17:02	C9K0432	CK92632
Isopropylbenzene	ND (0.0010)	8260B	1	11/26/19 17:02	C9K0432	CK92632
Methyl tert-Butyl Ether	ND (0.0010)	8260B	1	11/26/19 17:02	C9K0432	CK92632
Methylene Chloride	ND (0.0020)	8260B	1	11/26/19 17:02	C9K0432	CK92632
Naphthalene	ND (0.0010)	8260B	1	11/26/19 17:02	C9K0432	CK92632
n-Butylbenzene	ND (0.0010)	8260B	1	11/26/19 17:02	C9K0432	CK92632
n-Propylbenzene	ND (0.0010)	8260B	1	11/26/19 17:02	C9K0432	CK92632
sec-Butylbenzene	ND (0.0010)	8260B	1	11/26/19 17:02	C9K0432	CK92632
Styrene	ND (0.0010)	8260B	1	11/26/19 17:02	C9K0432	CK92632
tert-Butylbenzene	ND (0.0010)	8260B	1	11/26/19 17:02	C9K0432	CK92632
Tertiary-amyl methyl ether	ND (0.0010)	8260B	1	11/26/19 17:02	C9K0432	CK92632
Tetrachloroethene	ND (0.0010)	8260B	1	11/26/19 17:02	C9K0432	CK92632

Tel: 401-461-7181 Dependability • Quality Fax: 401-461-4486 Service

٠

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: MW-16 Date Sampled: 11/22/19 13:04 Percent Solids: N/A Initial Volume: 5 Final Volume: 5 Extraction Method: 5030B

ESS Laboratory Work Order: 19K0746 ESS Laboratory Sample ID: 19K0746-02 Sample Matrix: Ground Water Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

<u>Analyte</u> Tetrahydrofuran	<u>Results (MRL)</u> ND (0.0050)	MDL	<u>Method</u> 8260B	<u>Limit</u>	$\frac{\mathbf{DF}}{1}$	<u>Analyzed</u> 11/26/19 17:02	Sequence C9K0432	Batch CK92632
Toluene	ND (0.0010)		8260B		1	11/26/19 17:02	C9K0432	CK92632
trans-1,2-Dichloroethene	ND (0.0010)		8260B		1	11/26/19 17:02	C9K0432	CK92632
trans-1,3-Dichloropropene	ND (0.0004)		8260B		1	11/26/19 17:02	C9K0432	CK92632
Trichloroethene	ND (0.0010)		8260B		1	11/26/19 17:02	C9K0432	CK92632
Trichlorofluoromethane	ND (0.0010)		8260B		1	11/26/19 17:02	C9K0432	CK92632
Vinyl Acetate	ND (0.0050)		8260B		1	11/26/19 17:02	C9K0432	CK92632
Vinyl Chloride	ND (0.0010)		8260B		1	11/26/19 17:02	C9K0432	CK92632
Xylene O	ND (0.0010)		8260B		1	11/26/19 17:02	C9K0432	CK92632
Xylene P,M	ND (0.0020)		8260B		1	11/26/19 17:02	C9K0432	CK92632
Xylenes (Total)	ND (0.00200)		8260B		1	11/26/19 17:02		[CALC]
	ç	%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		110 %		70-130				
Surrogate: 4-Bromofluorobenzene		90 %		70-130				
Surrogate: Dibromofluoromethane		102 %		70-130				
Surrogate: Toluene-d8		101 %		70-130				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: E-Soil Date Sampled: 11/22/19 11:10 Percent Solids: N/A

ESS Laboratory Work Order: 19K0746 ESS Laboratory Sample ID: 19K0746-03 Sample Matrix: Ground Water Units: mg/L

Extraction Method: 3005A/200.7

Total Metals

<u>Analyte</u>	Results (MRL)	<u>MDL</u>	Method	<u>Limit</u>	<u>DF</u>	Analyst		<u>I/V</u>	<u>F/V</u>	Batch
Antimony	ND (0.001)		6020A		1	NAR	11/25/19 11:20	50	25	CK92237
Arsenic	ND (0.002)		7010		1	KJK	11/26/19 17:00	50	25	CK92237
Beryllium	ND (0.0005)		6010C		1	KJK	11/22/19 21:31	50	25	CK92237
Cadmium	ND (0.0025)		6010C		1	KJK	11/22/19 21:31	50	25	CK92237
Chromium	ND (0.010)		6010C		1	KJK	11/22/19 21:31	50	25	CK92237
Copper	ND (0.010)		6010C		1	KJK	11/22/19 21:31	50	25	CK92237
Lead	ND (0.010)		6010C		1	KJK	11/22/19 21:31	50	25	CK92237
Mercury	ND (0.00020)		7470A		1	MKS	11/25/19 11:42	20	40	CK92238
Nickel	ND (0.025)		6010C		1	KJK	11/22/19 21:31	50	25	CK92237
Selenium	ND (0.005)		7010		1	KJK	11/26/19 22:23	50	25	CK92237
Silver	ND (0.005)		6010C		1	KJK	11/22/19 21:31	50	25	CK92237
Thallium	ND (0.0005)		6020A		1	NAR	11/25/19 11:20	50	25	CK92237
Zinc	ND (0.025)		6010C		1	KJK	11/22/19 21:31	50	25	CK92237

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: E-Soil Date Sampled: 11/22/19 11:10 Percent Solids: N/A Initial Volume: 1070 Final Volume: 1 Extraction Method: 3510C

ESS Laboratory Work Order: 19K0746 ESS Laboratory Sample ID: 19K0746-03 Sample Matrix: Ground Water Units: mg/L Analyst: MJV Prepared: 11/27/19 12:03

8082A Polychlorinated Biphenyls (PCB)

Analyte Aroclor 1016	<u>Results (MRL)</u> ND (0.00009)	MDL	<u>Method</u> 8082A	<u>Limit</u>	<u>DF</u> 1	Analyzed	<u>Sequence</u>	<u>Batch</u> CK92702
Aroclor 1221	ND (0.00009)		8082A		1	12/02/19 18:37		CK92702
Aroclor 1232	ND (0.00009)		8082A		1	12/02/19 18:37		CK92702
Aroclor 1242	ND (0.00009)		8082A		1	12/02/19 18:37		CK92702
Aroclor 1248	ND (0.00009)		8082A		1	12/02/19 18:37		CK92702
Aroclor 1254	ND (0.00009)		8082A		1	12/02/19 18:37		CK92702
Aroclor 1260	ND (0.00009)		8082A		1	12/02/19 18:37		CK92702
Aroclor 1262	ND (0.00009)		8082A		1	12/02/19 18:37		CK92702
Aroclor 1268	ND (0.00009)		8082A		1	12/02/19 18:37		CK92702
	%	Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		79 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		75 %		30-150				
Surrogate: Tetrachloro-m-xylene		78 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		77 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: E-Soil Date Sampled: 11/22/19 11:10 Percent Solids: N/A Initial Volume: 1070 Final Volume: 1 Extraction Method: 3510C

ESS Laboratory Work Order: 19K0746 ESS Laboratory Sample ID: 19K0746-03 Sample Matrix: Ground Water Units: mg/L Analyst: CAD Prepared: 11/25/19 12:31

<u>Analyte</u> Total Petroleum Hydrocarbons	<u>Results (MRL)</u> ND (0.19)	<u>MDL</u>	<u>Method</u> 8100M	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 11/25/19 17:07	<u>Sequence</u> C9K0396	<u>Batch</u> CK92501
	%	6Recovery	Qualifier	Limits				
Surrogate: O-Terphenyl		85 %		40-140				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: E-Soil Date Sampled: 11/22/19 11:10 Percent Solids: N/A Initial Volume: 5 Final Volume: 5 Extraction Method: 5030B

ESS Laboratory Work Order: 19K0746 ESS Laboratory Sample ID: 19K0746-03 Sample Matrix: Ground Water Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

<u>Analyte</u> 1,1,1,2-Tetrachloroethane	<u>Results (MRL)</u> ND (0.0010)	MDL <u>Method</u> 8260B	Limit DF	Analyzed	Sequence C9K0432	<u>Batch</u> CK92632
1,1,1-Trichloroethane	ND (0.0010)	8260B	1	11/26/19 17:28	C9K0432	CK92632
1,1,2,2-Tetrachloroethane	ND (0.0005)	8260B	1	11/26/19 17:28	C9K0432	CK92632
1,1,2-Trichloroethane	ND (0.0010)	8260B	1	11/26/19 17:28	C9K0432	CK92632
1,1-Dichloroethane	ND (0.0010)	8260B	1	11/26/19 17:28	C9K0432	CK92632
1,1-Dichloroethene	ND (0.0010)	8260B	1	11/26/19 17:28	C9K0432	CK92632
1,1-Dichloropropene	ND (0.0020)	8260B	1	11/26/19 17:28	C9K0432	CK92632
1,2,3-Trichlorobenzene	ND (0.0010)	8260B	1	11/26/19 17:28	C9K0432	CK92632
1,2,3-Trichloropropane	ND (0.0010)	8260B	1	11/26/19 17:28	C9K0432	CK92632
1,2,4-Trichlorobenzene	ND (0.0010)	8260B	1	11/26/19 17:28	C9K0432	CK92632
1,2,4-Trimethylbenzene	ND (0.0010)	8260B	1	11/26/19 17:28	C9K0432	CK92632
1,2-Dibromo-3-Chloropropane	ND (0.0050)	8260B	1	11/26/19 17:28	C9K0432	CK92632
1,2-Dibromoethane	ND (0.0010)	8260B	1	11/26/19 17:28	C9K0432	CK92632
1,2-Dichlorobenzene	ND (0.0010)	8260B	1	11/26/19 17:28	C9K0432	CK92632
1,2-Dichloroethane	ND (0.0010)	8260B	1	11/26/19 17:28	C9K0432	CK92632
1,2-Dichloropropane	ND (0.0010)	8260B	1	11/26/19 17:28	C9K0432	CK92632
1,3,5-Trimethylbenzene	ND (0.0010)	8260B	1	11/26/19 17:28	C9K0432	CK92632
1,3-Dichlorobenzene	ND (0.0010)	8260B	1	11/26/19 17:28	C9K0432	CK92632
1,3-Dichloropropane	ND (0.0010)	8260B	1	11/26/19 17:28	C9K0432	CK92632
1,4-Dichlorobenzene	ND (0.0010)	8260B	1	11/26/19 17:28	C9K0432	CK92632
1,4-Dioxane - Screen	ND (0.500)	8260B	1	11/26/19 17:28	C9K0432	CK92632
1-Chlorohexane	ND (0.0010)	8260B	1	11/26/19 17:28	C9K0432	CK92632
2,2-Dichloropropane	ND (0.0010)	8260B	1	11/26/19 17:28	C9K0432	CK92632
2-Butanone	ND (0.0100)	8260B	1	11/26/19 17:28	C9K0432	CK92632
2-Chlorotoluene	ND (0.0010)	8260B	1	11/26/19 17:28	C9K0432	CK92632
2-Hexanone	ND (0.0100)	8260B	1	11/26/19 17:28	C9K0432	CK92632
4-Chlorotoluene	ND (0.0010)	8260B	1	11/26/19 17:28	C9K0432	CK92632
4-Isopropyltoluene	ND (0.0010)	8260B	1	11/26/19 17:28	C9K0432	CK92632
4-Methyl-2-Pentanone	ND (0.0250)	8260B	1	11/26/19 17:28	C9K0432	CK92632
Acetone	ND (0.0100)	8260B	1	11/26/19 17:28	C9K0432	CK92632
Benzene	ND (0.0010)	8260B	1	11/26/19 17:28	C9K0432	CK92632
Bromobenzene	ND (0.0020)	8260B	1	11/26/19 17:28	C9K0432	CK92632

Tel: 401-461-7181 Dependability • Quality Fax: 401-461-4486 Service

٠

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: E-Soil Date Sampled: 11/22/19 11:10 Percent Solids: N/A Initial Volume: 5 Final Volume: 5 Extraction Method: 5030B

ESS Laboratory Work Order: 19K0746 ESS Laboratory Sample ID: 19K0746-03 Sample Matrix: Ground Water Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

Analyte Bromochloromethane	Results (MRL) ND (0.0010)	MDL <u>Method</u> 8260B	Limit <u>DF</u>	<u>Analyzed</u> 11/26/19 17:28	Sequence C9K0432	<u>Batch</u> CK92632
Bromodichloromethane	ND (0.0006)	8260B	1	11/26/19 17:28	C9K0432	CK92632
Bromoform	ND (0.0010)	8260B	1	11/26/19 17:28	C9K0432	CK92632
Bromomethane	ND (0.0020)	8260B	1	11/26/19 17:28	C9K0432	CK92632
Carbon Disulfide	ND (0.0010)	8260B	1	11/26/19 17:28	C9K0432	CK92632
Carbon Tetrachloride	ND (0.0010)	8260B	1	11/26/19 17:28	C9K0432	CK92632
Chlorobenzene	ND (0.0010)	8260B	1	11/26/19 17:28	C9K0432	CK92632
Chloroethane	ND (0.0020)	8260B	1	11/26/19 17:28	C9K0432	CK92632
Chloroform	ND (0.0010)	8260B	1	11/26/19 17:28	C9K0432	CK92632
Chloromethane	ND (0.0020)	8260B	1	11/26/19 17:28	C9K0432	CK92632
cis-1,2-Dichloroethene	ND (0.0010)	8260B	1	11/26/19 17:28	C9K0432	CK92632
cis-1,3-Dichloropropene	ND (0.0004)	8260B	1	11/26/19 17:28	C9K0432	CK92632
Dibromochloromethane	ND (0.0010)	8260B	1	11/26/19 17:28	C9K0432	CK92632
Dibromomethane	ND (0.0010)	8260B	1	11/26/19 17:28	C9K0432	CK92632
Dichlorodifluoromethane	ND (0.0020)	8260B	1	11/26/19 17:28	C9K0432	CK92632
Diethyl Ether	ND (0.0010)	8260B	1	11/26/19 17:28	C9K0432	CK92632
Di-isopropyl ether	ND (0.0010)	8260B	1	11/26/19 17:28	C9K0432	CK92632
Ethyl tertiary-butyl ether	ND (0.0010)	8260B	1	11/26/19 17:28	C9K0432	CK92632
Ethylbenzene	ND (0.0010)	8260B	1	11/26/19 17:28	C9K0432	CK92632
Hexachlorobutadiene	ND (0.0006)	8260B	1	11/26/19 17:28	C9K0432	CK92632
Hexachloroethane	ND (0.0010)	8260B	1	11/26/19 17:28	C9K0432	CK92632
Isopropylbenzene	ND (0.0010)	8260B	1	11/26/19 17:28	C9K0432	CK92632
Methyl tert-Butyl Ether	ND (0.0010)	8260B	1	11/26/19 17:28	C9K0432	CK92632
Methylene Chloride	ND (0.0020)	8260B	1	11/26/19 17:28	C9K0432	CK92632
Naphthalene	ND (0.0010)	8260B	1	11/26/19 17:28	C9K0432	CK92632
n-Butylbenzene	ND (0.0010)	8260B	1	11/26/19 17:28	C9K0432	CK92632
n-Propylbenzene	ND (0.0010)	8260B	1	11/26/19 17:28	C9K0432	CK92632
sec-Butylbenzene	ND (0.0010)	8260B	1	11/26/19 17:28	C9K0432	CK92632
Styrene	ND (0.0010)	8260B	1	11/26/19 17:28	C9K0432	CK92632
tert-Butylbenzene	ND (0.0010)	8260B	1	11/26/19 17:28	C9K0432	CK92632
Tertiary-amyl methyl ether	ND (0.0010)	8260B	1	11/26/19 17:28	C9K0432	CK92632
Tetrachloroethene	ND (0.0010)	8260B	1	11/26/19 17:28	C9K0432	CK92632

Tel: 401-461-7181 Dependability • Quality Fax: 401-461-4486 Service

٠

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: E-Soil Date Sampled: 11/22/19 11:10 Percent Solids: N/A Initial Volume: 5 Final Volume: 5 Extraction Method: 5030B

ESS Laboratory Work Order: 19K0746 ESS Laboratory Sample ID: 19K0746-03 Sample Matrix: Ground Water Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

<u>Analyte</u> Tetrahydrofuran	<u>Results (MRL)</u> ND (0.0050)	<u>MDL</u>	<u>Method</u> 8260B	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 11/26/19 17:28	Sequence C9K0432	<u>Batch</u> CK92632
Toluene	ND (0.0010)		8260B		1	11/26/19 17:28	C9K0432	CK92632
trans-1,2-Dichloroethene	ND (0.0010)		8260B		1	11/26/19 17:28	C9K0432	CK92632
trans-1,3-Dichloropropene	ND (0.0004)		8260B		1	11/26/19 17:28	C9K0432	CK92632
Trichloroethene	ND (0.0010)		8260B		1	11/26/19 17:28	C9K0432	CK92632
Trichlorofluoromethane	ND (0.0010)		8260B		1	11/26/19 17:28	C9K0432	CK92632
Vinyl Acetate	ND (0.0050)		8260B		1	11/26/19 17:28	C9K0432	CK92632
Vinyl Chloride	ND (0.0010)		8260B		1	11/26/19 17:28	C9K0432	CK92632
Xylene O	ND (0.0010)		8260B		1	11/26/19 17:28	C9K0432	CK92632
Xylene P,M	ND (0.0020)		8260B		1	11/26/19 17:28	C9K0432	CK92632
Xylenes (Total)	ND (0.00200)		8260B		1	11/26/19 17:28		[CALC]
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		109 %		70-130				
Surrogate: 4-Bromofluorobenzene		<i>85 %</i>		70-130				
Surrogate: Dibromofluoromethane		104 %		70-130				
Surrogate: Toluene-d8		102 %		70-130				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: E-Soil Date Sampled: 11/22/19 11:10 Percent Solids: N/A Initial Volume: 1070 Final Volume: 0.25 Extraction Method: 3510C

ESS Laboratory Work Order: 19K0746 ESS Laboratory Sample ID: 19K0746-03 Sample Matrix: Ground Water Units: mg/L Analyst: VSC Prepared: 11/27/19 14:00

8270D(SIM) Polynuclear Aromatic Hydrocarbons

Analyte 2-Methylnaphthalene	<u>Results (MRL)</u> ND (0.0002)	MDL <u>Method</u> 8270D SIM PAH	Limit DF	<u>Analyzed</u> 11/27/19 23:33	Sequence C9K0451	<u>Batch</u> CK92703
Acenaphthene	ND (0.0002) ND (0.0002)	8270D SIM PAH 8270D SIM PAH	1	11/27/19 23:33	C9K0451 C9K0451	CK92703 CK92703
Acenaphthylene	ND (0.0002)	8270D SIM PAH	1	11/27/19 23:33	C9K0451	CK92703
Anthracene	ND (0.0002)	8270D SIM PAH	1	11/27/19 23:33	C9K0451	CK92703
Benzo(a)anthracene	ND (0.00005)	8270D SIM PAH	1	11/27/19 23:33	C9K0451	CK92703
Benzo(a)pyrene	ND (0.00005)	8270D SIM PAH	1	11/27/19 23:33	C9K0451	CK92703
Benzo(b)fluoranthene	ND (0.00005)	8270D SIM PAH	1	11/27/19 23:33	C9K0451	CK92703
Benzo(g,h,i)perylene	ND (0.0002)	8270D SIM PAH	1	11/27/19 23:33	C9K0451	CK92703
Benzo(k)fluoranthene	ND (0.00005)	8270D SIM PAH	1	11/27/19 23:33	C9K0451	CK92703
Chrysene	ND (0.00005)	8270D SIM PAH	1	11/27/19 23:33	C9K0451	CK92703
Dibenzo(a,h)Anthracene	ND (0.00005)	8270D SIM PAH	1	11/27/19 23:33	C9K0451	CK92703
Fluoranthene	ND (0.0002)	8270D SIM PAH	1	11/27/19 23:33	C9K0451	CK92703
Fluorene	ND (0.0002)	8270D SIM PAH	1	11/27/19 23:33	C9K0451	CK92703
Indeno(1,2,3-cd)Pyrene	ND (0.00005)	8270D SIM PAH	1	11/27/19 23:33	C9K0451	CK92703
Naphthalene	ND (0.0002)	8270D SIM PAH	1	11/27/19 23:33	C9K0451	CK92703
Phenanthrene	ND (0.0002)	8270D SIM PAH	1	11/27/19 23:33	C9K0451	CK92703
Pyrene	ND (0.0002)	8270D SIM PAH	1	11/27/19 23:33	C9K0451	CK92703
		%Recovery Qualifier	Limits			

<i>Juncebrery</i>	Quanner	Linito
55 %		30-130
64 %		30-130
89 %		30-130
90 %		30-130
	55 % 64 % 89 %	55 % 64 % 89 %

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: E-GW Date Sampled: 11/22/19 13:20 Percent Solids: N/A Initial Volume: 5 Final Volume: 5 Extraction Method: 5030B

ESS Laboratory Work Order: 19K0746 ESS Laboratory Sample ID: 19K0746-04 Sample Matrix: Ground Water Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

Analyte 1,1,1,2-Tetrachloroethane	<u>Results (MRL)</u> ND (0.0010)	MDL <u>Method</u> 8260B	Limit <u>DF</u>	Analyzed	Sequence C9K0432	<u>Batch</u> CK92632
1,1,1-Trichloroethane	ND (0.0010)	8260B	1	11/26/19 17:53	C9K0432	CK92632
1,1,2,2-Tetrachloroethane	ND (0.0005)	8260B	1	11/26/19 17:53	C9K0432	CK92632
1,1,2-Trichloroethane	ND (0.0010)	8260B	1	11/26/19 17:53	C9K0432	CK92632
1,1-Dichloroethane	ND (0.0010)	8260B	1	11/26/19 17:53	C9K0432	CK92632
1,1-Dichloroethene	ND (0.0010)	8260B	1	11/26/19 17:53	C9K0432	CK92632
1,1-Dichloropropene	ND (0.0020)	8260B	1	11/26/19 17:53	C9K0432	CK92632
1,2,3-Trichlorobenzene	ND (0.0010)	8260B	1	11/26/19 17:53	C9K0432	CK92632
1,2,3-Trichloropropane	ND (0.0010)	8260B	1	11/26/19 17:53	C9K0432	CK92632
1,2,4-Trichlorobenzene	ND (0.0010)	8260B	1	11/26/19 17:53	C9K0432	CK92632
1,2,4-Trimethylbenzene	ND (0.0010)	8260B	1	11/26/19 17:53	C9K0432	CK92632
1,2-Dibromo-3-Chloropropane	ND (0.0050)	8260B	1	11/26/19 17:53	C9K0432	CK92632
1,2-Dibromoethane	ND (0.0010)	8260B	1	11/26/19 17:53	C9K0432	CK92632
1,2-Dichlorobenzene	ND (0.0010)	8260B	1	11/26/19 17:53	C9K0432	CK92632
1,2-Dichloroethane	ND (0.0010)	8260B	1	11/26/19 17:53	C9K0432	CK92632
1,2-Dichloropropane	ND (0.0010)	8260B	1	11/26/19 17:53	C9K0432	CK92632
1,3,5-Trimethylbenzene	ND (0.0010)	8260B	1	11/26/19 17:53	C9K0432	CK92632
1,3-Dichlorobenzene	ND (0.0010)	8260B	1	11/26/19 17:53	C9K0432	CK92632
1,3-Dichloropropane	ND (0.0010)	8260B	1	11/26/19 17:53	C9K0432	CK92632
1,4-Dichlorobenzene	ND (0.0010)	8260B	1	11/26/19 17:53	C9K0432	CK92632
1,4-Dioxane - Screen	ND (0.500)	8260B	1	11/26/19 17:53	C9K0432	CK92632
1-Chlorohexane	ND (0.0010)	8260B	1	11/26/19 17:53	C9K0432	CK92632
2,2-Dichloropropane	ND (0.0010)	8260B	1	11/26/19 17:53	C9K0432	CK92632
2-Butanone	ND (0.0100)	8260B	1	11/26/19 17:53	C9K0432	CK92632
2-Chlorotoluene	ND (0.0010)	8260B	1	11/26/19 17:53	C9K0432	CK92632
2-Hexanone	ND (0.0100)	8260B	1	11/26/19 17:53	C9K0432	CK92632
4-Chlorotoluene	ND (0.0010)	8260B	1	11/26/19 17:53	C9K0432	CK92632
4-Isopropyltoluene	ND (0.0010)	8260B	1	11/26/19 17:53	C9K0432	CK92632
4-Methyl-2-Pentanone	ND (0.0250)	8260B	1	11/26/19 17:53	C9K0432	CK92632
Acetone	0.0169 (0.0100)	8260B	1	11/26/19 17:53	C9K0432	CK92632
Benzene	ND (0.0010)	8260B	1	11/26/19 17:53	C9K0432	CK92632
Bromobenzene	ND (0.0020)	8260B	1	11/26/19 17:53	C9K0432	CK92632

Tel: 401-461-7181 Dependability • Quality Fax: 401-461-4486 Service

٠

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: E-GW Date Sampled: 11/22/19 13:20 Percent Solids: N/A Initial Volume: 5 Final Volume: 5 Extraction Method: 5030B

ESS Laboratory Work Order: 19K0746 ESS Laboratory Sample ID: 19K0746-04 Sample Matrix: Ground Water Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

<u>Analyte</u> Bromochloromethane	<u>Results (MRL)</u> ND (0.0010)	MDL <u>Method</u> 8260B	Limit DF	<u>Analyzed</u> 11/26/19 17:53	Sequence C9K0432	<u>Batch</u> CK92632
Bromodichloromethane	ND (0.0006)	8260B	1	11/26/19 17:53	C9K0432	CK92632
Bromoform	ND (0.0010)	8260B	1	11/26/19 17:53	C9K0432	CK92632
Bromomethane	ND (0.0020)	8260B	1	11/26/19 17:53	C9K0432	CK92632
Carbon Disulfide	ND (0.0020)	8260B	1	11/26/19 17:53	C9K0432	CK92632
Carbon Tetrachloride	ND (0.0010)	8260B	1	11/26/19 17:53	C9K0432	CK92632
Chlorobenzene	ND (0.0010)	8260B	1	11/26/19 17:53	C9K0432	CK92632
Chloroethane	ND (0.0020)	8260B	1	11/26/19 17:53	C9K0432	CK92632
Chloroform	ND (0.0010)	8260B	1	11/26/19 17:53	C9K0432	CK92632
Chloromethane	ND (0.0020)	8260B	1	11/26/19 17:53	C9K0432	CK92632
cis-1,2-Dichloroethene	ND (0.0010)	8260B	1	11/26/19 17:53	C9K0432	CK92632
cis-1,3-Dichloropropene	ND (0.0004)	8260B	1	11/26/19 17:53	C9K0432	CK92632
Dibromochloromethane	ND (0.0010)	8260B	1	11/26/19 17:53	C9K0432	CK92632
Dibromomethane	ND (0.0010)	8260B	1	11/26/19 17:53	C9K0432	CK92632
Dichlorodifluoromethane	ND (0.0020)	8260B	1	11/26/19 17:53	C9K0432	CK92632
Diethyl Ether	ND (0.0010)	8260B	1	11/26/19 17:53	C9K0432	CK92632
Di-isopropyl ether	ND (0.0010)	8260B	1	11/26/19 17:53	C9K0432	CK92632
Ethyl tertiary-butyl ether	ND (0.0010)	8260B	1	11/26/19 17:53	C9K0432	CK92632
Ethylbenzene	ND (0.0010)	8260B	1	11/26/19 17:53	C9K0432	CK92632
Hexachlorobutadiene	ND (0.0006)	8260B	1	11/26/19 17:53	C9K0432	CK92632
Hexachloroethane	ND (0.0010)	8260B	1	11/26/19 17:53	C9K0432	CK92632
Isopropylbenzene	ND (0.0010)	8260B	1	11/26/19 17:53	C9K0432	CK92632
Methyl tert-Butyl Ether	ND (0.0010)	8260B	1	11/26/19 17:53	C9K0432	CK92632
Methylene Chloride	ND (0.0020)	8260B	1	11/26/19 17:53	C9K0432	CK92632
Naphthalene	ND (0.0010)	8260B	1	11/26/19 17:53	C9K0432	CK92632
n-Butylbenzene	ND (0.0010)	8260B	1	11/26/19 17:53	C9K0432	CK92632
n-Propylbenzene	ND (0.0010)	8260B	1	11/26/19 17:53	C9K0432	CK92632
sec-Butylbenzene	ND (0.0010)	8260B	1	11/26/19 17:53	C9K0432	CK92632
Styrene	ND (0.0010)	8260B	1	11/26/19 17:53	C9K0432	CK92632
tert-Butylbenzene	ND (0.0010)	8260B	1	11/26/19 17:53	C9K0432	CK92632
Tertiary-amyl methyl ether	ND (0.0010)	8260B	1	11/26/19 17:53	C9K0432	CK92632
Tetrachloroethene	ND (0.0010)	8260B	1	11/26/19 17:53	C9K0432	CK92632

Tel: 401-461-7181 Dependability • Quality Fax: 401-461-4486 Service

٠

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: E-GW Date Sampled: 11/22/19 13:20 Percent Solids: N/A Initial Volume: 5 Final Volume: 5 Extraction Method: 5030B

ESS Laboratory Work Order: 19K0746 ESS Laboratory Sample ID: 19K0746-04 Sample Matrix: Ground Water Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

<u>Analyte</u> Tetrahydrofuran	<u>Results (MRL)</u> ND (0.0050)	MDL	<u>Method</u> 8260B	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 11/26/19 17:53	Sequence C9K0432	Batch CK92632
Toluene	ND (0.0010)		8260B		1	11/26/19 17:53	C9K0432	CK92632
trans-1,2-Dichloroethene	ND (0.0010)		8260B		1	11/26/19 17:53	C9K0432	CK92632
trans-1,3-Dichloropropene	ND (0.0004)		8260B		1	11/26/19 17:53	C9K0432	CK92632
Trichloroethene	ND (0.0010)		8260B		1	11/26/19 17:53	C9K0432	CK92632
Trichlorofluoromethane	ND (0.0010)		8260B		1	11/26/19 17:53	C9K0432	CK92632
Vinyl Acetate	ND (0.0050)		8260B		1	11/26/19 17:53	C9K0432	CK92632
Vinyl Chloride	ND (0.0010)		8260B		1	11/26/19 17:53	C9K0432	CK92632
Xylene O	ND (0.0010)		8260B		1	11/26/19 17:53	C9K0432	CK92632
Xylene P,M	ND (0.0020)		8260B		1	11/26/19 17:53	C9K0432	CK92632
Xylenes (Total)	ND (0.00200)		8260B		1	11/26/19 17:53		[CALC]
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		108 %		70-130				
Surrogate: 4-Bromofluorobenzene		86 %		70-130				
Surrogate: Dibromofluoromethane		102 %		70-130				
Surrogate: Toluene-d8		103 %		70-130				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: Drum Date Sampled: 11/22/19 13:30 Percent Solids: N/A Initial Volume: 5 Final Volume: 5 Extraction Method: 5030B

ESS Laboratory Work Order: 19K0746 ESS Laboratory Sample ID: 19K0746-05 Sample Matrix: Ground Water Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

<u>Analyte</u> 1,1,1,2-Tetrachloroethane	Results (MRL) ND (0.0010)	<u>MDL</u> <u>Method</u> 8260B	Limit DF	<u>Analyzed</u> 11/26/19 18:19	Sequence C9K0432	<u>Batch</u> CK92632
1,1,1-Trichloroethane	ND (0.0010)	8260B	1	11/26/19 18:19	C9K0432	CK92632
1,1,2,2-Tetrachloroethane	ND (0.0005)	8260B	1	11/26/19 18:19	C9K0432	CK92632
1,1,2-Trichloroethane	ND (0.0010)	8260B	1	11/26/19 18:19	C9K0432	CK92632
1,1-Dichloroethane	ND (0.0010)	8260B	1	11/26/19 18:19	C9K0432	CK92632
1,1-Dichloroethene	ND (0.0010)	8260B	1	11/26/19 18:19	C9K0432	CK92632
1,1-Dichloropropene	ND (0.0020)	8260B	1	11/26/19 18:19	C9K0432	CK92632
1,2,3-Trichlorobenzene	ND (0.0010)	8260B	1	11/26/19 18:19	C9K0432	CK92632
1,2,3-Trichloropropane	ND (0.0010)	8260B	1	11/26/19 18:19	C9K0432	CK92632
1,2,4-Trichlorobenzene	ND (0.0010)	8260B	1	11/26/19 18:19	C9K0432	CK92632
1,2,4-Trimethylbenzene	ND (0.0010)	8260B	1	11/26/19 18:19	C9K0432	CK92632
1,2-Dibromo-3-Chloropropane	ND (0.0050)	8260B	1	11/26/19 18:19	C9K0432	CK92632
1,2-Dibromoethane	ND (0.0010)	8260B	1	11/26/19 18:19	C9K0432	CK92632
1,2-Dichlorobenzene	ND (0.0010)	8260B	1	11/26/19 18:19	C9K0432	CK92632
1,2-Dichloroethane	ND (0.0010)	8260B	1	11/26/19 18:19	C9K0432	CK92632
1,2-Dichloropropane	ND (0.0010)	8260B	1	11/26/19 18:19	C9K0432	CK92632
1,3,5-Trimethylbenzene	ND (0.0010)	8260B	1	11/26/19 18:19	C9K0432	CK92632
1,3-Dichlorobenzene	ND (0.0010)	8260B	1	11/26/19 18:19	C9K0432	CK92632
1,3-Dichloropropane	ND (0.0010)	8260B	1	11/26/19 18:19	C9K0432	CK92632
1,4-Dichlorobenzene	ND (0.0010)	8260B	1	11/26/19 18:19	C9K0432	CK92632
1,4-Dioxane - Screen	ND (0.500)	8260B	1	11/26/19 18:19	C9K0432	CK92632
1-Chlorohexane	ND (0.0010)	8260B	1	11/26/19 18:19	C9K0432	CK92632
2,2-Dichloropropane	ND (0.0010)	8260B	1	11/26/19 18:19	C9K0432	CK92632
2-Butanone	ND (0.0100)	8260B	1	11/26/19 18:19	C9K0432	CK92632
2-Chlorotoluene	ND (0.0010)	8260B	1	11/26/19 18:19	C9K0432	CK92632
2-Hexanone	ND (0.0100)	8260B	1	11/26/19 18:19	C9K0432	CK92632
4-Chlorotoluene	ND (0.0010)	8260B	1	11/26/19 18:19	C9K0432	CK92632
4-Isopropyltoluene	ND (0.0010)	8260B	1	11/26/19 18:19	C9K0432	CK92632
4-Methyl-2-Pentanone	ND (0.0250)	8260B	1	11/26/19 18:19	C9K0432	CK92632
Acetone	0.499 (0.0100)	8260B	1	11/26/19 18:19	C9K0432	CK92632
Benzene	ND (0.0010)	8260B	1	11/26/19 18:19	C9K0432	CK92632
Bromobenzene	ND (0.0020)	8260B	1	11/26/19 18:19	C9K0432	CK92632

Tel: 401-461-7181 Dependability • Quality Fax: 401-461-4486 Service

٠

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: Drum Date Sampled: 11/22/19 13:30 Percent Solids: N/A Initial Volume: 5 Final Volume: 5 Extraction Method: 5030B

ESS Laboratory Work Order: 19K0746 ESS Laboratory Sample ID: 19K0746-05 Sample Matrix: Ground Water Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

Analyte Bromochloromethane	<u>Results (MRL)</u> ND (0.0010)	MDL <u>Method</u> 8260B	Limit DF	<u>Analyzed</u> 11/26/19 18:19	Sequence C9K0432	<u>Batch</u> CK92632
Bromodichloromethane	ND (0.0010) ND (0.0006)	8260B	1	11/26/19 18:19	C9K0432 C9K0432	CK92632
Bromoform	ND (0.0000) ND (0.0010)	8260B	1	11/26/19 18:19	C9K0432	CK92632
Bromomethane	ND (0.0010)	8260B	1	11/26/19 18:19	C9K0432	CK92632
Carbon Disulfide	ND (0.0020) ND (0.0010)	8260B	1	11/26/19 18:19	C9K0432	CK92632
Carbon Tetrachloride	ND (0.0010)	8260B	1	11/26/19 18:19	C9K0432	CK92632
Chlorobenzene	ND (0.0010) ND (0.0010)	8260B	1	11/26/19 18:19	C9K0432	CK92632
Chloroethane		8260B	1	11/26/19 18:19	C9K0432	CK92632
Chloroform	ND (0.0020) ND (0.0010)	8260B	1	11/26/19 18:19	C9K0432 C9K0432	CK92632
Chloromethane	× ,	8260B	1	11/26/19 18:19	C9K0432 C9K0432	CK92632
cis-1,2-Dichloroethene	ND (0.0020)	8260B	1	11/26/19 18:19	C9K0432 C9K0432	CK92632 CK92632
cis-1,3-Dichloropropene	ND (0.0010)	8260B	1	11/26/19 18:19	C9K0432 C9K0432	CK92632 CK92632
Dibromochloromethane	ND (0.0004)	8260B	1	11/26/19 18:19	C9K0432 C9K0432	CK92632
Dibromomethane	ND (0.0010)	8260B	1	11/26/19 18:19	C9K0432 C9K0432	CK92632 CK92632
Dichlorodifluoromethane	ND (0.0010)	8260B	1	11/26/19 18:19	C9K0432 C9K0432	CK92632 CK92632
	ND (0.0020)	8260B 8260B	1	11/26/19 18:19	C9K0432 C9K0432	CK92632 CK92632
Diethyl Ether	ND (0.0010)					
Di-isopropyl ether	ND (0.0010)	8260B	1	11/26/19 18:19	C9K0432	CK92632
Ethyl tertiary-butyl ether	ND (0.0010)	8260B	1	11/26/19 18:19	C9K0432	CK92632
Ethylbenzene	ND (0.0010)	8260B	1	11/26/19 18:19	C9K0432	CK92632
Hexachlorobutadiene	ND (0.0006)	8260B	1	11/26/19 18:19	C9K0432	CK92632
Hexachloroethane	ND (0.0010)	8260B	1	11/26/19 18:19	C9K0432	CK92632
Isopropylbenzene	ND (0.0010)	8260B	1	11/26/19 18:19	C9K0432	CK92632
Methyl tert-Butyl Ether	ND (0.0010)	8260B	1	11/26/19 18:19	C9K0432	CK92632
Methylene Chloride	ND (0.0020)	8260B	1	11/26/19 18:19	C9K0432	CK92632
Naphthalene	ND (0.0010)	8260B	1	11/26/19 18:19	C9K0432	CK92632
n-Butylbenzene	ND (0.0010)	8260B	1	11/26/19 18:19	C9K0432	CK92632
n-Propylbenzene	ND (0.0010)	8260B	1	11/26/19 18:19	C9K0432	CK92632
sec-Butylbenzene	ND (0.0010)	8260B	1	11/26/19 18:19	C9K0432	CK92632
Styrene	ND (0.0010)	8260B	1	11/26/19 18:19	C9K0432	CK92632
tert-Butylbenzene	ND (0.0010)	8260B	1	11/26/19 18:19	C9K0432	CK92632
Tertiary-amyl methyl ether	ND (0.0010)	8260B	1	11/26/19 18:19	C9K0432	CK92632
Tetrachloroethene	ND (0.0010)	8260B	1	11/26/19 18:19	C9K0432	CK92632

Tel: 401-461-7181 Dependability • Quality Fax: 401-461-4486 Service

٠

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: Drum Date Sampled: 11/22/19 13:30 Percent Solids: N/A Initial Volume: 5 Final Volume: 5 Extraction Method: 5030B

ESS Laboratory Work Order: 19K0746 ESS Laboratory Sample ID: 19K0746-05 Sample Matrix: Ground Water Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

<u>Analyte</u> Tetrahydrofuran	<u>Results (MRL)</u> ND (0.0050)	MDL	<u>Method</u> 8260B	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 11/26/19 18:19	Sequence C9K0432	Batch CK92632
Toluene	0.0091 (0.0010)		8260B		1	11/26/19 18:19	C9K0432	CK92632
trans-1,2-Dichloroethene	ND (0.0010)		8260B		1	11/26/19 18:19	C9K0432	CK92632
trans-1,3-Dichloropropene	ND (0.0004)		8260B		1	11/26/19 18:19	C9K0432	CK92632
Trichloroethene	ND (0.0010)		8260B		1	11/26/19 18:19	C9K0432	CK92632
Trichlorofluoromethane	ND (0.0010)		8260B		1	11/26/19 18:19	C9K0432	CK92632
Vinyl Acetate	ND (0.0050)		8260B		1	11/26/19 18:19	C9K0432	CK92632
Vinyl Chloride	ND (0.0010)		8260B		1	11/26/19 18:19	C9K0432	CK92632
Xylene O	ND (0.0010)		8260B		1	11/26/19 18:19	C9K0432	CK92632
Xylene P,M	ND (0.0020)		8260B		1	11/26/19 18:19	C9K0432	CK92632
Xylenes (Total)	ND (0.00200)		8260B		1	11/26/19 18:19		[CALC]
	9	%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		104 %		70-130				
Surrogate: 4-Bromofluorobenzene		81 %		70-130				
Surrogate: Dibromofluoromethane		<i>99 %</i>		70-130				
Surrogate: Toluene-d8		93 %		70-130				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: Drum Date Sampled: 11/22/19 13:30 Percent Solids: N/A Initial Volume: 1060 Final Volume: 1 Extraction Method: 3520C

ESS Laboratory Work Order: 19K0746 ESS Laboratory Sample ID: 19K0746-05 Sample Matrix: Ground Water Units: mg/L Analyst: TAJ Prepared: 11/25/19 17:00

8270D Semi-Volatile Organic Compounds

Analyte 1,1-Biphenyl	<u>Results (MRL)</u> ND (0.009)	MDL <u>Method</u> 8270D	Limit DF	<u>Analyzed</u> 11/26/19 20:36	<u>Sequence</u> C9K0419	<u>Batch</u> CK92556
1,2,4-Trichlorobenzene	ND (0.009)	8270D	1	11/26/19 20:36	C9K0419	CK92556
1,2-Dichlorobenzene	ND (0.009)	8270D	1	11/26/19 20:36	C9K0419	CK92556
1,3-Dichlorobenzene	ND (0.009)	8270D	1	11/26/19 20:36	C9K0419	CK92556
1,4-Dichlorobenzene	ND (0.009)	8270D	1	11/26/19 20:36	C9K0419	CK92556
2,3,4,6-Tetrachlorophenol	ND (0.047)	8270D	1	11/26/19 20:36	C9K0419	CK92556
2,4,5-Trichlorophenol	ND (0.009)	8270D	1	11/26/19 20:36	C9K0419	CK92556
2,4,6-Trichlorophenol	ND (0.009)	8270D	1	11/26/19 20:36	C9K0419	CK92556
2,4-Dichlorophenol	ND (0.009)	8270D	1	11/26/19 20:36	C9K0419	CK92556
2,4-Dimethylphenol	ND (0.047)	8270D	1	11/26/19 20:36	C9K0419	CK92556
2,4-Dinitrophenol	ND (0.047)	8270D	1	11/26/19 20:36	C9K0419	CK92556
2,4-Dinitrotoluene	ND (0.009)	8270D	1	11/26/19 20:36	C9K0419	CK92556
2,6-Dinitrotoluene	ND (0.009)	8270D	1	11/26/19 20:36	C9K0419	CK92556
2-Chloronaphthalene	ND (0.009)	8270D	1	11/26/19 20:36	C9K0419	CK92556
2-Chlorophenol	ND (0.009)	8270D	1	11/26/19 20:36	C9K0419	CK92556
2-Methylphenol	ND (0.009)	8270D	1	11/26/19 20:36	C9K0419	CK92556
2-Nitroaniline	ND (0.009)	8270D	1	11/26/19 20:36	C9K0419	CK92556
2-Nitrophenol	ND (0.009)	8270D	1	11/26/19 20:36	C9K0419	CK92556
3,3'-Dichlorobenzidine	ND (0.019)	8270D	1	11/26/19 20:36	C9K0419	CK92556
3+4-Methylphenol	ND (0.019)	8270D	1	11/26/19 20:36	C9K0419	CK92556
3-Nitroaniline	ND (0.009)	8270D	1	11/26/19 20:36	C9K0419	CK92556
4,6-Dinitro-2-Methylphenol	ND (0.047)	8270D	1	11/26/19 20:36	C9K0419	CK92556
4-Bromophenyl-phenylether	ND (0.009)	8270D	1	11/26/19 20:36	C9K0419	CK92556
4-Chloro-3-Methylphenol	ND (0.009)	8270D	1	11/26/19 20:36	C9K0419	CK92556
4-Chloroaniline	ND (0.019)	8270D	1	11/26/19 20:36	C9K0419	CK92556
4-Chloro-phenyl-phenyl ether	ND (0.009)	8270D	1	11/26/19 20:36	C9K0419	CK92556
4-Nitroaniline	ND (0.009)	8270D	1	11/26/19 20:36	C9K0419	CK92556
4-Nitrophenol	ND (0.047)	8270D	1	11/26/19 20:36	C9K0419	CK92556
Acetophenone	ND (0.009)	8270D	1	11/26/19 20:36	C9K0419	CK92556
Aniline	ND (0.009)	8270D	1	11/26/19 20:36	C9K0419	CK92556
Azobenzene	ND (0.019)	8270D	1	11/26/19 20:36	C9K0419	CK92556
Benzoic Acid	ND (0.094)	8270D	1	11/26/19 20:36	C9K0419	CK92556

Tel: 401-461-7181 Dependability • Quality Fax: 401-461-4486 Service

•

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: Drum Date Sampled: 11/22/19 13:30 Percent Solids: N/A Initial Volume: 1060 Final Volume: 1 Extraction Method: 3520C

ESS Laboratory Work Order: 19K0746 ESS Laboratory Sample ID: 19K0746-05 Sample Matrix: Ground Water Units: mg/L Analyst: TAJ Prepared: 11/25/19 17:00

8270D Semi-Volatile Organic Compounds

<u>Analyte</u> Benzyl Alcohol	<u>Results (MRL)</u> ND (0.009)	<u>MDL</u>	Method 8270D	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 11/26/19 20:36	<u>Sequence</u> C9K0419	<u>Batch</u> CK92556
bis(2-Chloroethoxy)methane	ND (0.009)		8270D		1	11/26/19 20:36	C9K0419	CK92556
bis(2-Chloroethyl)ether	ND (0.009)		8270D		1	11/26/19 20:36	C9K0419	CK92556
bis(2-chloroisopropyl)Ether	ND (0.009)		8270D		1	11/26/19 20:36	C9K0419	CK92556
bis(2-Ethylhexyl)phthalate	ND (0.006)		8270D		1	11/26/19 20:36	C9K0419	CK92556
Butylbenzylphthalate	ND (0.009)		8270D		1	11/26/19 20:36	C9K0419	CK92556
Carbazole	ND (0.009)		8270D		1	11/26/19 20:36	C9K0419	CK92556
Dibenzofuran	ND (0.009)		8270D		1	11/26/19 20:36	C9K0419	CK92556
Diethylphthalate	ND (0.009)		8270D		1	11/26/19 20:36	C9K0419	CK92556
Dimethylphthalate	ND (0.009)		8270D		1	11/26/19 20:36	C9K0419	CK92556
Di-n-butylphthalate	ND (0.009)		8270D		1	11/26/19 20:36	C9K0419	CK92556
Di-n-octylphthalate	ND (0.009)		8270D		1	11/26/19 20:36	C9K0419	CK92556
Hexachlorobutadiene	ND (0.009)		8270D		1	11/26/19 20:36	C9K0419	CK92556
Hexachlorocyclopentadiene	ND (0.024)		8270D		1	11/26/19 20:36	C9K0419	CK92556
Hexachloroethane	ND (0.005)		8270D		1	11/26/19 20:36	C9K0419	CK92556
Isophorone	ND (0.009)		8270D		1	11/26/19 20:36	C9K0419	CK92556
Nitrobenzene	ND (0.009)		8270D		1	11/26/19 20:36	C9K0419	CK92556
N-Nitrosodimethylamine	ND (0.009)		8270D		1	11/26/19 20:36	C9K0419	CK92556
N-Nitroso-Di-n-Propylamine	ND (0.009)		8270D		1	11/26/19 20:36	C9K0419	CK92556
N-nitrosodiphenylamine	ND (0.009)		8270D		1	11/26/19 20:36	C9K0419	CK92556
Phenol	0.016 (0.009)		8270D		1	11/26/19 20:36	C9K0419	CK92556
Pyridine	ND (0.094)		8270D		1	11/26/19 20:36	C9K0419	CK92556
	· · · · · · · · · · · · · · · · · · ·	%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichlorobenzene-d4		77 %		30-130				
Surrogate: 2,4,6-Tribromophenol		110 %		15-110				
Surrogate: 2-Chlorophenol-d4		80 %		15-110				
Surrogate: 2-Fluorobiphenyl		76 %		30-130				
Surrogate: 2-Fluorophenol		70 %		15-110				
Surrogate: Nitrobenzene-d5		82 %		30-130				
Surrogate: Phenol-d6		<i>79 %</i>		15-110				
Surrogate: p-Terphenyl-d14		60 %		30-130				
185 Frances A	venue, Cranston, RI 02910-	2211 T	el: 401-461-7181	Fax: 401	-461-4486	http://www.ESSLabora	tory.com	

Quality

Service

Dependability

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: Drum Date Sampled: 11/22/19 13:30 Percent Solids: N/A Initial Volume: 1060 Final Volume: 0.25 Extraction Method: 3520C

Surrogate: Nitrobenzene-d5

Surrogate: p-Terphenyl-d14

ESS Laboratory Work Order: 19K0746 ESS Laboratory Sample ID: 19K0746-05 Sample Matrix: Ground Water Units: mg/L Analyst: VSC Prepared: 11/25/19 17:00

8270D(SIM) Semi-Volatile Organic Compounds

Analyte 2-Methylnaphthalene	Results (MRL) MDL ND (0.00019)	<u>Method</u> 8270D SIM	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 11/27/19 21:09	Sequence C9K0451	Batch CK92556
Acenaphthene	0.00020 (0.00019)	8270D SIM		1	11/27/19 21:09	C9K0451	CK92556
Acenaphthylene	ND (0.00019)	8270D SIM		1	11/27/19 21:09	C9K0451	CK92556
Anthracene	0.00033 (0.00019)	8270D SIM		1	11/27/19 21:09	C9K0451	CK92556
Benzo(a)anthracene	0.00040 (0.00005)	8270D SIM		1	11/27/19 21:09	C9K0451	CK92556
Benzo(a)pyrene	0.00027 (0.00005)	8270D SIM		1	11/27/19 21:09	C9K0451	CK92556
Benzo(b)fluoranthene	0.00029 (0.00005)	8270D SIM		1	11/27/19 21:09	C9K0451	CK92556
Benzo(g,h,i)perylene	ND (0.00019)	8270D SIM		1	11/27/19 21:09	C9K0451	CK92556
Benzo(k)fluoranthene	0.00011 (0.00005)	8270D SIM		1	11/27/19 21:09	C9K0451	CK92556
Chrysene	0.00037 (0.00005)	8270D SIM		1	11/27/19 21:09	C9K0451	CK92556
Dibenzo(a,h)Anthracene	0.00005 (0.00005)	8270D SIM		1	11/27/19 21:09	C9K0451	CK92556
Fluoranthene	0.00098 (0.00019)	8270D SIM		1	11/27/19 21:09	C9K0451	CK92556
Fluorene	0.00021 (0.00019)	8270D SIM		1	11/27/19 21:09	C9K0451	CK92556
Hexachlorobenzene	ND (0.00019)	8270D SIM		1	11/27/19 21:09	C9K0451	CK92556
Indeno(1,2,3-cd)Pyrene	0.00017 (0.00005)	8270D SIM		1	11/27/19 21:09	C9K0451	CK92556
Naphthalene	ND (0.00019)	8270D SIM		1	11/27/19 21:09	C9K0451	CK92556
Pentachlorophenol	ND (0.00085)	8270D SIM		1	11/27/19 21:09	C9K0451	CK92556
Phenanthrene	0.00108 (0.00019)	8270D SIM		1	11/27/19 21:09	C9K0451	CK92556
Pyrene	0.00102 (0.00019)	8270D SIM		1	11/27/19 21:09	C9K0451	CK92556
	%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichlorobenzene-d4	67 %		30-130				
Surrogate: 2,4,6-Tribromophenol	97 %		15-110				
Surrogate: 2-Fluorobiphenyl	<i>69 %</i>		30-130				

30-130

30-130

117 %

58 %

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: Drum Date Sampled: 11/22/19 13:30 Percent Solids: N/A

ESS Laboratory Work Order: 19K0746 ESS Laboratory Sample ID: 19K0746-05 Sample Matrix: Ground Water

Classical Chemistry

Analyte	Results (MRL)	MDL	Met
Total Suspended Solids	82 (10)		2540

thod Limit 0D DF

1

Analyst Analyzed 11/26/19 14:17

<u>Batch</u> CK92612

<u>Units</u>

mg/L

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: BD11222019 Date Sampled: 11/22/19 08:00 Percent Solids: N/A Initial Volume: 5 Final Volume: 5 Extraction Method: 5030B

ESS Laboratory Work Order: 19K0746 ESS Laboratory Sample ID: 19K0746-06 Sample Matrix: Ground Water Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

<u>Analyte</u> 1,1,1,2-Tetrachloroethane	<u>Results (MRL)</u> ND (0.0010)	MDL <u>Method</u> 8260B	<u>Limit</u> <u>DF</u>	<u>Analyzed</u> 11/26/19 18:44	Sequence C9K0432	<u>Batch</u> CK92632
1,1,1-Trichloroethane	ND (0.0010)	8260B	1	11/26/19 18:44	C9K0432	CK92632
1,1,2,2-Tetrachloroethane	ND (0.0005)	8260B	1	11/26/19 18:44	C9K0432	CK92632
1,1,2-Trichloroethane	ND (0.0010)	8260B	1	11/26/19 18:44	C9K0432	CK92632
1,1-Dichloroethane	ND (0.0010)	8260B	1	11/26/19 18:44	C9K0432	CK92632
1,1-Dichloroethene	ND (0.0010)	8260B	1	11/26/19 18:44	C9K0432	CK92632
1,1-Dichloropropene	ND (0.0020)	8260B	1	11/26/19 18:44	C9K0432	CK92632
1,2,3-Trichlorobenzene	ND (0.0010)	8260B	1	11/26/19 18:44	C9K0432	CK92632
1,2,3-Trichloropropane	ND (0.0010)	8260B	1	11/26/19 18:44	C9K0432	CK92632
1,2,4-Trichlorobenzene	ND (0.0010)	8260B	1	11/26/19 18:44	C9K0432	CK92632
1,2,4-Trimethylbenzene	ND (0.0010)	8260B	1	11/26/19 18:44	C9K0432	CK92632
1,2-Dibromo-3-Chloropropane	ND (0.0050)	8260B	1	11/26/19 18:44	C9K0432	CK92632
1,2-Dibromoethane	ND (0.0010)	8260B	1	11/26/19 18:44	C9K0432	CK92632
1,2-Dichlorobenzene	ND (0.0010)	8260B	1	11/26/19 18:44	C9K0432	CK92632
1,2-Dichloroethane	ND (0.0010)	8260B	1	11/26/19 18:44	C9K0432	CK92632
1,2-Dichloropropane	ND (0.0010)	8260B	1	11/26/19 18:44	C9K0432	CK92632
1,3,5-Trimethylbenzene	ND (0.0010)	8260B	1	11/26/19 18:44	C9K0432	CK92632
1,3-Dichlorobenzene	ND (0.0010)	8260B	1	11/26/19 18:44	C9K0432	CK92632
1,3-Dichloropropane	ND (0.0010)	8260B	1	11/26/19 18:44	C9K0432	CK92632
1,4-Dichlorobenzene	ND (0.0010)	8260B	1	11/26/19 18:44	C9K0432	CK92632
1,4-Dioxane - Screen	ND (0.500)	8260B	1	11/26/19 18:44	C9K0432	CK92632
1-Chlorohexane	ND (0.0010)	8260B	1	11/26/19 18:44	C9K0432	CK92632
2,2-Dichloropropane	ND (0.0010)	8260B	1	11/26/19 18:44	C9K0432	CK92632
2-Butanone	ND (0.0100)	8260B	1	11/26/19 18:44	C9K0432	CK92632
2-Chlorotoluene	ND (0.0010)	8260B	1	11/26/19 18:44	C9K0432	CK92632
2-Hexanone	ND (0.0100)	8260B	1	11/26/19 18:44	C9K0432	CK92632
4-Chlorotoluene	ND (0.0010)	8260B	1	11/26/19 18:44	C9K0432	CK92632
4-Isopropyltoluene	ND (0.0010)	8260B	1	11/26/19 18:44	C9K0432	CK92632
4-Methyl-2-Pentanone	ND (0.0250)	8260B	1	11/26/19 18:44	C9K0432	CK92632
Acetone	ND (0.0100)	8260B	1	11/26/19 18:44	C9K0432	CK92632
Benzene	ND (0.0010)	8260B	1	11/26/19 18:44	C9K0432	CK92632
Bromobenzene	ND (0.0020)	8260B	1	11/26/19 18:44	C9K0432	CK92632

Tel: 401-461-7181 Dependability • Quality Fax: 401-461-4486 Service

٠

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: BD11222019 Date Sampled: 11/22/19 08:00 Percent Solids: N/A Initial Volume: 5 Final Volume: 5 Extraction Method: 5030B

ESS Laboratory Work Order: 19K0746 ESS Laboratory Sample ID: 19K0746-06 Sample Matrix: Ground Water Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

Analyte Bromochloromethane	<u>Results (MRL)</u> ND (0.0010)	MDL <u>Method</u> 8260B	Limit <u>DF</u>	<u>Analyzed</u> 11/26/19 18:44	Sequence C9K0432	<u>Batch</u> CK92632
Bromodichloromethane	ND (0.0006)	8260B	1	11/26/19 18:44	C9K0432	CK92632
Bromoform	ND (0.0010)	8260B	1	11/26/19 18:44	C9K0432	CK92632
Bromomethane	ND (0.0020)	8260B	1	11/26/19 18:44	C9K0432	CK92632
Carbon Disulfide	ND (0.0010)	8260B	1	11/26/19 18:44	C9K0432	CK92632
Carbon Tetrachloride	ND (0.0010)	8260B	1	11/26/19 18:44	C9K0432	CK92632
Chlorobenzene	ND (0.0010)	8260B	1	11/26/19 18:44	C9K0432	CK92632
Chloroethane	ND (0.0020)	8260B	1	11/26/19 18:44	C9K0432	CK92632
Chloroform	ND (0.0010)	8260B	1	11/26/19 18:44	C9K0432	CK92632
Chloromethane	ND (0.0020)	8260B	1	11/26/19 18:44	C9K0432	CK92632
cis-1,2-Dichloroethene	ND (0.0010)	8260B	1	11/26/19 18:44	C9K0432	CK92632
cis-1,3-Dichloropropene	ND (0.0004)	8260B	1	11/26/19 18:44	C9K0432	CK92632
Dibromochloromethane	ND (0.0010)	8260B	1	11/26/19 18:44	C9K0432	CK92632
Dibromomethane	ND (0.0010)	8260B	1	11/26/19 18:44	C9K0432	CK92632
Dichlorodifluoromethane	ND (0.0020)	8260B	1	11/26/19 18:44	C9K0432	CK92632
Diethyl Ether	ND (0.0010)	8260B	1	11/26/19 18:44	C9K0432	CK92632
Di-isopropyl ether	ND (0.0010)	8260B	1	11/26/19 18:44	C9K0432	CK92632
Ethyl tertiary-butyl ether	ND (0.0010)	8260B	1	11/26/19 18:44	C9K0432	CK92632
Ethylbenzene	ND (0.0010)	8260B	1	11/26/19 18:44	C9K0432	CK92632
Hexachlorobutadiene	ND (0.0006)	8260B	1	11/26/19 18:44	C9K0432	CK92632
Hexachloroethane	ND (0.0010)	8260B	1	11/26/19 18:44	C9K0432	CK92632
Isopropylbenzene	ND (0.0010)	8260B	1	11/26/19 18:44	C9K0432	CK92632
Methyl tert-Butyl Ether	ND (0.0010)	8260B	1	11/26/19 18:44	C9K0432	CK92632
Methylene Chloride	ND (0.0020)	8260B	1	11/26/19 18:44	C9K0432	CK92632
Naphthalene	ND (0.0010)	8260B	1	11/26/19 18:44	C9K0432	CK92632
n-Butylbenzene	ND (0.0010)	8260B	1	11/26/19 18:44	C9K0432	CK92632
n-Propylbenzene	ND (0.0010)	8260B	1	11/26/19 18:44	C9K0432	CK92632
sec-Butylbenzene	ND (0.0010)	8260B	1	11/26/19 18:44	C9K0432	CK92632
Styrene	ND (0.0010)	8260B	1	11/26/19 18:44	C9K0432	CK92632
tert-Butylbenzene	ND (0.0010)	8260B	1	11/26/19 18:44	C9K0432	CK92632
Tertiary-amyl methyl ether	ND (0.0010)	8260B	1	11/26/19 18:44	C9K0432	CK92632
Tetrachloroethene	ND (0.0010)	8260B	1	11/26/19 18:44	C9K0432	CK92632

Tel: 401-461-7181 Dependability • Quality Fax: 401-461-4486 Service

٠

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: BD11222019 Date Sampled: 11/22/19 08:00 Percent Solids: N/A Initial Volume: 5 Final Volume: 5 Extraction Method: 5030B

ESS Laboratory Work Order: 19K0746 ESS Laboratory Sample ID: 19K0746-06 Sample Matrix: Ground Water Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

<u>Analyte</u> Tetrahydrofuran	<u>Results (MRL)</u> ND (0.0050)	<u>MDL</u>	<u>Method</u> 8260B	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 11/26/19 18:44	Sequence C9K0432	<u>Batch</u> CK92632
Toluene	ND (0.0010)		8260B		1	11/26/19 18:44	C9K0432	CK92632
trans-1,2-Dichloroethene	ND (0.0010)		8260B		1	11/26/19 18:44	C9K0432	CK92632
trans-1,3-Dichloropropene	ND (0.0004)		8260B		1	11/26/19 18:44	C9K0432	CK92632
Trichloroethene	ND (0.0010)		8260B		1	11/26/19 18:44	C9K0432	CK92632
Trichlorofluoromethane	ND (0.0010)		8260B		1	11/26/19 18:44	C9K0432	CK92632
Vinyl Acetate	ND (0.0050)		8260B		1	11/26/19 18:44	C9K0432	CK92632
Vinyl Chloride	ND (0.0010)		8260B		1	11/26/19 18:44	C9K0432	CK92632
Xylene O	ND (0.0010)		8260B		1	11/26/19 18:44	C9K0432	CK92632
Xylene P,M	ND (0.0020)		8260B		1	11/26/19 18:44	C9K0432	CK92632
Xylenes (Total)	ND (0.00200)		8260B		1	11/26/19 18:44		[CALC]
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		111 %		70-130				
Surrogate: 4-Bromofluorobenzene		87 %		70-130				
Surrogate: Dibromofluoromethane		104 %		70-130				
Surrogate: Toluene-d8		103 %		70-130				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: Trip Blank Date Sampled: 11/22/19 08:00 Percent Solids: N/A Initial Volume: 5 Final Volume: 5 Extraction Method: 5030B

ESS Laboratory Work Order: 19K0746 ESS Laboratory Sample ID: 19K0746-07 Sample Matrix: Ground Water Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

<u>Analyte</u> 1,1,1,2-Tetrachloroethane	<u>Results (MRL)</u> ND (0.0010)	MDL <u>Method</u> 8260B	Limit <u>DF</u>	<u>Analyzed</u> 11/26/19 11:56	Sequence C9K0432	<u>Batch</u> CK92632
1,1,1-Trichloroethane		8260B	1	11/26/19 11:56	C9K0432	CK92632
1,1,2,2-Tetrachloroethane	ND (0.0010)	8260B	1	11/26/19 11:56	C9K0432	CK92632
1,1,2-Trichloroethane	ND (0.0005)	8260B	1	11/26/19 11:56	C9K0432 C9K0432	CK92632 CK92632
1,1-Dichloroethane	ND (0.0010)	8260B	1	11/26/19 11:56	C9K0432 C9K0432	CK92632 CK92632
1,1-Dichloroethene	ND (0.0010)	8260B	1		C9K0432 C9K0432	CK92632 CK92632
,	ND (0.0010)	8260B	1	11/26/19 11:56		
1,1-Dichloropropene	ND (0.0020)			11/26/19 11:56	C9K0432	CK92632
1,2,3-Trichlorobenzene	ND (0.0010)	8260B	1	11/26/19 11:56	C9K0432	CK92632
1,2,3-Trichloropropane	ND (0.0010)	8260B	1	11/26/19 11:56	C9K0432	CK92632
1,2,4-Trichlorobenzene	ND (0.0010)	8260B	1	11/26/19 11:56	C9K0432	CK92632
1,2,4-Trimethylbenzene	ND (0.0010)	8260B	1	11/26/19 11:56	C9K0432	CK92632
1,2-Dibromo-3-Chloropropane	ND (0.0050)	8260B	1	11/26/19 11:56	C9K0432	CK92632
1,2-Dibromoethane	ND (0.0010)	8260B	1	11/26/19 11:56	C9K0432	CK92632
1,2-Dichlorobenzene	ND (0.0010)	8260B	1	11/26/19 11:56	C9K0432	CK92632
1,2-Dichloroethane	ND (0.0010)	8260B	1	11/26/19 11:56	C9K0432	CK92632
1,2-Dichloropropane	ND (0.0010)	8260B	1	11/26/19 11:56	C9K0432	CK92632
1,3,5-Trimethylbenzene	ND (0.0010)	8260B	1	11/26/19 11:56	C9K0432	CK92632
1,3-Dichlorobenzene	ND (0.0010)	8260B	1	11/26/19 11:56	C9K0432	CK92632
1,3-Dichloropropane	ND (0.0010)	8260B	1	11/26/19 11:56	C9K0432	CK92632
1,4-Dichlorobenzene	ND (0.0010)	8260B	1	11/26/19 11:56	C9K0432	CK92632
1,4-Dioxane - Screen	ND (0.500)	8260B	1	11/26/19 11:56	C9K0432	CK92632
1-Chlorohexane	ND (0.0010)	8260B	1	11/26/19 11:56	C9K0432	CK92632
2,2-Dichloropropane	ND (0.0010)	8260B	1	11/26/19 11:56	C9K0432	CK92632
2-Butanone	ND (0.0100)	8260B	1	11/26/19 11:56	C9K0432	CK92632
2-Chlorotoluene	ND (0.0010)	8260B	1	11/26/19 11:56	C9K0432	CK92632
2-Hexanone	ND (0.0100)	8260B	1	11/26/19 11:56	C9K0432	CK92632
4-Chlorotoluene	ND (0.0010)	8260B	1	11/26/19 11:56	C9K0432	CK92632
4-Isopropyltoluene	ND (0.0010)	8260B	1	11/26/19 11:56	C9K0432	CK92632
4-Methyl-2-Pentanone	ND (0.0250)	8260B	1	11/26/19 11:56	C9K0432	CK92632
Acetone	ND (0.0100)	8260B	1	11/26/19 11:56	C9K0432	CK92632
Benzene	ND (0.0010)	8260B	1	11/26/19 11:56	C9K0432	CK92632
Bromobenzene	ND (0.0020)	8260B	1	11/26/19 11:56	C9K0432	CK92632

Tel: 401-461-7181 Dependability • Quality Fax: 401-461-4486 Service

٠

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: Trip Blank Date Sampled: 11/22/19 08:00 Percent Solids: N/A Initial Volume: 5 Final Volume: 5 Extraction Method: 5030B

ESS Laboratory Work Order: 19K0746 ESS Laboratory Sample ID: 19K0746-07 Sample Matrix: Ground Water Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

Analyte Bromochloromethane	Results (MRL) ND (0.0010)	MDL <u>Method</u> 8260B	Limit <u>DF</u>	<u>Analyzed</u> 11/26/19 11:56	Sequence C9K0432	<u>Batch</u> CK92632
Bromodichloromethane	ND (0.0006)	8260B	1	11/26/19 11:56	C9K0432	CK92632
Bromoform	ND (0.0010)	8260B	1	11/26/19 11:56	C9K0432	CK92632
Bromomethane	ND (0.0020)	8260B	1	11/26/19 11:56	C9K0432	CK92632
Carbon Disulfide	ND (0.0010)	8260B	1	11/26/19 11:56	C9K0432	CK92632
Carbon Tetrachloride	ND (0.0010)	8260B	1	11/26/19 11:56	C9K0432	CK92632
Chlorobenzene	ND (0.0010)	8260B	1	11/26/19 11:56	C9K0432	CK92632
Chloroethane	ND (0.0020)	8260B	1	11/26/19 11:56	C9K0432	CK92632
Chloroform	ND (0.0010)	8260B	1	11/26/19 11:56	C9K0432	CK92632
Chloromethane	ND (0.0020)	8260B	1	11/26/19 11:56	C9K0432	CK92632
cis-1,2-Dichloroethene	ND (0.0010)	8260B	1	11/26/19 11:56	C9K0432	CK92632
cis-1,3-Dichloropropene	ND (0.0004)	8260B	1	11/26/19 11:56	C9K0432	CK92632
Dibromochloromethane	ND (0.0010)	8260B	1	11/26/19 11:56	C9K0432	CK92632
Dibromomethane	ND (0.0010)	8260B	1	11/26/19 11:56	C9K0432	CK92632
Dichlorodifluoromethane	ND (0.0020)	8260B	1	11/26/19 11:56	C9K0432	CK92632
Diethyl Ether	ND (0.0010)	8260B	1	11/26/19 11:56	C9K0432	CK92632
Di-isopropyl ether	ND (0.0010)	8260B	1	11/26/19 11:56	C9K0432	CK92632
Ethyl tertiary-butyl ether	ND (0.0010)	8260B	1	11/26/19 11:56	C9K0432	CK92632
Ethylbenzene	ND (0.0010)	8260B	1	11/26/19 11:56	C9K0432	CK92632
Hexachlorobutadiene	ND (0.0006)	8260B	1	11/26/19 11:56	C9K0432	CK92632
Hexachloroethane	ND (0.0010)	8260B	1	11/26/19 11:56	C9K0432	CK92632
Isopropylbenzene	ND (0.0010)	8260B	1	11/26/19 11:56	C9K0432	CK92632
Methyl tert-Butyl Ether	ND (0.0010)	8260B	1	11/26/19 11:56	C9K0432	CK92632
Methylene Chloride	ND (0.0020)	8260B	1	11/26/19 11:56	C9K0432	CK92632
Naphthalene	ND (0.0010)	8260B	1	11/26/19 11:56	C9K0432	CK92632
n-Butylbenzene	ND (0.0010)	8260B	1	11/26/19 11:56	C9K0432	CK92632
n-Propylbenzene	ND (0.0010)	8260B	1	11/26/19 11:56	C9K0432	CK92632
sec-Butylbenzene	ND (0.0010)	8260B	1	11/26/19 11:56	C9K0432	CK92632
Styrene	ND (0.0010)	8260B	1	11/26/19 11:56	C9K0432	CK92632
tert-Butylbenzene	ND (0.0010)	8260B	1	11/26/19 11:56	C9K0432	CK92632
Tertiary-amyl methyl ether	ND (0.0010)	8260B	1	11/26/19 11:56	C9K0432	CK92632
Tetrachloroethene	ND (0.0010)	8260B	1	11/26/19 11:56	C9K0432	CK92632

Tel: 401-461-7181 Dependability • Quality Fax: 401-461-4486 Service

٠

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: Trip Blank Date Sampled: 11/22/19 08:00 Percent Solids: N/A Initial Volume: 5 Final Volume: 5 Extraction Method: 5030B

ESS Laboratory Work Order: 19K0746 ESS Laboratory Sample ID: 19K0746-07 Sample Matrix: Ground Water Units: mg/L Analyst: MD

8260B Volatile Organic Compounds

<u>Analyte</u> Tetrahydrofuran	<u>Results (MRL)</u> ND (0.0050)	MDL	<u>Method</u> 8260B	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 11/26/19 11:56	Sequence C9K0432	<u>Batch</u> CK92632
Toluene	ND (0.0010)		8260B		1	11/26/19 11:56	C9K0432	CK92632
trans-1,2-Dichloroethene	ND (0.0010)		8260B		1	11/26/19 11:56	C9K0432	CK92632
trans-1,3-Dichloropropene	ND (0.0004)		8260B		1	11/26/19 11:56	C9K0432	CK92632
Trichloroethene	ND (0.0010)		8260B		1	11/26/19 11:56	C9K0432	CK92632
Trichlorofluoromethane	ND (0.0010)		8260B		1	11/26/19 11:56	C9K0432	CK92632
Vinyl Acetate	ND (0.0050)		8260B		1	11/26/19 11:56	C9K0432	CK92632
Vinyl Chloride	ND (0.0010)		8260B		1	11/26/19 11:56	C9K0432	CK92632
Xylene O	ND (0.0010)		8260B		1	11/26/19 11:56	C9K0432	CK92632
Xylene P,M	ND (0.0020)		8260B		1	11/26/19 11:56	C9K0432	CK92632
Xylenes (Total)	ND (0.00200)		8260B		1	11/26/19 11:56		[CALC]
	ç	%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		108 %		70-130				
Surrogate: 4-Bromofluorobenzene		87 %		70-130				
Surrogate: Dibromofluoromethane		103 %		70-130				
Surrogate: Toluene-d8		102 %		70-130				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company

ESS Laboratory Work Order: 19K0746

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
			Total Meta	als						
Batch CK92237 - 3005A/200.7										
Blank Irsenic	ND	0.002	mg/L							
Beryllium	ND	0.0002	mg/L							
Cadmium	ND	0.0025	mg/L							
hromium	ND	0.010	mg/L							
Copper	ND	0.010	mg/L							
ead	ND	0.010	mg/L							
lickel	ND	0.025	mg/L							
ilver	ND	0.005	mg/L							
linc	ND	0.025	mg/L							
lank			5.							
Antimony	ND	0.001	mg/L							
Thallium	ND	0.0005	mg/L							
Blank			5,							
elenium	ND	0.005	mg/L							
cs eryllium	0.0244	0.0005	mg/L	0.02500		98	80-120			
admium	0.119	0.0005	mg/L	0.1250		95	80-120			
hromium	0.250	0.010	mg/L	0.2500		100	80-120			
opper	0.255	0.010	mg/L	0.2500		100	80-120			
ead	0.254	0.010	mg/L	0.2500		102	80-120			
ickel	0.255	0.025	mg/L	0.2500		102	80-120			
ilver	0.126	0.005	mg/L	0.1250		101	80-120			
inc	0.249	0.025	mg/L	0.2500		100	80-120			
cs										
ntimony	0.249	0.005	mg/L	0.2500		99	80-120			
hallium	0.235	0.002	mg/L	0.2500		94	80-120			
CS			5,							
rsenic	0.225	0.062	mg/L	0.2500		90	80-120			
elenium	0.499	0.125	mg/L	0.5000		100	80-120			
	0.199	0.125	1119/E	0.5000		100	00 120			
CS Dup eryllium	0.0240	0.0005	ma/l	0.02500		96	80-120	2	20	
admium	0.0240	0.0005	mg/L mg/L	0.02500		96 95	80-120 80-120	0.9	20 20	
hromium	0.243	0.0025	mg/L	0.12500		93 97	80-120	2	20	
öpper	0.243	0.010	mg/L	0.2500		97 100	80-120	2	20	
ead	0.250	0.010	mg/L	0.2500		100	80-120	2	20	
ickel	0.248	0.010	mg/L	0.2500		99	80-120	3	20	
ilver	0.124	0.005	mg/L	0.1250		99	80-120	2	20	
inc	0.244	0.025	mg/L	0.2500		98	80-120	2	20	
CS Dup			- 18.					-		
ntimony	0.243	0.005	mg/L	0.2500		97	80-120	2	20	
hallium	0.245	0.003	mg/L	0.2500		97 94	80-120	0.06	20	
indira in	0.235	0.002	iiig/L	0.2000		Γ	00 120	0.00	20	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company

ESS Laboratory Work Order: 19K0746

Quality Control Data

				Calibra	6		0/ DEC		DDD	
				Spike	Source		%REC		RPD	
yte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
			Total Met	als						
n CK92237 - 3005A/200.7										
ic	0.209	0.062	mg/L	0.2500		84	80-120	8	20	
ium	0.540	0.125	mg/L	0.5000		108	80-120	8	20	
n CK92238 - 245.1/7470A										
k										
ıry	ND	0.00020	mg/L							
ĸ										
iry	ND	0.00020	mg/L							
ıry	0.00587	0.00020	mg/L	0.006042		97	80-120			
Dup										
ıry	0.00586	0.00020	mg/L	0.006042		97	80-120	0.2	20	
		8082A Polyc	hlorinated	Biphenyls	(PCB)					
- CK02702 2510C										

Batch CK92702 - 3510C							
Blank							
Aroclor 1016	ND	0.00005	mg/L				
Aroclor 1016 [2C]	ND	0.00005	mg/L				
Aroclor 1221	ND	0.00005	mg/L				
Aroclor 1221 [2C]	ND	0.00005	mg/L				
Aroclor 1232	ND	0.00005	mg/L				
Aroclor 1232 [2C]	ND	0.00005	mg/L				
Aroclor 1242	ND	0.00005	mg/L				
Aroclor 1242 [2C]	ND	0.00005	mg/L				
Aroclor 1248	ND	0.00005	mg/L				
Aroclor 1248 [2C]	ND	0.00005	mg/L				
Aroclor 1254	ND	0.00005	mg/L				
Aroclor 1254 [2C]	ND	0.00005	mg/L				
Aroclor 1260	ND	0.00005	mg/L				
Aroclor 1260 [2C]	ND	0.00005	mg/L				
Aroclor 1262	ND	0.00005	mg/L				
Aroclor 1262 [2C]	ND	0.00005	mg/L				
Aroclor 1268	ND	0.00005	mg/L				
Aroclor 1268 [2C]	ND	0.00005	mg/L				
Surrogate: Decachlorobiphenyl	ND		mg/L	0.00005000	85	30-150	
Surrogate: Decachlorobiphenyl [2C]	ND		mg/L	0.00005000	87	30-150	
Surrogate: Tetrachloro-m-xylene	ND		mg/L	0.00005000	68	30-150	
Surrogate: Tetrachloro-m-xylene [2C]	ND		mg/L	0.00005000	74	30-150	
LCS							
Aroclor 1016	0.00103	0.00005	mg/L	0.001000	103	40-140	
Aroclor 1016 [2C]	0.00094	0.00005	mg/L	0.001000	94	40-140	
Aroclor 1260	0.00099	0.00005	mg/L	0.001000	99	40-140	
Aroclor 1260 [2C]	0.00099	0.00005	mg/L	0.001000	99	40-140	

Tel: 401-461-7181 Dependability • Quality

Fax: 401-461-4486 •

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company

ESS Laboratory Work Order: 19K0746

Quality Control Data

Δηριντο	Popult	MDI	Unite	Spike	Source	0/ DEC	%REC	חסק	RPD Limit	Qualifica
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
		8082A Polyc	niorinated	Biphenyls	(PCB)					
Batch CK92702 - 3510C										
Surrogate: Decachlorobiphenyl	0.0000510		mg/L	0.00005000		102	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0000516		mg/L	0.00005000		103	30-150			
Surrogate: Tetrachloro-m-xylene	0.0000474		mg/L	0.00005000		95	30-150			
- Gurrogate: Tetrachloro-m-xylene [2C]	0.0000486		mg/L	0.00005000		97	30-150			
CS Dup										
roclor 1016	0.00082	0.00005	mg/L	0.001000		82	40-140	23	20	D+
roclor 1016 [2C]	0.00077	0.00005	mg/L	0.001000		77	40-140	20	20	
vroclor 1260	0.00086	0.00005	mg/L	0.001000		86	40-140	14	20	
roclor 1260 [2C]	0.00087	0.00005	mg/L	0.001000		87	40-140	12	20	
	0.0000455		ma/l	0.00005000		91	30-150			
Surrogate: Decachlorobiphenyl	0.0000455		mg/L	0.00005000		91 93	30-150 30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0000317		mg/L	0.00005000		93 63	30-150 30-150			
urrogate: Tetrachloro-m-xylene	0.0000317		mg/L mg/L	0.00005000		63 64	30-150 30-150			
urrogate: Tetrachloro-m-xylene [2C]	0.0000320	010014 -				7	50-150			
		8100M Tota	I Petroleui	m Hydrocar	bons					
atch CK92501 - 3510C										
lank										
ecane (C10)	ND	0.005	mg/L							
ocosane (C22)	ND	0.005	mg/L							
odecane (C12)	ND	0.005	mg/L							
icosane (C20)	ND	0.005	mg/L							
lexacosane (C26)	ND	0.005	mg/L							
lexadecane (C16)	ND	0.005	mg/L							
Ionadecane (C19)	ND	0.005	mg/L							
Ionane (C9)	ND	0.005	mg/L							
Octacosane (C28)	ND	0.005	mg/L							
Octadecane (C18)	ND	0.005	mg/L							
etracosane (C24)	ND	0.005	mg/L							
etradecane (C14)	ND	0.005	mg/L							
otal Petroleum Hydrocarbons	ND	0.20	mg/L							
riacontane (C30)	ND	0.005	mg/L							
urrogate: O-Terphenyl	0.0848		mg/L	0.1000		85	40-140			
.cs										
ecane (C10)	0.031	0.005	mg/L	0.05000		62	40-140			
ocosane (C22)	0.040	0.005	mg/L	0.05000		80	40-140			
Dodecane (C12)	0.035	0.005	mg/L	0.05000		70	40-140			
icosane (C20)	0.040	0.005	mg/L	0.05000		79	40-140			
lexacosane (C26)	0.038	0.005	mg/L	0.05000		76	40-140			
lexadecane (C16)	0.039	0.005	mg/L	0.05000		77	40-140			
onadecane (C19)	0.043	0.005	mg/L	0.05000		86	40-140			
	0.015									
	0.026	0.005	ma/l	0 05000						
onane (C9) ctacosane (C28)	0.026 0.037	0.005 0.005	mg/L mg/L	0.05000 0.05000		53 74	30-140 40-140			

Dependability

Quality

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company

ESS Laboratory Work Order: 19K0746

Quality Control Data

	.			Spike	Source		%REC		RPD	0 110
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
		8100M Tota	al Petroleur	n Hydroca	rbons					
Batch CK92501 - 3510C										
Octadecane (C18)	0.039	0.005	mg/L	0.05000		78	40-140			
Fetracosane (C24)	0.039	0.005	mg/L	0.05000		78	40-140			
Tetradecane (C14)	0.038	0.005	mg/L	0.05000		76	40-140			
Total Petroleum Hydrocarbons	0.515	0.20	mg/L	0.7000		74	40-140			
Triacontane (C30)	0.035	0.005	mg/L	0.05000		70	40-140			
Surrogate: O-Terphenyl	0.0825		mg/L	0.1000		83	40-140			
cs										
Decane (C10)	0.005	0.005	mg/L	0.01000		52	40-140			
Docosane (C22)	0.009	0.005	mg/L	0.01000		87	40-140			
Dodecane (C12)	0.006	0.005	mg/L	0.01000		61	40-140			
Eicosane (C20)	0.008	0.005	mg/L	0.01000		84	40-140			
lexacosane (C26)	0.008	0.005	mg/L	0.01000		79	40-140			
lexadecane (C16)	0.008	0.005	mg/L	0.01000		79	40-140			
Ionadecane (C19)	0.008	0.005	mg/L	0.01000		81	40-140			
Ionane (C9)	0.005	0.005	mg/L	0.01000		46	30-140			
Octacosane (C28)	0.008	0.005	mg/L	0.01000		76	40-140			
Octadecane (C18)	0.009	0.005	mg/L	0.01000		87	40-140			
etracosane (C24)	0.008	0.005	mg/L	0.01000		84	40-140			
etradecane (C14)	0.008	0.005	mg/L	0.01000		78	40-140			
otal Petroleum Hydrocarbons	0.104	0.20	mg/L	0.1400		74	40-140			
riacontane (C30)	0.007	0.005	mg/L	0.01000		71	40-140			
Surrogate: O-Terphenyl	0.0835		mg/L	0.1000		83	40-140			
CS Dup										
lecane (C10)	0.030	0.005	mg/L	0.05000		60	40-140	3	25	
ocosane (C22)	0.042	0.005	mg/L	0.05000		84	40-140	4	25	
Dodecane (C12)	0.036	0.005	mg/L	0.05000		72	40-140	2	25	
icosane (C20)	0.041	0.005	mg/L	0.05000		83	40-140	4	25	
lexacosane (C26)	0.040	0.005	mg/L	0.05000		80	40-140	6	25	
lexadecane (C16)	0.039	0.005	mg/L	0.05000		78	40-140	1	25	
Ionadecane (C19)	0.044	0.005	mg/L	0.05000		89	40-140	3	25	
Ionane (C9)	0.026	0.005	mg/L	0.05000		51	30-140	2	25	
Octacosane (C28)	0.039	0.005	mg/L	0.05000		78	40-140	5	25	
Octadecane (C18)	0.041	0.005	mg/L	0.05000		81	40-140	4	25	
etracosane (C24)	0.041	0.005	mg/L	0.05000		83	40-140	5	25	
etradecane (C14)	0.039	0.005	mg/L	0.05000		78	40-140	3	25	
Total Petroleum Hydrocarbons	0.532	0.20	mg/L	0.7000		76	40-140	3	25	
riacontane (C30)	0.037	0.005	mg/L	0.05000		74	40-140	5	25	
Surrogate: O-Terphenyl	0.0828		mg/L	0.1000		83	40-140			
unogate. Of terpricity			atile Organ							

Batch CK92632 - 5030B

Blank

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company

ESS Laboratory Work Order: 19K0746

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
		8260B Vo	latile Organ	ic Compo	unds					
Batch CK92632 - 5030B										
1,1,1,2-Tetrachloroethane	ND	0.0010	mg/L							
1,1,1-Trichloroethane	ND	0.0010	mg/L							
1,1,2,2-Tetrachloroethane	ND	0.0005	mg/L							
1,1,2-Trichloroethane	ND	0.0010	mg/L							
1,1-Dichloroethane	ND	0.0010	mg/L							
1,1-Dichloroethene	ND	0.0010	mg/L							
1,1-Dichloropropene	ND	0.0020	mg/L							
1,2,3-Trichlorobenzene	ND	0.0010	mg/L							
1,2,3-Trichloropropane	ND	0.0010	mg/L							
1,2,4-Trichlorobenzene	ND	0.0010	mg/L							
1,2,4-Trimethylbenzene	ND	0.0010	mg/L							
1,2-Dibromo-3-Chloropropane	ND	0.0050	mg/L							
1,2-Dibromoethane	ND	0.0010	mg/L							
1,2-Dichlorobenzene	ND	0.0010	mg/L							
,2-Dichloroethane	ND	0.0010	mg/L							
.,2-Dichloropropane	ND	0.0010	mg/L							
,3,5-Trimethylbenzene	ND	0.0010	mg/L							
.,3-Dichlorobenzene	ND	0.0010	mg/L							
.,3-Dichloropropane	ND	0.0010	mg/L							
,4-Dichlorobenzene	ND	0.0010	mg/L							
.,4-Dioxane - Screen	ND	0.500	mg/L							
-Chlorohexane	ND	0.0010	mg/L							
2,2-Dichloropropane	ND	0.0010	mg/L							
2-Butanone	ND	0.0100	mg/L							
2-Chlorotoluene	ND	0.0010	mg/L							
2-Hexanone	ND	0.0100	mg/L							
1-Chlorotoluene	ND	0.0010	mg/L							
4-Isopropyltoluene	ND	0.0010	mg/L							
4-Methyl-2-Pentanone	ND	0.0250	mg/L							
Acetone	ND	0.0100	mg/L							
Benzene	ND	0.0010	mg/L							
Bromobenzene	ND	0.0020	mg/L							
Bromochloromethane	ND	0.0010	mg/L							
Bromodichloromethane	ND	0.0006	mg/L							
Bromoform	ND	0.0010	mg/L							
Bromomethane	ND	0.0020	mg/L							
Carbon Disulfide	ND	0.0010	mg/L							
Carbon Tetrachloride	ND	0.0010	mg/L							
Chlorobenzene	ND	0.0010	mg/L							
Chloroethane	ND	0.0020	mg/L							
Chloroform	ND	0.0010	mg/L							
Chloromethane	ND	0.0020	mg/L							
is-1,2-Dichloroethene	ND	0.0010	mg/L							
cis-1,3-Dichloropropene	ND	0.0004	mg/L							
Dibromochloromethane	ND	0.0010	mg/L							

2211 Tel: 401-461-7181 Dependability • Quality

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company

ESS Laboratory Work Order: 19K0746

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
·			atile Organi			-			-	
Batch CK92632 - 5030B										
Dibromomethane	ND	0.0010	mg/L							
Dichlorodifluoromethane	ND	0.0020	mg/L							
Diethyl Ether	ND	0.0010	mg/L							
Di-isopropyl ether	ND	0.0010	mg/L							
thyl tertiary-butyl ether	ND	0.0010	mg/L							
thylbenzene	ND	0.0010	mg/L							
exachlorobutadiene	ND	0.0006	mg/L							
lexachloroethane	ND	0.0010	mg/L							
sopropylbenzene	ND	0.0010	mg/L							
lethyl tert-Butyl Ether	ND	0.0010	mg/L							
lethylene Chloride	ND	0.0020	mg/L							
laphthalene	ND	0.0010	mg/L							
n-Butylbenzene	ND	0.0010	mg/L							
-Propylbenzene	ND	0.0010	mg/L							
ec-Butylbenzene	ND	0.0010	mg/L							
tyrene	ND	0.0010	mg/L							
ert-Butylbenzene	ND	0.0010	mg/L							
ertiary-amyl methyl ether	ND	0.0010	mg/L							
etrachloroethene	ND	0.0010	mg/L							
etrahydrofuran	ND	0.0050	mg/L							
oluene	ND	0.0010								
rans-1,2-Dichloroethene		0.0010	mg/L							
	ND		mg/L							
rans-1,3-Dichloropropene	ND	0.0004	mg/L							
richloroethene	ND	0.0010	mg/L							
richlorofluoromethane	ND	0.0010	mg/L							
/inyl Acetate	ND	0.0050	mg/L							
inyl Chloride	ND	0.0010	mg/L							
ylene O	ND	0.0010	mg/L							
ylene P,M	ND	0.0020	mg/L							
Surrogate: 1,2-Dichloroethane-d4	0.0271		mg/L	0.02500		108	70-130			
Surrogate: 4-Bromofluorobenzene	0.0214		mg/L	0.02500		86	70-130			
Surrogate: Dibromofluoromethane	0.0255		mg/L	0.02500		102	70-130			
Surrogate: Toluene-d8	0.0257		mg/L	0.02500		103	70-130			
cs										
,1,1,2-Tetrachloroethane	10.3		ug/L	10.00		103	70-130			
,1,1-Trichloroethane	10.4		ug/L	10.00		104	70-130			
,1,2,2-Tetrachloroethane	10.9		ug/L	10.00		109	70-130			
,1,2-Trichloroethane	9.60		ug/L	10.00		96	70-130			
,1-Dichloroethane	10.4		ug/L	10.00		104	70-130			
,1-Dichloroethene	10.3		ug/L	10.00		103	70-130			
,1-Dichloropropene	10.2		ug/L	10.00		102	70-130			
,2,3-Trichlorobenzene	9.12		ug/L	10.00		91	70-130			
.,2,3-Trichloropropane	9.65		ug/L	10.00		96	70-130			
,2,4-Trichlorobenzene	8.58		ug/L	10.00		86	70-130			
,2,4-Trimethylbenzene	10.6		ug/L	10.00		106	70-130			

2211 Tel: 401-461-7181 Dependability • Quality

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company

ESS Laboratory Work Order: 19K0746

Quality Control Data

			Spike	Source		%REC		RPD	
Analyte	Result	MRL Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
		8260B Volatile Orga	nic Compo	unds					
Batch CK92632 - 5030B									
1,2-Dibromo-3-Chloropropane	9.40	ug/L	10.00		94	70-130			
1,2-Dibromoethane	9.69	ug/L	10.00		97	70-130			
1,2-Dichlorobenzene	9.71	ug/L	10.00		97	70-130			
1,2-Dichloroethane	9.99	ug/L	10.00		100	70-130			
1,2-Dichloropropane	9.38	ug/L	10.00		94	70-130			
1,3,5-Trimethylbenzene	10.5	ug/L	10.00		105	70-130			
1,3-Dichlorobenzene	10.1	ug/L	10.00		101	70-130			
1,3-Dichloropropane	9.94	ug/L	10.00		99	70-130			
1,4-Dichlorobenzene	10.0	ug/L	10.00		100	70-130			
1,4-Dioxane - Screen	194	ug/L	200.0		97	0-332			
1-Chlorohexane	8.99	ug/L	10.00		90	70-130			
2,2-Dichloropropane	10.9	ug/L	10.00		109	70-130			
2-Butanone	51.1	ug/L	50.00		102	70-130			
2-Chlorotoluene	10.3	ug/L	10.00		103	70-130			
2-Hexanone	47.9	ug/L	50.00		96	70-130			
4-Chlorotoluene	10.3	ug/L	10.00		103	70-130			
4-Isopropyltoluene	10.0	ug/L	10.00		100	70-130			
4-Methyl-2-Pentanone	52.0	ug/L	50.00		104	70-130			
Acetone	48.2	ug/L	50.00		96	70-130			
Benzene	9.90	ug/L	10.00		99	70-130			
Bromobenzene	9.98	ug/L	10.00		100	70-130			
Bromochloromethane	10.0	ug/L	10.00		100	70-130			
Bromodichloromethane	9.65	ug/L	10.00		96	70-130			
Bromoform	9.68	ug/L	10.00		97	70-130			
Bromomethane	12.3	ug/L	10.00		123	70-130			
Carbon Disulfide	9.94	ug/L	10.00		99	70-130			
Carbon Tetrachloride	10.6	ug/L	10.00		106	70-130			
Chlorobenzene	9.54	ug/L	10.00		95	70-130			
Chloroethane	9.44	ug/L	10.00		94	70-130			
Chloroform	10.3	ug/L	10.00		103	70-130			
Chloromethane	10.2	ug/L	10.00		102	70-130			
cis-1,2-Dichloroethene	10.2	ug/L	10.00		102	70-130			
cis-1,3-Dichloropropene	9.99	ug/L	10.00		100	70-130			
Dibromochloromethane	10.3	ug/L	10.00		103	70-130			
Dibromomethane	10.1	ug/L	10.00		101	70-130			
Dichlorodifluoromethane	9.06	ug/L	10.00		91	70-130			
Diethyl Ether	10.0	ug/L	10.00		100	70-130			
Di-isopropyl ether	10.3	ug/L	10.00		103	70-130			
Ethyl tertiary-butyl ether	9.76	ug/L	10.00		98	70-130			
Ethylbenzene	9.77	ug/L	10.00		98	70-130			
Hexachlorobutadiene	10.3	ug/L	10.00		103	70-130			
Hexachloroethane	9.40	ug/L	10.00		94	70-130			
Isopropylbenzene	10.2	ug/L	10.00		102	70-130			
	10.1	ug/L	10.00		101	70-130			
Methyl tert-Butyl Ether Methylene Chloride	10.3	ug/L	10.00		101	70-130			

10-2211 Tel: 401-461-7181 Dependability ◆ Qualit

-7181 Fax: 401-461-4486 Quality • Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company

ESS Laboratory Work Order: 19K0746

Quality Control Data

			Spike	Source		%REC		RPD	
Analyte	Result	MRL Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
		8260B Volatile Organ	ic Compo	unds					
atch CK92632 - 5030B									
laphthalene	9.12	ug/L	10.00		91	70-130			
n-Butylbenzene	10.3	ug/L	10.00		103	70-130			
Propylbenzene	10.1	ug/L	10.00		101	70-130			
ec-Butylbenzene	10.2	ug/L	10.00		102	70-130			
tyrene	8.41	ug/L	10.00		84	70-130			
ert-Butylbenzene	10.2	ug/L	10.00		102	70-130			
ertiary-amyl methyl ether	9.88	ug/L	10.00		99	70-130			
etrachloroethene	8.12	ug/L	10.00		81	70-130			
etrahydrofuran	8.81	ug/L	10.00		88	70-130			
oluene	9.70	ug/L	10.00		97	70-130			
ans-1,2-Dichloroethene	9.73	ug/L	10.00		97	70-130			
ans-1,3-Dichloropropene	9.62	ug/L	10.00		96	70-130			
richloroethene	9.44	ug/L	10.00		94	70-130			
richlorofluoromethane	10.6	ug/L	10.00		106	70-130			
inyl Acetate	9.91	ug/L	10.00		99	70-130			
inyl Chloride	9.34	ug/L	10.00		93	70-130			
ylene O	10.4	ug/L	10.00		104	70-130			
/lene P,M	20.7	ug/L	20.00		101	70-130			
	0.0249	mg/L	0.02500		99	70-130 70-130			
urrogate: 1,2-Dichloroethane-d4	0.0249	mg/L	0.02500		99 99	70-130 70-130			
urrogate: 4-Bromofluorobenzene	0.0254		0.02500		99 101	70-130 70-130			
urrogate: Dibromofluoromethane	0.0234	mg/L mg/L	0.02500		101 96	70-130 70-130			
urrogate: Toluene-d8	0.0240	liig/L	0.02500		90	70-150			
CS Dup									
1,1,2-Tetrachloroethane	10.2	ug/L	10.00		102	70-130	1	25	
1,1-Trichloroethane	9.88	ug/L	10.00		99	70-130	6	25	
1,2,2-Tetrachloroethane	10.6	ug/L	10.00		106	70-130	3	25	
1,2-Trichloroethane	8.99	ug/L	10.00		90	70-130	7	25	
1-Dichloroethane	10.1	ug/L	10.00		101	70-130	3	25	
,1-Dichloroethene	10.2	ug/L	10.00		102	70-130	1	25	
1-Dichloropropene	9.94	ug/L	10.00		99	70-130	3	25	
,2,3-Trichlorobenzene	8.69	ug/L	10.00		87	70-130	5	25	
,2,3-Trichloropropane	9.49	ug/L	10.00		95	70-130	2	25	
2,4-Trichlorobenzene	8.34	ug/L	10.00		83	70-130	3	25	
,2,4-Trimethylbenzene	10.7	ug/L	10.00		107	70-130	0.4	25	
2-Dibromo-3-Chloropropane	8.91	ug/L	10.00		89	70-130	5	25	
2-Dibromoethane	9.59	ug/L	10.00		96	70-130	1	25	
2-Dichlorobenzene	9.63	ug/L	10.00		96	70-130	0.8	25	
2-Dichloroethane	9.55	ug/L	10.00		96	70-130	5	25	
2-Dichloropropane	9.11	ug/L	10.00		91	70-130	3	25	
3,5-Trimethylbenzene	10.6	ug/L	10.00		106	70-130	0.3	25	
,3-Dichlorobenzene	9.89	ug/L	10.00		99	70-130	2	25	
,3-Dichloropropane	9.83	ug/L	10.00		98	70-130	1	25	
,4-Dichlorobenzene	10.1	ug/L	10.00		101	70-130	0.5	25	
,4-Dioxane - Screen	180	ug/L	200.0		90	0-332	7	200	
-Chlorohexane	8.88	ug/L	10.00		89	70-130	1	25	

2211 Tel: 401-461-7181 Dependability • Quality

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company

ESS Laboratory Work Order: 19K0746

Quality Control Data

			Spike	Source		%REC		RPD	
Analyte	Result	MRL Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
		8260B Volatile Organi	ic Compo	unds					
Batch CK92632 - 5030B	10.0	n	10.00		100	70 120		25	
2,2-Dichloropropane	10.6	ug/L	10.00		106	70-130	3	25	
2-Butanone	48.2	ug/L	50.00		96	70-130	6	25	
2-Chlorotoluene	10.3	ug/L	10.00		103	70-130	0.2	25	
2-Hexanone	46.8	ug/L	50.00		94 102	70-130	2	25	
4-Chlorotoluene	10.2	ug/L	10.00		102	70-130	0.9	25	
4-Isopropyltoluene	9.84	ug/L	10.00		98	70-130	2	25	
4-Methyl-2-Pentanone	49.7	ug/L	50.00		99	70-130	5	25	
Acetone	44.0	ug/L	50.00		88	70-130	9	25	
Benzene	9.55	ug/L	10.00		96	70-130	4	25	
Bromobenzene	9.98	ug/L	10.00		100	70-130	0	25	
Bromochloromethane	9.78	ug/L	10.00		98	70-130	2	25	
Bromodichloromethane	9.34	ug/L	10.00		93	70-130	3	25	
Bromoform	9.27	ug/L	10.00		93	70-130	4	25	
Bromomethane	11.4	ug/L	10.00		114	70-130	8	25	
Carbon Disulfide	9.76	ug/L	10.00		98	70-130	2	25	
Carbon Tetrachloride	10.3	ug/L	10.00		103	70-130	3	25	
Chlorobenzene	9.42	ug/L	10.00		94	70-130	1	25	
Chloroethane	8.99	ug/L	10.00		90	70-130	5	25	
Chloroform	9.97	ug/L	10.00		100	70-130	3	25	
Chloromethane	9.43	ug/L	10.00		94	70-130	7	25	
cis-1,2-Dichloroethene	9.95	ug/L	10.00		100	70-130	2	25	
cis-1,3-Dichloropropene	9.75	ug/L	10.00		98	70-130	2	25	
Dibromochloromethane	9.84	ug/L	10.00		98	70-130	5	25	
Dibromomethane	9.84	ug/L	10.00		98	70-130	3	25	
Dichlorodifluoromethane	8.66	ug/L	10.00		87	70-130	5	25	
Diethyl Ether	9.83	ug/L	10.00		98	70-130	2	25	
Di-isopropyl ether	10.1	ug/L	10.00		101	70-130	2	25	
Ethyl tertiary-butyl ether	9.62	ug/L	10.00		96	70-130	1	25	
Ethylbenzene	9.81	ug/L	10.00		98	70-130	0.4	25	
Hexachlorobutadiene	9.91	ug/L	10.00		99	70-130	3	25	
Hexachloroethane	9.29	ug/L	10.00		93	70-130	1	25	
Isopropylbenzene	10.1	ug/L	10.00		101	70-130	0.8	25	
Methyl tert-Butyl Ether	9.83	ug/L	10.00		98	70-130	3	25	
Methylene Chloride	10.6	ug/L	10.00		106	70-130	2	25	
Naphthalene	8.55	ug/L	10.00		86	70-130	6	25	
n-Butylbenzene	10.1	ug/L	10.00		101	70-130	3	25	
n-Propylbenzene	10.1	ug/L	10.00		101	70-130	0.3	25	
sec-Butylbenzene	10.2	ug/L	10.00		102	70-130	0.2	25	
Styrene	8.24	ug/L	10.00		82	70-130	2	25	
tert-Butylbenzene	10.2	ug/L	10.00		102	70-130	0.1	25	
Tertiary-amyl methyl ether	9.68	ug/L	10.00		97	70-130	2	25	
Tetrachloroethene	7.92	ug/L	10.00		79	70-130	2	25	
Tetrahydrofuran	8.78	ug/L	10.00		88	70-130	0.3	25	
Foluene	9.56	ug/L	10.00		96	70-130	1	25	
trans-1,2-Dichloroethene	9.77	ug/L	10.00		98	70-130	0.4	25	

10-2211 Tel: 401-461-7181 Dependability ◆ Quality

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company

ESS Laboratory Work Order: 19K0746

Quality Control Data

A	D	MD		Spike	Source	0/ 550	%REC	000	RPD	0. 10
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
		8260B Vol	atile Organ	ic Compou	unds					
Batch CK92632 - 5030B										
trans-1,3-Dichloropropene	9.40		ug/L	10.00		94	70-130	2	25	
Trichloroethene	9.43		ug/L	10.00		94	70-130	0.1	25	
Trichlorofluoromethane	10.4		ug/L	10.00		104	70-130	3	25	
Vinyl Acetate	9.64		ug/L	10.00		96	70-130	3	25	
Vinyl Chloride	8.72		ug/L	10.00		87	70-130	7	25	
Xylene O	10.3		ug/L	10.00		103	70-130	2	25	
Xylene P,M	20.5		ug/L	20.00		103	70-130	0.6	25	
Surrogate: 1,2-Dichloroethane-d4	0.0244		mg/L	0.02500		98	70-130			
Surrogate: 4-Bromofluorobenzene	0.0245		mg/L	0.02500		98	70-130			
- Surrogate: Dibromofluoromethane	0.0248		mg/L	0.02500		99	70-130			
Surrogate: Toluene-d8	0.0242		mg/L	0.02500		97	70-130			
	:	8270D Semi-	Volatile Org	ganic Com	pounds					
Ratch (VQ)556 - 35200										
Batch CK92556 - 3520C Blank										
1,1-Biphenyl	ND	0.010	mg/L							
1,2,4-Trichlorobenzene	ND	0.010	mg/L							
1,2-Dichlorobenzene	ND	0.010	mg/L							
1,3-Dichlorobenzene	ND	0.010	mg/L							
1,4-Dichlorobenzene	ND	0.010	mg/L							
2,3,4,6-Tetrachlorophenol	ND	0.050	mg/L							
2,4,5-Trichlorophenol	ND	0.010	mg/L							
2,4,6-Trichlorophenol	ND	0.010	mg/L							
2,4-Dichlorophenol	ND	0.010	mg/L							
2,4-Dimethylphenol	ND	0.050	mg/L							
2,4-Dinitrophenol	ND	0.050	mg/L							
2,4-Dinitrotoluene	ND	0.010	mg/L							
2,6-Dinitrotoluene	ND	0.010	mg/L							
2-Chloronaphthalene	ND	0.010	mg/L							
2-Chlorophenol	ND	0.010	mg/L							
2-Methylphenol	ND	0.010	mg/L							
2-Nitroaniline	ND	0.010	mg/L							
2-Nitrophenol	ND	0.010	mg/L							
3,3´-Dichlorobenzidine	ND	0.020	mg/L							
3+4-Methylphenol	ND	0.020	mg/L							
3-Nitroaniline	ND	0.010	mg/L							
4,6-Dinitro-2-Methylphenol	ND	0.050	mg/L							
4-Bromophenyl-phenylether	ND	0.010	mg/L							
4-Chloro-3-Methylphenol	ND	0.010	mg/L							
1-Chloroaniline	ND	0.020	mg/L							
4-Chloro-phenyl-phenyl ether	ND	0.010	mg/L							
	ND	0.010	mg/L							
4-Nitroaniline										
4-Nitroaniline 4-Nitrophenol	ND	0.050	mq/L							
	ND ND	0.050	mg/L mg/L							

Dependability

Quality

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company

ESS Laboratory Work Order: 19K0746

Quality Control Data

nalyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD		
						JUNEC	Emiles	N D	Limit	Qualifie
	8	3270D Semi-	Volatile Org	anic Com	pounds					
atch CK92556 - 3520C										
robenzene	ND	0.020	mg/L							
enzoic Acid	ND	0.100	mg/L							
enzyl Alcohol	ND	0.010	mg/L							
s(2-Chloroethoxy)methane	ND	0.010	mg/L							
s(2-Chloroethyl)ether	ND	0.010	mg/L							
s(2-chloroisopropyl)Ether	ND	0.010	mg/L							
s(2-Ethylhexyl)phthalate	ND	0.006	mg/L							
ıtylbenzylphthalate	ND	0.010	mg/L							
rbazole	ND	0.010	mg/L							
penzofuran	ND	0.010	mg/L							
ethylphthalate	ND	0.010	mg/L							
methylphthalate	ND	0.010	mg/L							
-n-butylphthalate	ND	0.010	mg/L							
-n-octylphthalate	ND	0.010	mg/L							
exachlorobutadiene	ND	0.010	mg/L							
exachlorocyclopentadiene	ND	0.025	mg/L							
exachloroethane	ND	0.005	mg/L							
ophorone	ND	0.010	mg/L							
trobenzene	ND	0.010	mg/L							
Nitrosodimethylamine	ND	0.010	mg/L							
Nitroso-Di-n-Propylamine	ND	0.010	mg/L							
nitrosodiphenylamine	ND	0.010	mg/L							
enol	ND	0.010	mg/L							
ridine	ND	0.100	mg/L							
ırrogate: 1,2-Dichlorobenzene-d4	0.0680		mg/L	0.1000		68	30-130			
irrogate: 2,4,6-Tribromophenol	0.124		mg/L	0.1500		83	15-110			
irrogate: 2-Chlorophenol-d4	0.112		mg/L	0.1500		75	15-110			
irrogate: 2-Fluorobiphenyl	0.0695		mg/L	0.1000		69	30-130			
irrogate: 2-Fluorophenol	0.0916		mg/L	0.1500		61	15-110			
urrogate: Nitrobenzene-d5	0.0794		mg/L	0.1000		79	30-130			
urrogate: Phenol-d6	0.0917		mg/L	0.1500		61	15-110			
urrogate: p-Terphenyl-d14	0.0732		mg/L	0.1000		73	30-130			
CS										
1-Biphenyl	0.065	0.010	mg/L	0.1000		65	40-140			
2,4-Trichlorobenzene	0.061	0.010	mg/L	0.1000		61	40-140			
2-Dichlorobenzene	0.046	0.010	mg/L	0.1000		46	40-140			
3-Dichlorobenzene	0.040	0.010	mg/L	0.1000		42	40-140			
4-Dichlorobenzene	0.042	0.010	mg/L	0.1000		42	40-140			
3,4,6-Tetrachlorophenol	0.042	0.010	mg/L	0.1000		42 91	40-140			
						91				
4,5-Trichlorophenol	0.098	0.010	mg/L	0.1000 0.1000		97 92	30-130 30-130			
4,6-Trichlorophenol	0.092	0.010	mg/L							
4-Dichlorophenol	0.083	0.010	mg/L	0.1000		83	30-130			
4-Dimethylphenol	0.075	0.050	mg/L	0.1000		75	30-130			
4-Dinitrophenol 4-Dinitrotoluene	0.117 0.094	0.050 0.010	mg/L mg/L	0.1000 0.1000		117 94	30-130 40-140			

2211 Tel: 401-461-7181 Dependability • Quality Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company

ESS Laboratory Work Order: 19K0746

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
	{	3270D Semi-	Volatile Org	janic Com	pounds					
Batch CK92556 - 3520C										
2,6-Dinitrotoluene	0.091	0.010	mg/L	0.1000		91	40-140			
2-Chloronaphthalene	0.066	0.010	mg/L	0.1000		66	40-140			
2-Chlorophenol	0.072	0.010	mg/L	0.1000		72	30-130			
2-Methylphenol	0.075	0.010	mg/L	0.1000		75	30-130			
2-Nitroaniline	0.091	0.010	mg/L	0.1000		91	40-140			
2-Nitrophenol	0.079	0.010	mg/L	0.1000		79	30-130			
3,3´-Dichlorobenzidine	0.080	0.020	mg/L	0.1000		80	40-140			
3+4-Methylphenol	0.118	0.020	mg/L	0.2000		59	30-130			
3-Nitroaniline	0.088	0.010	mg/L	0.1000		88	40-140			
4,6-Dinitro-2-Methylphenol	0.102	0.050	mg/L	0.1000		102	30-130			
4-Bromophenyl-phenylether	0.080	0.010	mg/L	0.1000		80	40-140			
4-Chloro-3-Methylphenol	0.090	0.010	mg/L	0.1000		90	30-130			
4-Chloroaniline	0.057	0.020	mg/L	0.1000		57	40-140			
4-Chloro-phenyl-phenyl ether	0.075	0.010	mg/L	0.1000		75	40-140			
4-Nitroaniline	0.078	0.010	mg/L	0.1000		78	40-140			
4-Nitrophenol	0.086	0.050	mg/L	0.1000		86	30-130			
Acetophenone	0.060	0.010	mg/L	0.1000		60	40-140			
Aniline	0.040	0.010	mg/L	0.1000		40	40-140			
Azobenzene	0.073	0.020	mg/L	0.1000		73	40-140			
Benzoic Acid	0.083	0.100	mg/L	0.1000		83	40-140			
Benzyl Alcohol	0.079	0.010	mg/L	0.1000		79	40-140			
bis(2-Chloroethoxy)methane	0.066	0.010	mg/L	0.1000		66	40-140			
bis(2-Chloroethyl)ether	0.067	0.010	mg/L	0.1000		67	40-140			
bis(2-chloroisopropyl)Ether	0.066	0.010	mg/L	0.1000		66	40-140			
bis(2-Ethylhexyl)phthalate	0.078	0.006	mg/L	0.1000		78	40-140			
Butylbenzylphthalate	0.076	0.010	mg/L	0.1000		76	40-140			
Carbazole	0.081	0.010	mg/L	0.1000		81	40-140			
Dibenzofuran	0.077	0.010	mg/L	0.1000		77	40-140			
Diethylphthalate	0.087	0.010	mg/L	0.1000		87	40-140			
Dimethylphthalate	0.084	0.010	mg/L	0.1000		84	40-140			
Di-n-butylphthalate	0.094	0.010	mg/L	0.1000		94 75	40-140			
Di-n-octylphthalate	0.075	0.010	mg/L	0.1000		75 58	40-140			
Hexachlorobutadiene	0.058	0.010	mg/L	0.1000			40-140 40-140			
Hexachlorocyclopentadiene Hexachloroethane	0.065	0.025 0.005	mg/L mg/L	0.1000 0.1000		65 38	40-140 40-140			B-
Isophorone	0.038 0.067	0.005	mg/L	0.1000		58 67	40-140 40-140			D-
Nitrobenzene	0.087	0.010	mg/L	0.1000		70	40-140 40-140			
NNitrosodimethylamine	0.066	0.010	mg/L	0.1000		66	40-140			
N-Nitroso-Di-n-Propylamine	0.068	0.010	mg/L	0.1000		68	40-140			
N-nitrosodiphenylamine	0.075	0.010	mg/L	0.1000		75	40-140			
Phenol	0.068	0.010	mg/L	0.1000		68	30-130			
Pyridine	0.050	0.100	mg/L	0.1000		50	40-140			
	0.0668	0.100	mg/L	0.1000 0.1000		50 67	30-130			
Surrogate: 1,2-Dichlorobenzene-d4	0.145		mg/L	0.1500		97	15-110			
Surrogate: 2,4,6-Tribromophenol	0.113		mg/L	0.1500		75	15-110 15-110			
Surrogate: 2-Chlorophenol-d4	0.110			5.2000						

2211 Tel: 401-461-7181 Dependability • Quality

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company

ESS Laboratory Work Order: 19K0746

Quality Control Data

					Spike	Source	0/5	%REC		RPD	•
nalyte		Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
		;	8270D Semi-'	Volatile Org	janic Com	pounds					
atch CK92556 - 3520C											
ırrogate: 2-Fluorobipheny	1	0.0732		mg/L	0.1000		73	30-130			
Irrogate: 2-Fluorophenol		0.104		mg/L	0.1500		69	15-110			
urrogate: Nitrobenzene-d	5	0.0757		mg/L	0.1000		76	30-130			
ırrogate: Phenol-d6		0.104		mg/L	0.1500		69	15-110			
Irrogate: p-Terphenyl-d1	4	0.0834		mg/L	0.1000		83	30-130			
S Dup											
1-Biphenyl		0.068	0.010	mg/L	0.1000		68	40-140	5	20	
,4-Trichlorobenzene		0.058	0.010	mg/L	0.1000		58	40-140	4	20	
-Dichlorobenzene		0.046	0.010	mg/L	0.1000		46	40-140	0.6	20	
3-Dichlorobenzene		0.042	0.010	mg/L	0.1000		42	40-140	1	20	
I-Dichlorobenzene		0.043	0.010	mg/L	0.1000		43	40-140	0.4	20	
,4,6-Tetrachlorophenol		0.095	0.050	mg/L	0.1000		95	40-140	4	20	
,5-Trichlorophenol		0.098	0.010	mg/L	0.1000		98	30-130	0.6	20	
,6-Trichlorophenol		0.095	0.010	mg/L	0.1000		95	30-130	3	20	
-Dichlorophenol		0.085	0.010	mg/L	0.1000		85	30-130	2	20	
-Dimethylphenol		0.079	0.050	mg/L	0.1000		79	30-130	5	20	
-Dinitrophenol		0.117	0.050	mg/L	0.1000		117	30-130	0.03	20	
		0.096	0.030		0.1000		96	40-140	2	20	
-Dinitrotoluene			0.010	mg/L	0.1000		90 94	40-140	2	20	
-Dinitrotoluene		0.094		mg/L							
hloronaphthalene		0.070	0.010	mg/L	0.1000		70	40-140	7	20	
hlorophenol		0.073	0.010	mg/L	0.1000		73	30-130	1	20	
lethylphenol		0.075	0.010	mg/L	0.1000		75	30-130	0.2	20	
litroaniline		0.093	0.010	mg/L	0.1000		93	40-140	2	20	
litrophenol		0.084	0.010	mg/L	0.1000		84	30-130	6	20	
´-Dichlorobenzidine		0.079	0.020	mg/L	0.1000		79	40-140	2	20	
4-Methylphenol		0.116	0.020	mg/L	0.2000		58	30-130	2	20	
litroaniline		0.086	0.010	mg/L	0.1000		86	40-140	2	20	
-Dinitro-2-Methylphenol		0.106	0.050	mg/L	0.1000		106	30-130	3	20	
romophenyl-phenylethe	r	0.083	0.010	mg/L	0.1000		83	40-140	3	20	
Chloro-3-Methylphenol		0.090	0.010	mg/L	0.1000		90	30-130	0.1	20	
Chloroaniline		0.058	0.020	mg/L	0.1000		58	40-140	2	20	
Chloro-phenyl-phenyl eth	er	0.078	0.010	mg/L	0.1000		78	40-140	5	20	
litroaniline		0.078	0.010	mg/L	0.1000		78	40-140	0.4	20	
litrophenol		0.084	0.050	mg/L	0.1000		84	30-130	1	20	
etophenone		0.066	0.010	mg/L	0.1000		66	40-140	9	20	
line		0.043	0.010	mg/L	0.1000		43	40-140	9	20	
obenzene		0.075	0.020	mg/L	0.1000		75	40-140	4	20	
nzoic Acid		0.082	0.100	mg/L	0.1000		82	40-140	0.9	20	
nzyl Alcohol		0.086	0.010	mg/L	0.1000		86	40-140	9	20	
(2-Chloroethoxy)methan	e	0.072	0.010	mg/L	0.1000		72	40-140	10	20	
(2-Chloroethyl)ether		0.072	0.010	mg/L	0.1000		72	40-140	6	20	
(2-chloroisopropyl)Ether		0.072	0.010	mg/L	0.1000		72	40-140	9	20	
(2-Ethylhexyl)phthalate		0.083	0.006	mg/L	0.1000		83	40-140	6	20	
tylbenzylphthalate		0.080	0.010	mg/L	0.1000		80	40-140	5	20	
rbazole		0.083	0.010	mg/L	0.1000		83	40-140	2	20	
				el: 401-461-7		x: 401-461-		http://www			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company

ESS Laboratory Work Order: 19K0746

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
, unity ce		3270D Semi-'				JULEO	Linito		Linte	Quanter
	C	SZTUD Semi-			pounds					
Batch CK92556 - 3520C										
Dibenzofuran	0.080	0.010	mg/L	0.1000		80	40-140	4	20	
Diethylphthalate	0.090	0.010	mg/L	0.1000		90	40-140	3	20	
Dimethylphthalate	0.088	0.010	mg/L	0.1000		88	40-140	4	20	
Di-n-butylphthalate	0.096	0.010	mg/L	0.1000		96	40-140	2	20	
Di-n-octylphthalate	0.080	0.010	mg/L	0.1000		80	40-140	7	20	
Hexachlorobutadiene	0.050	0.010	mg/L	0.1000		50	40-140	16	20	
Hexachlorocyclopentadiene	0.066	0.025	mg/L	0.1000		66	40-140	0.7	20	
Hexachloroethane	0.034	0.005	mg/L	0.1000		34	40-140	13	20	B-
Isophorone	0.072	0.010	mg/L	0.1000		72	40-140	7	20	
Nitrobenzene	0.076	0.010	mg/L	0.1000		76	40-140	9	20	
N-Nitrosodimethylamine	0.074	0.010	mg/L	0.1000		74	40-140	11	20	
N-Nitroso-Di-n-Propylamine	0.073	0.010	mg/L	0.1000		73	40-140	8	20	
N-nitrosodiphenylamine	0.076	0.010	mg/L	0.1000		76	40-140	0.9	20	
Phenol	0.068	0.010	mg/L	0.1000		68	30-130	0.3	20	
Pyridine	0.064	0.100	mg/L	0.1000		64	40-140	25	20	D+
Surrogate: 1,2-Dichlorobenzene-d4	0.0745		mg/L	0.1000		75	30-130			
Surrogate: 2,4,6-Tribromophenol	0.149		mg/L	0.1500		99	15-110			
Surrogate: 2-Chlorophenol-d4	0.114		mg/L	0.1500		76	15-110			
Surrogate: 2-Fluorobiphenyl	0.0777		mg/L	0.1000		78	30-130			
Surrogate: 2-Fluorophenol	0.0929		mg/L	0.1500		62	15-110			
Surrogate: Nitrobenzene-d5	0.0837		mg/L	0.1000		84	30-130			
Surrogate: Phenol-d6	0.105		mg/L	0.1500		70	15-110			
Surrogate: p-Terphenyl-d14	0.0872		mg/L	0.1000		87	30-130			
	8270	DO(SIM) Poly	nuclear Arc	matic Hv	drocarbor	าร				

Batch CK92703 - 3510C

Blank						
2-Methylnaphthalene	ND	0.0002	mg/L			
Acenaphthene	ND	0.0002	mg/L			
Acenaphthylene	ND	0.0002	mg/L			
Anthracene	ND	0.0002	mg/L			
Benzo(a)anthracene	ND	0.00005	mg/L			
Benzo(a)pyrene	ND	0.00005	mg/L			
Benzo(b)fluoranthene	ND	0.00005	mg/L			
Benzo(g,h,i)perylene	ND	0.0002	mg/L			
Benzo(k)fluoranthene	ND	0.00005	mg/L			
Chrysene	ND	0.00005	mg/L			
Dibenzo(a,h)Anthracene	ND	0.00005	mg/L			
Fluoranthene	ND	0.0002	mg/L			
Fluorene	ND	0.0002	mg/L			
Indeno(1,2,3-cd)Pyrene	ND	0.00005	mg/L			
Naphthalene	ND	0.0002	mg/L			
Phenanthrene	ND	0.0002	mg/L			
Pyrene	ND	0.0002	mg/L			
Surrogate: 1,2-Dichlorobenze	ne-d4 0.000	951	mg/L	0.002500	38	30-130
1	85 Frances Avenue, Cranston,	RI 02910-2211	Tel: 401-461-7	181 Fax:	401-461-4486	http://www.ESSLaboratory.com

Dependability • Quality

•

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company

ESS Laboratory Work Order: 19K0746

Quality Control Data

A	- -			Spike	Source	0/ 5 5 6	%REC		RPD	0 ""
nalyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
	827	0D(SIM) Poly	nuclear Ar	omatic Hyd	drocarbor	าร				
atch CK92703 - 3510C										
urrogate: 2-Fluorobiphenyl	0.00120		mg/L	0.002500		48	30-130			
urrogate: Nitrobenzene-d5	0.00174		mg/L	0.002500		70	30-130			
urrogate: p-Terphenyl-d14	0.00219		mg/L	0.002500		88	30-130			
cs										
Methylnaphthalene	0.0024	0.0002	mg/L	0.004000		59	40-140			
cenaphthene	0.0028	0.0002	mg/L	0.004000		71	40-140			
cenaphthylene	0.0028	0.0002	mg/L	0.004000		69	40-140			
nthracene	0.0033	0.0002	mg/L	0.004000		83	40-140			
enzo(a)anthracene	0.0032	0.00005	mg/L	0.004000		80	40-140			
enzo(a)pyrene	0.0032	0.00005	mg/L	0.004000		81	40-140			
nzo(b)fluoranthene	0.0036	0.00005	mg/L	0.004000		90	40-140			
enzo(g,h,i)perylene	0.0032	0.0002	mg/L	0.004000		80	40-140			
nzo(k)fluoranthene	0.0033	0.00005	mg/L	0.004000		83	40-140			
irysene	0.0033	0.00005	mg/L	0.004000		83	40-140			
benzo(a,h)Anthracene	0.0032	0.00005	mg/L	0.004000		81	40-140			
ioranthene	0.0033	0.0002	mg/L	0.004000		82	40-140			
iorene	0.0030	0.0002	mg/L	0.004000		76	40-140			
deno(1,2,3-cd)Pyrene	0.0031	0.00005	mg/L	0.004000		78	40-140			
phthalene	0.0021	0.0002	mg/L	0.004000		53	40-140			
enanthrene	0.0033	0.0002	mg/L	0.004000		82	40-140			
rene	0.0036	0.0002	mg/L	0.004000		90	40-140			
ırrogate: 1,2-Dichlorobenzene-d4	0.00126		mg/L	0.002500		50	30-130			
ırrogate: 2-Fluorobiphenyl	0.00172		mg/L	0.002500		69	30-130			
rrogate: Nitrobenzene-d5	0.00180		mg/L	0.002500		72	30-130			
rrogate: p-Terphenyl-d14	0.00241		mg/L	0.002500		97	30-130			
CS Dup										
Methylnaphthalene	0.0025	0.0002	mg/L	0.004000		64	40-140	8	20	
enaphthene	0.0029	0.0002	mg/L	0.004000		74	40-140	3	20	
enaphthylene	0.0028	0.0002	mg/L	0.004000		71	40-140	3	20	
thracene	0.0033	0.0002	mg/L	0.004000		82	40-140	1	20	
nzo(a)anthracene	0.0031	0.00005	mg/L	0.004000		78	40-140	2	20	
nzo(a)pyrene	0.0032	0.00005	mg/L	0.004000		80	40-140	0.7	20	
nzo(b)fluoranthene	0.0033	0.00005	mg/L	0.004000		84	40-140	8	20	
nzo(g,h,i)perylene	0.0031	0.0002	mg/L	0.004000		76	40-140	4	20	
nzo(k)fluoranthene	0.0035	0.00005	mg/L	0.004000		87	40-140	6	20	
irysene	0.0032	0.00005	mg/L	0.004000		80	40-140	4	20	
penzo(a,h)Anthracene	0.0032	0.00005	mg/L	0.004000		80	40-140	0.8	20	
Joranthene	0.0033	0.0002	mg/L	0.004000		81	40-140	0.8	20	
Jorene	0.0030	0.0002	mg/L	0.004000		75	40-140	1	20	
deno(1,2,3-cd)Pyrene	0.0031	0.00005	mg/L	0.004000		78	40-140	0.4	20	
aphthalene	0.0024	0.0002	mg/L	0.004000		59	40-140	10	20	
nenanthrene	0.0032	0.0002	mg/L	0.004000		79	40-140	3	20	
rrene	0.0035	0.0002	mg/L	0.004000		87	40-140	3	20	
ırrogate: 1,2-Dichlorobenzene-d4	0.00108		mg/L	0.002500		43	30-130			

2211 Tel: 401-461-7181 Dependability • Quality

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company

ESS Laboratory Work Order: 19K0746

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
	827	0D(SIM) Poly	nuclear Ar	omatic Hyd	drocarbor	าร				
Batch CK92703 - 3510C										
Surrogate: 2-Fluorobiphenyl	0.00158		mg/L	0.002500		63	30-130			
Surrogate: Nitrobenzene-d5	0.00189		mg/L	0.002500		75	30-130			
Surrogate: p-Terphenyl-d14	0.00225		mg/L	0.002500		90	30-130			
	827	70D(SIM) Sen	ni-Volatile	Organic Co	mpound	s				
atch CK92556 - 3520C										
Blank										
-Methylnaphthalene	ND	0.00020	mg/L							
Acenaphthene	ND	0.00020	mg/L							
Acenaphthylene	ND	0.00020	mg/L							
Inthracene	ND	0.00020	mg/L							
Benzo(a)anthracene	ND	0.00005	mg/L							
enzo(a)pyrene	ND	0.00005	mg/L							
Senzo(b)fluoranthene	ND	0.00005	mg/L							
enzo(g,h,i)perylene	ND	0.00020	mg/L							
enzo(k)fluoranthene	ND	0.00005	mg/L							
hrysene	ND	0.00005	mg/L							
ibenzo(a,h)Anthracene	ND	0.00005	mg/L							
luoranthene	ND	0.00020	mg/L							
luorene	ND	0.00020	mg/L							
lexachlorobenzene	ND	0.00020	mg/L							
ndeno(1,2,3-cd)Pyrene	ND	0.00005	mg/L							
laphthalene	ND	0.00020	mg/L							
rentachlorophenol	ND	0.00090	mg/L							
rhenanthrene	ND	0.00020	mg/L							
Pyrene	ND	0.00020	mg/L							
	0.0468	0.00020	mg/L	0.1000		47	30-130			
Surrogate: 1,2-Dichlorobenzene-d4	0.0493		mg/L	0.1500		33	15-110			
Surrogate: 2,4,6-Tribromophenol										
Surrogate: 2-Fluorobiphenyl	0.0485		mg/L	0.1000		48 77	30-130 30-130			
Surrogate: Nitrobenzene-d5	0.0768 0.0357		mg/L	0.1000			30-130 30-130			
Surrogate: p-Terphenyl-d14	0.0357		mg/L	0.1000		36	30-130			
.cs										
P-Methylnaphthalene	0.0797	0.00400	mg/L	0.1000		80	40-140			
cenaphthene	0.0937	0.00400	mg/L	0.1000		94	40-140			
Acenaphthylene	0.0900	0.00400	mg/L	0.1000		90	40-140			
nthracene	0.0938	0.00400	mg/L	0.1000		94	40-140			
Benzo(a)anthracene	0.0887	0.00100	mg/L	0.1000		89	40-140			
enzo(a)pyrene	0.0892	0.00100	mg/L	0.1000		89	40-140			
enzo(b)fluoranthene	0.0966	0.00100	mg/L	0.1000		97	40-140			
enzo(g,h,i)perylene	0.0871	0.00400	mg/L	0.1000		87	40-140			
Benzo(k)fluoranthene	0.0933	0.00100	mg/L	0.1000		93	40-140			
Chrysene	0.0887	0.00100	mg/L	0.1000		89	40-140			
Dibenzo(a,h)Anthracene	0.0893	0.00100	mg/L	0.1000		89	40-140			
Fluoranthene	0.0946	0.00400	mg/L	0.1000		95	40-140			
185 Frances Ave	nue, Cranston, RI 029	10-2211 T	el: 401-461-7	181 For	x: 401-461-	4486	http://www	FSSI abor	atory com	
165 Frances Ave	nue, cransion, Kr 029	Dependability		Tor Fa. Quality ♦	Service		http://www		a.01 y.0011	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company

ESS Laboratory Work Order: 19K0746

Quality Control Data

				Spike	Source		%REC		RPD	• ···•
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
	82	70D(SIM) Sen	ni-Volatile	Organic C	ompounds	S				
atch CK92556 - 3520C										
luorene	0.0924	0.00400	mg/L	0.1000		92	40-140			
Hexachlorobenzene	0.129	0.00400	mg/L	0.1000		129	40-140			
ndeno(1,2,3-cd)Pyrene	0.0915	0.00100	mg/L	0.1000		92	40-140			
laphthalene	0.0689	0.00400	mg/L	0.1000		69	40-140			
entachlorophenol	0.127	0.0180	mg/L	0.1000		127	30-130			
henanthrene	0.0929	0.00400	mg/L	0.1000		93	40-140			
yrene	0.0982	0.00400	mg/L	0.1000		98	40-140			
Surrogate: 1,2-Dichlorobenzene-d4	0.0769		mg/L	0.1000		77	30-130			
Surrogate: 2,4,6-Tribromophenol	0.198		mg/L	0.1500		132	15-110			S+
Surrogate: 2-Fluorobiphenyl	0.0894		mg/L	0.1000		89	30-130			
Surrogate: Nitrobenzene-d5	0.105		mg/L	0.1000		105	30-130			
Surrogate: p-Terphenyl-d14	0.0993		mg/L	0.1000		99	30-130			
.CS Dup										
Methylnaphthalene	0.0839	0.00400	mg/L	0.1000		84	40-140	5	20	
Acenaphthene	0.102	0.00400	mg/L	0.1000		102	40-140	9	20	
cenaphthylene	0.0970	0.00400	mg/L	0.1000		97	40-140	8	20	
nthracene	0.0968	0.00400	mg/L	0.1000		97	40-140	3	20	
enzo(a)anthracene	0.0933	0.00100	mg/L	0.1000		93	40-140	5	20	
enzo(a)pyrene	0.0946	0.00100	mg/L	0.1000		95	40-140	6	20	
Benzo(b)fluoranthene	0.102	0.00100	mg/L	0.1000		102	40-140	6	20	
Benzo(g,h,i)perylene	0.0961	0.00400	mg/L	0.1000		96	40-140	10	20	
Benzo(k)fluoranthene	0.102	0.00100	mg/L	0.1000		102	40-140	8	20	
hrysene	0.0944	0.00100	mg/L	0.1000		94	40-140	6	20	
Dibenzo(a,h)Anthracene	0.0980	0.00100	mg/L	0.1000		98	40-140	9	20	
luoranthene	0.0973	0.00400	mg/L	0.1000		97	40-140	3	20	
luorene	0.0973	0.00400	mg/L	0.1000		97	40-140	5	20	
lexachlorobenzene	0.135	0.00400	mg/L	0.1000		135	40-140	5	20	
ndeno(1,2,3-cd)Pyrene	0.0993	0.00100	mg/L	0.1000		99	40-140	8	20	
laphthalene	0.0715	0.00400	mg/L	0.1000		71	40-140	4	20	
rentachlorophenol	0.128	0.0180	mg/L	0.1000		128	30-130	0.7	20	
henanthrene	0.0963	0.00400	mg/L	0.1000		96	40-140	4	20	
yrene	0.104	0.00400	mg/L	0.1000		104	40-140	6	20	
Surrogate: 1,2-Dichlorobenzene-d4	0.0888		mg/L	0.1000		89	30-130			
Surrogate: 2,4,6-Tribromophenol	0.202		mg/L	0.1500		134	15-110			S+
Surrogate: 2-Fluorobiphenyl	0.102		mg/L	0.1000		102	30-130			
Surrogate: Nitrobenzene-d5	0.119		mg/L	0.1000		119	30-130			
Surrogate: p-Terphenyl-d14	0.105		mg/L	0.1000		105	30-130			
· · ·		Cla	assical Che	mistry						
atch CK92612 - General Preparation										
lank										
Total Suspended Solids	ND	5	mg/L							
		-	5,-							
LCS	34		m~//	24.60		00	00 100			
otal Suspended Solids	74		mg/L	34.60		98	80-120			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

.

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company

- -

. . .

.

ESS Laboratory Work Order: 19K0746

Notes and Definitions

U	Analyte included in the analysis, but not detected	
S+	Surrogate recovery(ies) above upper control limit (S+).	
Q	Calibration required quadratic regression (Q).	
ICV-	Initial Calibration Verification recovery is below lower control limit (ICV-).	
D+	Relative percent difference for duplicate is outside of criteria (D+).	
D	Diluted.	
CD+	Continuing Calibration %Diff/Drift is above control limit (CD+).	
B-	Blank Spike recovery is below lower control limit (B-).	
ND	Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes	
dry	Sample results reported on a dry weight basis	
RPD	Relative Percent Difference	
MDL	Method Detection Limit	
MRL	Method Reporting Limit	
LOD LOQ	Limit of Detection Limit of Quantitation	
DL	Detection Limit	
I/V	Initial Volume	
F/V	Final Volume	
§	Subcontracted analysis; see attached report	
1	Range result excludes concentrations of surrogates and/or internal standards eluting in that range.	
2	Range result excludes concentrations of target analytes eluting in that range.	
3	Range result excludes the concentration of the C9-C10 aromatic range.	
Avg NR	Results reported as a mathematical average. No Recovery	
[CALC]	Calculated Analyte	
SUB	Subcontracted analysis; see attached report	
RL	Reporting Limit	
EDL	Estimated Detection Limit	
MF	Membrane Filtration	
MPN	Most Probably Number	
TNTC	Too numerous to Count	
CFU	Colony Forming Units	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company

ESS Laboratory Work Order: 19K0746

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories/pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

> Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

ESS Laboratory Sample and Cooler Receipt Checklist

Client: GZA - Providence, RI - GZA/HDM Shipped/Delivered Via: Client	ESS Project ID: 19K0746 Date Received: 11/22/2019 Project Due Date: 12/3/2019 Days for Project: 5 Day	
1. Air bill manifest present? No	6. Does COC match bottles?7. Is COC complete and correct?	Yes Yes
2. Were custody seals present? No	8. Were samples received intact?	Yes
3. Is radiation count <100 CPM? Yes	9. Were labs informed about <u>short holds & rushes</u> ?	Yes / No / 🕅
4. Is a Cooler Present? Yes Temp: 2.3 Iced with: Ice	10. Were any analyses received outside of hold time?	Yes / 🔞
5. Was COC signed and dated by client? Yes		
11. Any Subcontracting needed? Yes / 😡	12. Were VOAs received? a. Air bubbles in aqueous VOAs? b. Does methanol cover soil completely?	Yes / No Yes / No Yes / No /
13. Are the samples properly preserved? Image: Comparison of the samples properly preserved? No a. If metals preserved upon receipt: Date:	Time: By: Time: By:	
Sample Receiving Notes: <u>A:5 Bubble in TB</u>		
14. Was there a need to contact Project Manager? Yes in the second s		

Sample (•••••	Proper container	Air Bubbles Present	Sufficient Volume	Container Type	Preservative	Record pH (Cyanide and 608 Pesticides)
Number 01 01 02 02 02 03 03 03 03 03 03 03 03 03 03 03 03 03	ID C 415695 415696 415697 415697 415693 415693 415694 415699 415691 415691 415701 415701 415703 415703 415705 415705 415687 415688 415688 415683 415683 415684 415684 415684	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	No No No No No No No No No No No No No N	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	VOA Vial - HCI VOA Vial - HCI 1L Amber - Unpres 1L Amber - Unpres 1L Amber - Unpres 1L Amber - Unpres 1L Amber - H2SO4 1L Amber - H2SO4 250 mL Poly - HNO3 VOA Vial - HCI VOA Vial - HCI	HCI HCI HCI HCI HCI HCI HCI HCI HCI HCI	

ESS Laboratory Sample and Cooler Receipt Checklist

Client	GZA	- Providena	xe, R <u>I - GZA/H</u> I	м		oject ID:	19K0746
Olicit					Date Re	eceived:	11/22/2019
05	415699	Yes	NA	Yes	1L Amber - Unpres	NP	
05	415706	Yes	NA	Yes	250 mL Poly - Unpres	NP	
05	415680	Yes	No	Yes	VOA Vial - HCI	HCI	
06	415681	Yes	No	Yes	VOA Vial - HCl	HCL	
	415682	Yes	No	Yes	VOA Vial - HCI	HCI	
06 07	4156677	Yes	16-100	Yes	VOA Vial - HCl	HCI	
07	415077	103					
			YRY	3			
e all Fia e all Hex e all QC	le labels on co shpoint stickers c Chrome stick stickers attach stickers attache	s attached/ ers attache ned?	container ID # 0 0?	circled?	Yes / No Yes / No / NA Yes / No / NA Yes / No / NA Yes / No / NA)	
evona	SUCKEIS allacine						

a hrong	Excel Decel	i	<u></u>			551 - dc			XX		*					AG P P	5			id containers types in this space		Donatived By: (Signature, Date & Time)		Received By: (Signature, Date & Time)		
	Þ	Deliverables VI Other (Please suseury	sį	s (leu	A 2) 2) 2) 2) 2)	101 101			XX					x			10-8 oz 11-Other* 7 6 6 6	10-DI H20 11-Other 2 1 1 5	Number of Containers per Sample: 2 - - -	Diagonality "Other" preservative and containers types in this space			Relinquished By: (Signature, Date & Time)		Relinquished By: (Signature, Date & 11me)	
CHAIN OF CUSTODY	tate 5 Days		Project Name	up St Junt 200	0 24 Vale	nchard carowingga.com	Sample ID	MW-14	MW-16	E & - 5011	EBUGW	DNM	BUIDBECHOR	Thip Blank			121		Number of Conta	: ROWAN HAY EJ	Comments:		Date & Time)	SEM OI	Date & Time)	
о	Turn Time Regulatory State		34507 AM	199 Valley	ate	FAX Number	Sample Matrix	GW	GW	GW	(JW	PM	(FW				B-BOD B	L 4-300 mL 5-500 mL 5-1L /-/					Received By: (Signature,		Received By: (Signature,	
	ESS Laboratory Division of Thielsch Engineering, Inc.	Tel. (401) 461-7181 Fax (401) 461-4486	www.esslaboratory.com Company Name	17-CH Contact Person	· Nutura (un un of state	Telephone Number	1 1	-	drave 1904 (304	plecht	(220)	DIPOCH	VICT LIGON	C 0.0 C			Container Tune: AC-Air Cassette AG-Amber Glass	1011	Preservation Code: 1-Non Preserved 2-HCI 3-H2804	Laboratory Use Only	Cooler Present: Ves O Drop Of		Cooler Temperature: 2.3 °C (C	Relinquished by: (Signature, Date & Inite)	With And his (Simature, Date &	55

·

. -________.

ANALYTICAL REPORT

Lab Number:	L1956801
Client:	GZA GeoEnvironmental, Inc.
	188 Valley St
	Suite 300
	Providence, RI 02903
ATTN:	Rick Carlone
Phone:	(401) 421-4140
Project Name:	SEVILLE DYEING
Project Number:	34502.04
Report Date:	12/04/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

Six Park Row, Mansfield, MA 02048 508-261-7467 (Fax) -- - - emccarter@mansfieldma.com

Serial_No:12041916:12

Project Name:SEVILLE DYEINGProject Number:34502.04

 Lab Number:
 L1956801

 Report Date:
 12/04/19

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1956801-01	MW-16	SOIL_VAPOR	WOONSOCKET, RI	11/22/19 11:20	11/25/19
L1956801-02	MW-8	SOIL_VAPOR	WOONSOCKET, RI	11/22/19 13:40	11/25/19

Project Name: SEVILLE DYEING Project Number: 34502.04 Lab Number: L1956801 Report Date: 12/04/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name:SEVILLE DYEINGProject Number:34502.04

 Lab Number:
 L1956801

 Report Date:
 12/04/19

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on November 20, 2019. The canister certification results are provided as an addendum.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Christoph J Curdence Christopher J. Anderson

Authorized Signature:

Title: Technical Director/Representative

Date: 12/04/19

AIR

L1956801

12/04/19

Lab Number:

Report Date:

Project Name: SEVILLE DYEING

Project Number: 34502.04

SAMPLE RESULTS

Lab ID:L1956801-01Client ID:MW-16Sample Location:WOONSOCKET, RI

Sample Depth: Matrix:

Matrix:Soil_VaporAnaytical Method:48,TO-15Analytical Date:12/04/19 01:23Analyst:TS

Date Collected:	11/22/19 11:20
Date Received:	11/25/19
Field Prep:	Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	d Lab							
Propylene	16.4	0.500		28.2	0.861			1
Dichlorodifluoromethane	0.400	0.200		1.98	0.989			1
Chloromethane	0.526	0.200		1.09	0.413			1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethyl Alcohol	11.7	5.00		22.0	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	4.25	1.00		10.1	2.38			1
Trichlorofluoromethane	3.49	0.200		19.6	1.12			1
iso-Propyl Alcohol	0.774	0.500		1.90	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1

11/22/19 11:20

Not Specified

11/25/19

Project Name:	SEVILLE DYEING
Project Number:	34502.04

 Lab Number:
 L1956801

 Report Date:
 12/04/19

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID:L1956801-01Client ID:MW-16Sample Location:WOONSOCKET, RI

Sample Depth:		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	0.227	0.200		0.800	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	0.354	0.200		1.13	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
Xylene (Total)	ND	0.200		ND	0.869			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
1,2-Dichloroethene (total)	ND	0.200		ND	0.793			1
Foluene	0.542	0.200		2.04	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
I,3-Dichloropropene, Total	ND	0.200		ND	0.908			1
Dibromochloromethane	ND	0.200		ND	1.70			1

11/22/19 11:20

Not Specified

11/25/19

Project Name:	SEVILLE DYEING
Project Number:	34502.04

 Lab Number:
 L1956801

 Report Date:
 12/04/19

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID:L1956801-01Client ID:MW-16Sample Location:WOONSOCKET, RI

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	96		60-140
Bromochloromethane	94		60-140
chlorobenzene-d5	93		60-140

L1956801

12/04/19

Lab Number:

Report Date:

Project Name: SEVILLE DYEING

Project Number: 34502.04

SAMPLE RESULTS

Lab ID:L1956801-02Client ID:MW-8Sample Location:WOONSOCKET, RI

Sample Depth: Matrix: Soil_Vapor

Anaytical Method:48,TO-15Analytical Date:12/04/19 02:03Analyst:TS

Date Collected:	11/22/19 13:40
Date Received:	11/25/19
Field Prep:	Not Specified

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab							
Propylene	0.804	0.500		1.38	0.861			1
Dichlorodifluoromethane	0.462	0.200		2.28	0.989			1
Chloromethane	0.548	0.200		1.13	0.413			1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethyl Alcohol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	2.98	1.00		7.08	2.38			1
Trichlorofluoromethane	0.394	0.200		2.21	1.12			1
iso-Propyl Alcohol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1

11/22/19 13:40

Not Specified

11/25/19

Project Name:	SEVILLE DYEING
Project Number:	34502.04

 Lab Number:
 L1956801

 Report Date:
 12/04/19

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID:L1956801-02Client ID:MW-8Sample Location:WOONSOCKET, RI

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab							
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	0.212	0.200		0.747	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	0.367	0.200		1.17	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
Xylene (Total)	ND	0.200		ND	0.869			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
1,2-Dichloroethene (total)	ND	0.200		ND	0.793			1
Toluene	0.509	0.200		1.92	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
1,3-Dichloropropene, Total	ND	0.200		ND	0.908			1
Dibromochloromethane	ND	0.200		ND	1.70			1

11/22/19 13:40

Not Specified

11/25/19

Project Name:	SEVILLE DYEING
Project Number:	34502.04

 Lab Number:
 L1956801

 Report Date:
 12/04/19

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID:L1956801-02Client ID:MW-8Sample Location:WOONSOCKET, RI

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	96		60-140
Bromochloromethane	94		60-140
chlorobenzene-d5	95		60-140

		ppbV		ug/m3			_	Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	I Lab for samp	ole(s): 01-	-02 Batch:	: WG13161	34-4			
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Acetaldehyde	ND	2.50		ND	4.50			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethyl Alcohol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
iso-Propyl Alcohol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1

			ppbV			ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air	- Mansfield La	b for samp	le(s): 01-	02 Batch:	WG13161	34-4			
tert-Butyl Alcohol		ND	0.500		ND	1.52			1
Methylene chloride		ND	0.500		ND	1.74			1
3-Chloropropene		ND	0.200		ND	0.626			1
Carbon disulfide		ND	0.200		ND	0.623			1
1,1,2-Trichloro-1,2,2-Trifluoro	ethane	ND	0.200		ND	1.53			1
Xylene (Total)		ND	0.200		ND	0.869			1
trans-1,2-Dichloroethene		ND	0.200		ND	0.793			1
1,1-Dichloroethane		ND	0.200		ND	0.809			1
Methyl tert butyl ether		ND	0.200		ND	0.721			1
Vinyl acetate		ND	1.00		ND	3.52			1
2-Butanone		ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene		ND	0.200		ND	0.793			1
Ethyl Acetate		ND	0.500		ND	1.80			1
Chloroform		ND	0.200		ND	0.977			1
Tetrahydrofuran		ND	0.500		ND	1.47			1
2,2-Dichloropropane		ND	0.200		ND	0.924			1
1,2-Dichloroethene (total)		ND	0.200		ND	0.793			1
1,2-Dichloroethane		ND	0.200		ND	0.809			1
n-Hexane		ND	0.200		ND	0.705			1
1,3-Dichloropropene, Total		ND	0.200		ND	0.908			1
Isopropyl Ether		ND	0.200		ND	0.836			1
Ethyl-Tert-Butyl-Ether		ND	0.200		ND	0.836			1
1,1,1-Trichloroethane		ND	0.200		ND	1.09			1
1,1-Dichloropropene		ND	0.200		ND	0.908			1
Benzene		ND	0.200		ND	0.639			1

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air	- Mansfield Lab for san	nple(s): 01·	-02 Batch:	WG13161	34-4			
Thiophene	ND	0.200		ND	0.688			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
Tertiary-Amyl Methyl Ether	ND	0.200		ND	0.836			1
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Methylthiophene	ND	0.200		ND	0.803			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
3-Methylthiophene	ND	0.200		ND	0.803			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl Acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1

ParameterResultsRLMDLResultsRLMDLAutoriterVolatile Organics in Air - Mansfield Lab r sample's in U-2BatchWG131613-4TetrachloroetheneND0.200ND1.361,1,1-2-TetrachloroethaneND0.200ND0.37ChlorobenzeneND0.200ND0.921EthylbenzeneND0.200ND0.9862-EthylthiopheneND0.400ND0.916p/m-XyleneND0.200ND0.77StyreneND0.200ND0.8691,1,2-TetrachloroethaneND0.200ND0.869p/m-XyleneND0.200ND0.869StyreneND0.200ND0.8691,1,2-TetrachloroethaneND0.200ND0.869StyreneND0.200ND0.8691,2,3-TrichloropropaneND0.200ND0.90Nonane (CS)ND0.200ND0.90Nonane (CS)ND0.200ND0.903ProphybenzeneND0.200ND0.903ProphybenzeneND0.200ND0.903 <th>Dilution</th> <th></th> <th></th> <th colspan="3">ug/m3</th> <th>pbV</th> <th></th> <th></th>	Dilution			ug/m3			pbV		
Tetrachloroethene ND 0.200 ND 1.36 1,1,1,2-Tetrachloroethane ND 0.200 ND 0.921 Chlorobenzene ND 0.200 ND 0.921 Ethylbenzene ND 0.200 ND 0.869 2-Ethylbinphene ND 0.200 ND 0.918 p/m-Xylene ND 0.400 ND 0.918 Bromoform ND 0.200 ND 2.07 Styrene ND 0.200 ND 0.852 1,1,2-Tetrachloroethane ND 0.200 ND 0.869 1,2,2-Tetrachloroethane ND 0.200 ND 0.869 1,2,2-Tetrachloroethane ND 0.200 ND 0.869 1,2,3-Trichloroptopane ND	Factor	Qualifier	MDL	RL	Results	MDL	RL	Results	irameter
Inc Inc Inc Inc 1,1,1,2-Tetrachloroethane ND 0.200 ND 0.921 Chlorobenzene ND 0.200 ND 0.921 Ethylbenzene ND 0.200 ND 0.869 2-Ethylthiophene ND 0.200 ND 0.918 p/m-Xylene ND 0.400 ND 1.74 Bromoform ND 0.200 ND 2.07 Styrene ND 0.200 ND 0.852 1.1,2,2-Tetrachloroethane ND 0.200 ND 0.869 1.2,3-Trichloropropane ND 0.200 ND 1.65 Isopropylbenzene ND 0.200 ND 0.983 Bromoform ND 0.200 ND 0.983 <td></td> <td></td> <td></td> <td>34-4</td> <td>WG13161</td> <td>2 Batch:</td> <td>s): 01-0</td> <td>o for sample</td> <td>platile Organics in Air - Mansfield La</td>				34-4	WG13161	2 Batch:	s): 01-0	o for sample	platile Organics in Air - Mansfield La
ND 0.200 ND 0.921 Ethylbenzene ND 0.200 ND 0.869 2-Ethylbiophene ND 0.200 ND 0.918 p/m-Xylene ND 0.400 ND 1.74 Bromoform ND 0.200 ND 2.07 Styrene ND 0.200 ND 0.852 1.1.2.2-Tetrachloroethane ND 0.200 ND 0.869 o-Xylene ND 0.200 ND 0.869 1.2.3-Trichloroptopane ND 0.200 ND 1.21 Nonane (C9) ND 0.200 ND 1.05 Isopropylbenzene ND 0.200 ND 0.983 P-Chlorotoluene ND 0.200 ND 0	1			1.36	ND		0.200	ND	trachloroethene
IND 0.200 IND 0.021 Ethylbenzene ND 0.200 ND 0.869 2-Ethylthiophene ND 0.200 ND 0.918 p/m-Xylene ND 0.400 ND 1.74 Bromoform ND 0.200 ND 2.07 Styrene ND 0.200 ND 0.852 1,1,2,2-Tetrachloroethane ND 0.200 ND 0.869 1,2,3-Trichloroptopane ND 0.200 ND 1.21 Nonane (C9) ND 0.200 ND 0.983 Bromobenzene ND 0.200 ND 0.793 Bromobenzene ND 0.200 ND 0.983 Bromobenzene ND 0.200 ND 0.983 o-Chlorotoluene ND 0.200 ND 0.983 <td>1</td> <td></td> <td></td> <td>1.37</td> <td>ND</td> <td></td> <td>0.200</td> <td>ND</td> <td>1,1,2-Tetrachloroethane</td>	1			1.37	ND		0.200	ND	1,1,2-Tetrachloroethane
2-Ethylthiophene ND 0.200 ND 0.918 p/m-Xylene ND 0.400 ND 1.74 Bromoform ND 0.200 ND 2.07 Styrene ND 0.200 ND 0.852 1,1,2,2-Tetrachloroethane ND 0.200 ND 0.869 o-Xylene ND 0.200 ND 0.869 1,2,3-Trichloropropane ND 0.200 ND 1.21 Nonane (C9) ND 0.200 ND 1.05 Isopropylbenzene ND 0.200 ND 0.983 o-Chlorotoluene ND 0.200 ND 0.983 n-Propylbenzene ND 0.200 ND 0.983 p-Chlorotoluene ND 0.200 </td <td>1</td> <td></td> <td></td> <td>0.921</td> <td>ND</td> <td></td> <td>0.200</td> <td>ND</td> <td>lorobenzene</td>	1			0.921	ND		0.200	ND	lorobenzene
http://m-Xylene ND 0.400 ND 1.74 Bromoform ND 0.200 ND 2.07 Styrene ND 0.200 ND 0.852 1,1,2,2-Tetrachloroethane ND 0.200 ND 0.852 1,1,2,2-Tetrachloroethane ND 0.200 ND 0.869 0-Xylene ND 0.200 ND 0.869 1,2,3-Trichloropropane ND 0.200 ND 1.21 Nonane (C9) ND 0.200 ND 1.05 Isopropylbenzene ND 0.200 ND 0.983 Bromobenzene ND 0.200 ND 0.983 o-Chlorotoluene ND 0.200 ND 0.983 p-Chlorotoluene ND 0.200 ND 0.983 1,3,5-Trimethylbenzene ND	1			0.869	ND		0.200	ND	hylbenzene
ND 0.200 ND 2.07 Styrene ND 0.200 ND 0.852 1,1,2,2-Tetrachloroethane ND 0.200 ND 1.37 o-Xylene ND 0.200 ND 0.869 1,2,3-Trichloropropane ND 0.200 ND 1.21 Nonane (C9) ND 0.200 ND 0.983 Isopropylbenzene ND 0.200 ND 0.983 Bromobenzene ND 0.200 ND 0.983 o-Chlorotoluene ND 0.200 ND 0.983 p-Chlorotoluene ND 0.200 ND 0.983 1,3,5-Trimethylbenzene ND 0.200 ND 0.983 1,2,4-Trimethylbenzene ND 0.200 ND 0.983	1			0.918	ND		0.200	ND	Ethylthiophene
ND 0.200 ND 0.852 1,1,2,2-Tetrachloroethane ND 0.200 ND 1.37 o-Xylene ND 0.200 ND 0.869 1,2,3-Trichloropropane ND 0.200 ND 1.21 Nonane (C9) ND 0.200 ND 1.05 Isopropylbenzene ND 0.200 ND 0.983 Bromobenzene ND 0.200 ND 0.983 o-Chlorotoluene ND 0.200 ND 0.983 p-Chlorotoluene ND 0.200 ND 0.983 1,3,5-Trimethylbenzene ND 0.200 ND 0.983 1,2,4-Trimethylbenzene ND 0.200 ND 0.983	1			1.74	ND		0.400	ND	n-Xylene
ND 0.200 ND 1.37 1,1,2,2-Tetrachloroethane ND 0.200 ND 1.37 o-Xylene ND 0.200 ND 0.869 1,2,3-Trichloropropane ND 0.200 ND 1.21 Nonane (C9) ND 0.200 ND 1.05 Isopropylbenzene ND 0.200 ND 0.983 Bromobenzene ND 0.200 ND 0.793 o-Chlorotoluene ND 0.200 ND 0.983 n-Propylbenzene ND 0.200 ND 0.983 p-Chlorotoluene ND 0.200 ND 0.983 1,3,5-Trimethylbenzene ND 0.200 ND 0.983 1,2,4-Trimethylbenzene ND 0.200 ND 0.983 1,2,4-Trimethylbenzene ND 0.200 <td>1</td> <td></td> <td></td> <td>2.07</td> <td>ND</td> <td></td> <td>0.200</td> <td>ND</td> <td>omoform</td>	1			2.07	ND		0.200	ND	omoform
ND 0.200 ND 0.869 o-Xylene ND 0.200 ND 0.869 1,2,3-Trichloropropane ND 0.200 ND 1.21 Nonane (C9) ND 0.200 ND 1.05 Isopropylbenzene ND 0.200 ND 0.983 Bromobenzene ND 0.200 ND 0.793 o-Chlorotoluene ND 0.200 ND 0.793 n-Propylbenzene ND 0.200 ND 0.983 p-Chlorotoluene ND 0.200 ND 0.983 q-Chlorotoluene ND 0.200 <t< td=""><td>1</td><td></td><td></td><td>0.852</td><td>ND</td><td></td><td>0.200</td><td>ND</td><td>yrene</td></t<>	1			0.852	ND		0.200	ND	yrene
1,2,3-Trichloropropane ND 0,200 ND 1,21 Nonane (C9) ND 0,200 ND 1,05 Isopropylbenzene ND 0,200 ND 0,983 Bromobenzene ND 0,200 ND 0,793 o-Chlorotoluene ND 0,200 ND 1,04 n-Propylbenzene ND 0,200 ND 0,983 p-Chlorotoluene ND 0,200 ND 0,983 q-Ethyltoluene ND 0,200 ND 1,04 4-Ethyltoluene ND 0,200 ND 0,983 1,3,5-Trimethylbenzene ND 0,200 ND 0,983 1,2,4-Trimethylbenzene ND 0,200 ND 1,10 1,2,4-Trimethylbenzene ND 0,200 ND 0,983	1			1.37	ND		0.200	ND	1,2,2-Tetrachloroethane
Nonane (C9) ND 0.200 ND 1.05 Isopropylbenzene ND 0.200 ND 0.983 Bromobenzene ND 0.200 ND 0.793 o-Chlorotoluene ND 0.200 ND 1.04 n-Propylbenzene ND 0.200 ND 0.983 p-Chlorotoluene ND 0.200 ND 0.983 q-Ethyltoluene ND 0.200 ND 1.04 1,3,5-Trimethylbenzene ND 0.200 ND 0.983 1,2,4-Trimethylbenzene ND 0.200 ND 0.983	1			0.869	ND		0.200	ND	Xylene
Inc Inc Inc Inc Inc Inc Isopropylbenzene ND 0.200 ND 0.983 Bromobenzene ND 0.200 ND 0.793 o-Chlorotoluene ND 0.200 ND 1.04 n-Propylbenzene ND 0.200 ND 0.983 p-Chlorotoluene ND 0.200 ND 1.04 4-Ethyltoluene ND 0.200 ND 0.983 1,3,5-Trimethylbenzene ND 0.200 ND 0.983 1,2,4-Trimethylbenzene ND 0.200 ND 1.10	1			1.21	ND		0.200	ND	2,3-Trichloropropane
Bromobenzene ND 0.200 ND 0.793 o-Chlorotoluene ND 0.200 ND 1.04 n-Propylbenzene ND 0.200 ND 0.983 p-Chlorotoluene ND 0.200 ND 1.04 4-Ethyltoluene ND 0.200 ND 0.983 1,3,5-Trimethylbenzene ND 0.200 ND 0.983 1,2,4-Trimethylbenzene ND 0.200 ND 0.983	1			1.05	ND		0.200	ND	onane (C9)
o-Chlorotoluene ND 0.200 ND 1.04 n-Propylbenzene ND 0.200 ND 0.983 p-Chlorotoluene ND 0.200 ND 1.04 4-Ethyltoluene ND 0.200 ND 0.983 1,3,5-Trimethylbenzene ND 0.200 ND 0.983 tert-Butylbenzene ND 0.200 ND 0.983 1,2,4-Trimethylbenzene ND 0.200 ND 1.10	1			0.983	ND		0.200	ND	propylbenzene
n-Propylbenzene ND 0.200 ND 0.983 p-Chlorotoluene ND 0.200 ND 1.04 4-Ethyltoluene ND 0.200 ND 0.983 1,3,5-Trimethylbenzene ND 0.200 ND 0.983 1,2,4-Trimethylbenzene ND 0.200 ND 1.10 1,2,4-Trimethylbenzene ND 0.200 ND 0.983	1			0.793	ND		0.200	ND	omobenzene
P-Chlorotoluene ND 0.200 ND 1.04 4-Ethyltoluene ND 0.200 ND 0.983 1,3,5-Trimethylbenzene ND 0.200 ND 0.983 tert-Butylbenzene ND 0.200 ND 1.10 1,2,4-Trimethylbenzene ND 0.200 ND 0.983	1			1.04	ND		0.200	ND	Chlorotoluene
4-Ethyltoluene ND 0.200 ND 0.983 1,3,5-Trimethylbenzene ND 0.200 ND 0.983 tert-Butylbenzene ND 0.200 ND 1.10 1,2,4-Trimethylbenzene ND 0.200 ND 0.983	1			0.983	ND		0.200	ND	Propylbenzene
ND 0.200 ND 0.983 1,3,5-Trimethylbenzene ND 0.200 ND 0.983 tert-Butylbenzene ND 0.200 ND 1.10 1,2,4-Trimethylbenzene ND 0.200 ND 0.983	1			1.04	ND		0.200	ND	Chlorotoluene
Image: Non-original state ND Older ND Older tert-Butylbenzene ND 0.200 ND 1.10 1,2,4-Trimethylbenzene ND 0.200 ND 0.983	1			0.983	ND		0.200	ND	Ethyltoluene
1,2,4-Trimethylbenzene ND 0.200 ND 0.983	1			0.983	ND		0.200	ND	3,5-Trimethylbenzene
	1			1.10	ND		0.200	ND	t-Butylbenzene
	1			0.983	ND		0.200	ND	2,4-Trimethylbenzene
ND 0.200 ND 1.16	1			1.16	ND		0.200	ND	ecane (C10)
Benzyl chloride ND 0.200 ND 1.04	1			1.04	ND		0.200	ND	enzyl chloride
1,3-Dichlorobenzene ND 0.200 ND 1.20	1			1.20	ND		0.200	ND	3-Dichlorobenzene
1,4-Dichlorobenzene ND 0.200 ND 1.20	1			1.20	ND		0.200	ND	4-Dichlorobenzene

		ррьV				ug/m3			
Parameter	Results	RL MDL		Results	Results RL		Qualifier	Factor	
Volatile Organics in Air - Mansfi	eld Lab for samp	le(s): 01-	02 Batch	: WG13161	34-4				
sec-Butylbenzene	ND	0.200		ND	1.10			1	
1,2,3-Trimethylbenzene	ND	0.200		ND	0.983			1	
p-Isopropyltoluene	ND	0.200		ND	1.10			1	
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1	
n-Butylbenzene	ND	0.200		ND	1.10			1	
Indane	ND	0.200		ND	0.967			1	
Indene	ND	0.200		ND	0.951			1	
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1	
Undecane	ND	0.200		ND	1.28			1	
1,2,4,5-Tetramethylbenzene	ND	0.200		ND	1.10			1	
Dodecane (C12)	ND	0.200		ND	1.39			1	
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1	
Naphthalene	ND	0.200		ND	1.05			1	
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1	
Benzothiophene	ND	0.500		ND	2.74			1	
Hexachlorobutadiene	ND	0.200		ND	2.13			1	
2-Methylnaphthalene	ND	1.00		ND	5.82			1	
1-Methylnaphthalene	ND	1.00		ND	5.82			1	

Lab Control Sample Analysis

Batch Quality Control

Project Number: 34502.04

Lab Number: L1956801 Report Date: 12/04/19

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Limits Parameter Qual Qual Qual Volatile Organics in Air - Mansfield Lab Associated sample(s): 01-02 Batch: WG1316134-3 Chlorodifluoromethane 94 70-130 --120 Propylene 70-130 --Propane 93 70-130 --Dichlorodifluoromethane 106 70-130 --Chloromethane 105 70-130 --1,2-Dichloro-1,1,2,2-tetrafluoroethane 70-130 107 --Methanol 100 70-130 --Vinyl chloride 107 70-130 --1,3-Butadiene 110 70-130 --70-130 Butane 98 --Bromomethane 108 70-130 --Chloroethane 110 70-130 --Ethyl Alcohol 90 40-160 --Dichlorofluoromethane 70-130 100 --Vinyl bromide 104 70-130 --Acrolein 92 70-130 _ -91 40-160 Acetone --Acetonitrile 70-130 100 --Trichlorofluoromethane 70-130 104 -iso-Propyl Alcohol 97 40-160 --Acrylonitrile 99 70-130 --119 70-130 Pentane --116 70-130 Ethyl ether --

Lab Control Sample Analysis

Batch Quality Control

Project Number: 34502.04

Lab Number: L1956801 Report Date: 12/04/19

LCSD LCS %Recovery RPD %Recovery RPD %Recovery Limits Limits Parameter Qual Qual Qual Volatile Organics in Air - Mansfield Lab Associated sample(s): 01-02 Batch: WG1316134-3 1,1-Dichloroethene 107 70-130 -tert-Butyl Alcohol 104 70-130 --Methylene chloride 105 70-130 --3-Chloropropene 109 70-130 --Carbon disulfide 100 70-130 --1,1,2-Trichloro-1,2,2-Trifluoroethane 70-130 108 -trans-1.2-Dichloroethene 111 70-130 --1,1-Dichloroethane 112 70-130 --Methyl tert butyl ether 108 70-130 --70-130 Vinyl acetate 107 --2-Butanone 112 70-130 -cis-1,2-Dichloroethene 116 70-130 --Ethyl Acetate 121 70-130 --70-130 Chloroform 114 --Tetrahydrofuran 113 70-130 --2,2-Dichloropropane 100 70-130 --1.2-Dichloroethane 112 70-130 --70-130 n-Hexane 111 --Isopropyl Ether 70-130 102 --Ethyl-Tert-Butyl-Ether 102 70-130 --1,2-Dichloroethene (total) 114 --114 1,2-Dichloroethene (total) --124 70-130 1,1,1-Trichloroethane --

Lab Control Sample Analysis

Batch Quality Control

Project Number: 34502.04

Lab Number: L1956801 Report Date: 12/04/19

LCSD LCS %Recovery RPD %Recovery RPD %Recovery Limits Limits Parameter Qual Qual Qual Volatile Organics in Air - Mansfield Lab Associated sample(s): 01-02 Batch: WG1316134-3 1,1-Dichloropropene 100 70-130 --104 Benzene 70-130 --Carbon tetrachloride 111 70-130 --Cyclohexane 111 70-130 --Tertiary-Amyl Methyl Ether 99 70-130 --70-130 Dibromomethane 101 --1,2-Dichloropropane 111 70-130 --Bromodichloromethane 111 70-130 --1,4-Dioxane 120 70-130 _ -70-130 Trichloroethene 108 --2,2,4-Trimethylpentane 113 70-130 --Methyl Methacrylate 86 40-160 --Heptane 109 70-130 -cis-1,3-Dichloropropene 70-130 114 --4-Methyl-2-pentanone 116 70-130 -trans-1,3-Dichloropropene 98 70-130 --1,1,2-Trichloroethane 112 70-130 --Toluene 70-130 107 --1,3-Dichloropropane 70-130 98 --2-Hexanone 129 70-130 --Dibromochloromethane 113 70-130 _ -1,2-Dibromoethane 109 70-130 --108 70-130 Butyl Acetate --

Lab Control Sample Analysis Batch Quality Control

Project Number: 34502.04 Lab Number: L1956801 Report Date: 12/04/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics in Air - Mansfield Lab Ass	sociated sample(s)	: 01-02	Batch: WG131613	34-3					
Octane	102		-		70-130	-			
Tetrachloroethene	106		-		70-130	-			
1,1,1,2-Tetrachloroethane	100		-		70-130	-			
Chlorobenzene	108		-		70-130	-			
Ethylbenzene	112		-		70-130	-			
p/m-Xylene	108		-		70-130	-			
Bromoform	112		-		70-130	-			
Styrene	109		-		70-130	-			
1,1,2,2-Tetrachloroethane	112		-		70-130	-			
o-Xylene	110		-		70-130	-			
1,2,3-Trichloropropane	100		-		70-130	-			
Nonane (C9)	99		-		70-130	-			
Isopropylbenzene	104		-		70-130	-			
Bromobenzene	102		-		70-130	-			
o-Chlorotoluene	99		-		70-130	-			
n-Propylbenzene	102		-		70-130	-			
p-Chlorotoluene	100		-		70-130	-			
4-Ethyltoluene	108		-		70-130	-			
1,3,5-Trimethylbenzene	95		-		70-130	-			
tert-Butylbenzene	102		-		70-130	-			
1,2,4-Trimethylbenzene	111		-		70-130	-			
Decane (C10)	105		-		70-130	-			
Benzyl chloride	120		-		70-130	-			

Lab Control Sample Analysis Batch Quality Control

Project Number: 34502.04 Lab Number: L1956801 Report Date: 12/04/19

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab As	ssociated sample(s):	01-02	Batch: WG131613	4-3				
1,3-Dichlorobenzene	110		-		70-130	-		
1,4-Dichlorobenzene	110		-		70-130	-		
sec-Butylbenzene	102		-		70-130	-		
p-Isopropyltoluene	98		-		70-130	-		
1,2-Dichlorobenzene	112		-		70-130	-		
n-Butylbenzene	111		-		70-130	-		
1,2-Dibromo-3-chloropropane	109		-		70-130	-		
Undecane	110		-		70-130	-		
Dodecane (C12)	117		-		70-130	-		
1,2,4-Trichlorobenzene	126		-		70-130	-		
Naphthalene	112		-		70-130	-		
1,2,3-Trichlorobenzene	115		-		70-130	-		
Hexachlorobutadiene	113		-		70-130	-		

Project Name: SEVILLE DYEING

Project Number: 34502.04

Serial_No:12041916:12 Lab Number: L1956801

Report Date: 12/04/19

Canister and Flow Controller Information

									_				
Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Controler Leak Chk	Flow Out mL/min	Flow In mL/min	% RPD
L1956801-01	MW-16	0803	Flow 1	11/20/19	307846		-	-	-	Pass	72	78	8
L1956801-01	MW-16	2072	2.7L Can	11/20/19	307846	L1954637-05	Pass	-28.3	-3.4	-	-	-	-
L1956801-02	MW-8	01028	Flow 1	11/20/19	307846		-	-	-	Pass	72	79	9
L1956801-02	MW-8	2229	2.7L Can	11/20/19	307846	L1954637-05	Pass	-28.8	-7.2	-	-	-	-

Project Number:	CANISTER QC E	ВАТ				R	eport D	Date:	12/04/19
		Air Can	ister Cei	rtificati	on Results	6			
Lab ID: Client ID: Sample Location:	L1954637-05 CAN 491 SHEL	F 2					Collecte Receive Prep:		11/14/19 16:00 11/15/19 Not Specified
Sample Depth: Matrix: Anaytical Method: Analytical Date: Analyst:	Air 48,TO-15 11/15/19 19:58 TS								
-			ppbV		Desults	ug/m3		Ovelifier	Dilution Factor
Parameter Volatile Organics in A	Air - Manefield I ab	Results	RL	MDL	Results	RL	MDL	Qualifier	
-									
Chlorodifluoromethane		ND	0.200		ND	0.707			1
Propylene		ND	0.500		ND	0.861			1
Propane		ND	0.500		ND	0.902			1
Dichlorodifluoromethane		ND	0.200		ND	0.989			1
Chloromethane		ND	0.200		ND	0.413			1
Freon-114		ND	0.200		ND	1.40			1
Methanol		ND	5.00		ND	6.55			1
Vinyl chloride		ND	0.200		ND	0.511			1
1,3-Butadiene		ND	0.200		ND	0.442			1
Butane		ND	0.200		ND	0.475			1
Bromomethane		ND	0.200		ND	0.777			1
Chloroethane		ND	0.200		ND	0.528			1
Ethanol		ND	5.00		ND	9.42			1
Dichlorofluoromethane		ND	0.200		ND	0.842			1
Vinyl bromide		ND	0.200		ND	0.874			1
Acrolein		ND	0.500		ND	1.15			1
Acetone		ND	1.00		ND	2.38			1
Acetonitrile		ND	0.200		ND	0.336			1
Trichlorofluoromethane		ND	0.200		ND	1.12			1
Isopropanol		ND	0.500		ND	1.23			1
Acrylonitrile		ND	0.500		ND	1.09			1
Pentane		ND	0.200		ND	0.590			1
Ethyl ether		ND	0.200		ND	0.606			1
1,1-Dichloroethene		ND	0.200		ND	0.793			1

Project Name: BATCH CANISTER CERTIFICATION

Serial_No:12041916:12

L1954637

Lab Number:

Project Name:	BATCH CANISTER CERTIFICATION
Project Number:	CANISTER QC BAT

Air Canister Certification Results

Lab ID:	L1954637-05	Date Collected:	11/14/19 16:00
Client ID:	CAN 491 SHELF 2	Date Received:	11/15/19
Sample Location:		Field Prep:	Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
rans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
/inyl acetate	ND	1.00		ND	3.52			1
Xylenes, total	ND	0.600		ND	0.869			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
ert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,2-Dichloroethene (total)	ND	1.00		ND	1.00			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
ert-Amyl Methyl Ether	ND	0.200		ND	0.836			1

Project Name:	BATCH CANISTER CERTIFICATION
Project Number:	CANISTER QC BAT

Air Canister Certification Results

Lab ID:	L1954637-05	Date Collected:	11/14/19 16:00
Client ID:	CAN 491 SHELF 2	Date Received:	11/15/19
Sample Location:		Field Prep:	Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	l Lab							
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1

Project Name:	BATCH CANISTER CERTIFICATION
Project Number:	CANISTER QC BAT

Air Canister Certification Results

Lab ID:	L1954637-05	Date Collected:	11/14/19 16:00
Client ID:	CAN 491 SHELF 2	Date Received:	11/15/19
Sample Location:		Field Prep:	Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	ld Lab							
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
lsopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
ert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

							Serial	_No:120	41916:12	
Project Name:	BATCH CANIST	ER CERT	IFICATION	١		La	b Num	ber:	L1954637	
Project Number:	CANISTER QC E	ВАТ				Re	port D	Date:	12/04/19	
		Air Can	ister Ce	rtification	Results					
Lab ID: Client ID: Sample Location:	L1954637-05 CAN 491 SHEL	F 2				Date C Date F Field F	Receive		11/14/19 11/15/19 Not Spec	
Sample Depth:										
			ppbV		Desertie	ug/m3		0	Dilutior Factor	-
Parameter Volatile Organics in	Air - Mansfield Lab	Results	RL	MDL	Results	RL	MDL	Qualifier		
		Re	esults	Qualifier	Units	RDL		Dilutio Facto		
Tentatively Identified Con	npounds									

No Tentatively Identified Compounds

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	79		60-140
Bromochloromethane	86		60-140
chlorobenzene-d5	81		60-140

Project Number:	CANISTER QC E	ВАТ				R	eport D	Date: 1	2/04/19
		Air Can	ister Cer	tificati	on Results				
Lab ID: Client ID: Sample Location:	L1954637-05 CAN 491 SHEL	F 2				Date	Collecte Receive Prep:	ed:	11/14/19 16:00 11/15/19 Not Specified
Sample Depth: Matrix: Anaytical Method: Analytical Date: Analyst:	Air 48,TO-15-SIM 11/15/19 19:58 TS								
Devenuetor		Desults	ppbV		Results	ug/m3 RL		Qualifier	Dilution Factor
Parameter Volatile Organics in	Air by SIM - Mansfi	Results	RL	MDL	Results	RL	MDL	Quaimer	
Dichlorodifluoromethane									
Chloromethane	3	ND	0.200		ND	0.989			1
Freon-114		ND	0.200		ND	0.413			1
		ND	0.050		ND	0.349			1
Vinyl chloride		ND	0.020		ND	0.051			1
1,3-Butadiene		ND	0.020		ND	0.044			1
Bromomethane		ND	0.020		ND	0.078			1
Chloroethane		ND	0.100		ND	0.264			1
Acetone		ND	1.00		ND	2.38			1
Trichlorofluoromethane		ND	0.050		ND	0.281			1
Acrylonitrile		ND	0.500		ND	1.09			1
1,1-Dichloroethene		ND	0.020		ND	0.079			1
Methylene chloride		ND	0.500		ND	1.74			1
Freon-113		ND	0.050		ND	0.383			1
trans-1,2-Dichloroethen	e	ND	0.020		ND	0.079			1
1,1-Dichloroethane		ND	0.020		ND	0.081			1
Methyl tert butyl ether		ND	0.200		ND	0.721			1
2-Butanone		ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene		ND	0.020		ND	0.079			1
Chloroform		ND	0.020		ND	0.098			1
1,2-Dichloroethane		ND	0.020		ND	0.081			1
1,1,1-Trichloroethane		ND	0.020		ND	0.109			1
Benzene		ND	0.100		ND	0.319			1
Carbon tetrachloride		ND	0.020		ND	0.126			1
1,2-Dichloropropane		ND	0.020		ND	0.092			1

Project Name: BATCH CANISTER CERTIFICATION

Serial_No:12041916:12

L1954637

Lab Number:

Project Name:	BATCH CANISTER CERTIFICATION
Project Number:	CANISTER QC BAT

Air Canister Certification Results

Lab ID:	L1954637-05	Date Collected:	11/14/19 16:00
Client ID:	CAN 491 SHELF 2	Date Received:	11/15/19
Sample Location:		Field Prep:	Not Specified

		ppbV		ug/m3			Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - N	lansfield Lab							
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050		ND	0.188			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
o/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
lsopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1
sec-Butylbenzene	ND	0.200		ND	1.10			1

	Serial_No:12041916:			
Project Name:	BATCH CANISTER CERTIFICATION	Lab Number:	L1954637	
Project Number:	CANISTER QC BAT	Report Date:	12/04/19	
	Air Canister Certification Results			

Lab ID:	L1954637-05	Date Collected:	11/14/19 16:00
Client ID:	CAN 491 SHELF 2	Date Received:	11/15/19
Sample Location:		Field Prep:	Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SI	A - Mansfield Lab							
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	80		60-140
bromochloromethane	86		60-140
chlorobenzene-d5	82		60-140

Project Name: SEVILLE DYEING
Project Number: 34502.04

Serial_No:12041916:12 *Lab Number:* L1956801 *Report Date:* 12/04/19

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler	Custody Seal
NA	Absent

Container Information

Container into	rmation		Initial	Final	Temp		Frozen	Analysis(*)	
Container ID	Container Type	Cooler	pН	pН	deg C Pres	Seal	Date/Time		
L1956801-01A	Canister - 2.7 Liter	NA	NA		Y	Absent		TO15-LL(30)	
L1956801-02A	Canister - 2.7 Liter	NA	NA		Y	Absent		TO15-LL(30)	

YES

Project Name: SEVILLE DYEING

Project Number: 34502.04

Lab Number: L1956801

Report Date: 12/04/19

GLOSSARY

Acronyms

Acronyms	
DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.
Footnotes	

Footnotes

Report Format: Data Usability Report

Project Name: SEVILLE DYEING

Project Number: 34502.04

Lab Number: L1956801 Report Date: 12/04/19

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum. Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.

Report Format: Data Usability Report

Serial_No:12041916:12

 Project Name:
 SEVILLE DYEING
 Lab Number:
 L1956801

 Project Number:
 34502.04
 Report Date:
 12/04/19

Data Qualifiers

- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name: SEVILLE DYEING Project Number: 34502.04

 Lab Number:
 L1956801

 Report Date:
 12/04/19

REFERENCES

48 Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: <u>NPW:</u> PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8**: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

ALPHA Job #: L1936801 Date Rec'd in Lab: 1/25/19 AIR ANALYSIS PAGE (OF (CHAIN OF CUSTODY **Billing Information Report Information - Data Deliverables Project Information** 320 Forbes Blvd, Mansfield, MA 02048 Same as Client info PO #: Project Name Seville Dyeing CI FAX TEL: 508-822-9300 FAX: 508-822-3288 ADEx Bill to BIDEM Rached Simpson Project Location: Woonsocket, BI **Client Information** Criteria Checker: (Default based on Regulatory Criteria Indicated) Project #: 34502.04 Client: GZA Other Formats: **Regulatory Requirements/Report Limits** Address: 188 Valley St, Suite 300 Providence, RI 02909 Project Manager: Aichard Carlone EMAIL (standard pdf report) Additional Deliverables: State/Fed Program Res / Comm ALPHA Quote # Report to: (if different than Project Manager) Phone: 401-421-4140 **Turn-Around Time** Fax: Standard RUSH (only conterned if pre-approved) ANALYSIS Email rearlone @ gza.com These samples have been previously analyzed by Alpha Date Due: Other Project Specific Requirements/Comments: Moll's must meet the Mas DEP soil 965 residential screening, These samples have been previously analyzed by Alpha Project-Specific Target Compound List: Fixed Gases TO-15 SIM All Columns Below Must Be Filled Out TO.15 COLLECTION Initial Final End Date | Start Time | End Time | Vacuum | Vacuum 1D ID-Flow Sample Sampler's Can ALPHA Lab ID Sample Comments (i.e. PID) Sample ID Matrix* Initials Size Can Controller (Lab Use Only) AIF 2.72072 803 X 56801-01 MW-16 11-22-10 10:30 11:20 -29 - 4 5V AIF 27 2229 1028 x 11-22-19 12:35 13:40 -29 -8 SV MW-8 -02 AA = Ambient Air (Indoor/Outdoor) Please print clearly, legibly and *SAMPLE MATRIX CODES SV = Soil Vapor/Landfill Gas/SVE Container Type completely. Samples can not be Other = Please Specify logged in and turnaround time clock will not start until any ambi-Date/Time: Relinquished By: Date/Time Received By: guities are resolved. All samples 15719 1534 submitted are subject to Alpha's 1-22-19 14:00 Terms and Conditions. 11/25/19101ilbs/142000 See reverse side. Page 37 of 37ev: (25-Sep-15) 1125/19 21:11 11/28/19

Serial No:12041916:12

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Richard Carlone GZA GeoEnvironmental, Inc. 188 Valley Street Providence, RI 02909

RE: Seville Dyeing Company (03.0034502.04) ESS Laboratory Work Order Number: 19J1002

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director

Analytical Summary

REVIEWED By ESS Laboratory at 1:46 pm, Nov 05, 2019

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company

ESS Laboratory Work Order: 19J1002

SAMPLE RECEIPT

The following samples were received on October 28, 2019 for the analyses specified on the enclosed Chain of Custody Record.

Lab Number
19J1002-01
19J1002-02
19J1002-03
19J1002-04
19J1002-05

Sample Name MW-15 0-2ft B-14 2-4ft B-13 2-4ft B010282019 Trip Blank Matrix Soil Soil Soil Soil Soil

Analysis
6010C, 7471B, 8082A, 8100M, 8260B, 8270D PAH
6010C, 7471B, 8082A, 8100M, 8260B, 8270D PAH
6010C, 7471B, 8082A, 8100M, 8260B, 8270D PAH
6010C, 7471B, 8082A, 8100M, 8260B, 8270D PAH
8260B

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company

ESS Laboratory Work Order: 19J1002

PROJECT NARRATIVE

5035/8260B Volatile Organic Compounds / MethanolCJ93128-BSD1Blank Spike recovery is below lower control limit (B-).1,4-Dioxane - Screen (0% @ 44-241%)

No other observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company

ESS Laboratory Work Order: 19J1002

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint 6010C - ICP 6020A - ICP MS 7010 - Graphite Furnace 7196A - Hexavalent Chromium 7470A - Aqueous Mercury 7471B - Solid Mercury 8011 - EDB/DBCP/TCP 8015C - GRO/DRO 8081B - Pesticides 8082A - PCB 8100M - TPH 8151A - Herbicides 8260B - VOA 8270D - SVOA 8270D SIM - SVOA Low Level 9014 - Cyanide 9038 - Sulfate 9040C - Aqueous pH 9045D - Solid pH (Corrosivity) 9050A - Specific Conductance 9056A - Anions (IC) 9060A - TOC 9095B - Paint Filter MADEP 04-1.1 - EPH MADEP 18-2.1 - VPH

Prep Methods

3005A - Aqueous ICP Digestion
3020A - Aqueous Graphite Furnace / ICP MS Digestion
3050B - Solid ICP / Graphite Furnace / ICP MS Digestion
3060A - Solid Hexavalent Chromium Digestion
3510C - Separatory Funnel Extraction
3520C - Liquid / Liquid Extraction
3540C - Manual Soxhlet Extraction
3541 - Automated Soxhlet Extraction
3546 - Microwave Extraction
3580A - Waste Dilution
5030B - Aqueous Purge and Trap
5030C - Aqueous Purge and Trap
5035A - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: MW-15 0-2ft Date Sampled: 10/28/19 10:10 Percent Solids: 95

ESS Laboratory Work Order: 19J1002 ESS Laboratory Sample ID: 19J1002-01 Sample Matrix: Soil Units: mg/kg dry

Extraction Method: 3050B

Total Metals

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	DF	Analys	t <u>Analyzed</u>	I/V	F/V	Batch
Antimony	ND (4.05)		6010C		1	KJK	11/01/19 20:12	2.6	100	CJ93161
Arsenic	3.72 (2.03)		6010C		1	KJK	11/01/19 20:12	2.6	100	CJ93161
Beryllium	0.21 (0.09)		6010C		1	KJK	11/01/19 20:12	2.6	100	CJ93161
Cadmium	ND (0.41)		6010C		1	KJK	11/01/19 20:12	2.6	100	CJ93161
Chromium	8.34 (0.81)		6010C		1	KJK	11/01/19 20:12	2.6	100	CJ93161
Copper	23.8 (2.03)		6010C		1	KJK	11/01/19 20:12	2.6	100	CJ93161
Lead	97.0 (4.05)		6010C		1	KJK	11/01/19 20:12	2.6	100	CJ93161
Mercury	0.055 (0.026)		7471B		1	MKS	11/04/19 12:05	0.8	40	CJ93162
Nickel	8.43 (2.03)		6010C		1	KJK	11/01/19 20:12	2.6	100	CJ93161
Selenium	ND (4.05)		6010C		1	KJK	11/01/19 20:12	2.6	100	CJ93161
Silver	ND (0.41)		6010C		1	KJK	11/01/19 20:12	2.6	100	CJ93161
Thallium	ND (4.05)		6010C		1	KJK	11/01/19 20:12	2.6	100	CJ93161
Zinc	73.8 (2.03)		6010C		1	KJK	11/01/19 20:12	2.6	100	CJ93161

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: MW-15 0-2ft Date Sampled: 10/28/19 10:10 Percent Solids: 95 Initial Volume: 14.7 Final Volume: 15 Extraction Method: 5035

ESS Laboratory Work Order: 19J1002 ESS Laboratory Sample ID: 19J1002-01 Sample Matrix: Soil Units: mg/kg dry Analyst: MD

5035/8260B Volatile Organic Compounds / Methanol

Analyte	Results (MRL)	<u>MDL</u>	<u>Method</u>	<u>Limit</u>	DF	Analyzed	<u>Sequence</u>	Batch
1,1,1,2-Tetrachloroethane	ND (0.226)	0.0226	8260B		1	10/31/19 15:17	C9J0621	CJ93128
1,1,1-Trichloroethane	ND (0.226)	0.0451	8260B		1	10/31/19 15:17	C9J0621	CJ93128
1,1,2,2-Tetrachloroethane	ND (0.226)	0.0226	8260B		1	10/31/19 15:17	C9J0621	CJ93128
1,1,2-Trichloroethane	ND (0.226)	0.0451	8260B		1	10/31/19 15:17	C9J0621	CJ93128
1,1-Dichloroethane	ND (0.226)	0.0451	8260B		1	10/31/19 15:17	C9J0621	CJ93128
1,1-Dichloroethene	ND (0.226)	0.0677	8260B		1	10/31/19 15:17	C9J0621	CJ93128
1,1-Dichloropropene	ND (0.226)	0.0451	8260B		1	10/31/19 15:17	C9J0621	CJ93128
1,2,3-Trichlorobenzene	ND (0.226)	0.0451	8260B		1	10/31/19 15:17	C9J0621	CJ93128
1,2,3-Trichloropropane	ND (0.226)	0.0677	8260B		1	10/31/19 15:17	C9J0621	CJ93128
1,2,4-Trichlorobenzene	ND (0.226)	0.0451	8260B		1	10/31/19 15:17	C9J0621	CJ93128
1,2,4-Trimethylbenzene	ND (0.226)	0.0226	8260B		1	10/31/19 15:17	C9J0621	CJ93128
1,2-Dibromo-3-Chloropropane	ND (1.13)	0.226	8260B		1	10/31/19 15:17	C9J0621	CJ93128
1,2-Dibromoethane	ND (0.226)	0.0451	8260B		1	10/31/19 15:17	C9J0621	CJ93128
1,2-Dichlorobenzene	ND (0.226)	0.0226	8260B		1	10/31/19 15:17	C9J0621	CJ93128
1,2-Dichloroethane	ND (0.226)	0.0451	8260B		1	10/31/19 15:17	C9J0621	CJ93128
1,2-Dichloropropane	ND (0.226)	0.0451	8260B		1	10/31/19 15:17	C9J0621	CJ93128
1,3,5-Trimethylbenzene	ND (0.226)	0.0226	8260B		1	10/31/19 15:17	C9J0621	CJ93128
1,3-Dichlorobenzene	ND (0.226)	0.0451	8260B		1	10/31/19 15:17	C9J0621	CJ93128
1,3-Dichloropropane	ND (0.226)	0.0226	8260B		1	10/31/19 15:17	C9J0621	CJ93128
1,4-Dichlorobenzene	ND (0.226)	0.0226	8260B		1	10/31/19 15:17	C9J0621	CJ93128
1,4-Dioxane - Screen	ND (45.1)	42.9	8260B		1	10/31/19 15:17	C9J0621	CJ93128
1-Chlorohexane	ND (0.226)	0.0903	8260B		1	10/31/19 15:17	C9J0621	CJ93128
2,2-Dichloropropane	ND (0.226)	0.0677	8260B		1	10/31/19 15:17	C9J0621	CJ93128
2-Butanone	ND (1.13)	0.767	8260B		1	10/31/19 15:17	C9J0621	CJ93128
2-Chlorotoluene	ND (0.226)	0.0226	8260B		1	10/31/19 15:17	C9J0621	CJ93128
2-Hexanone	ND (1.13)	0.338	8260B		1	10/31/19 15:17	C9J0621	CJ93128
4-Chlorotoluene	ND (0.226)	0.0226	8260B		1	10/31/19 15:17	C9J0621	CJ93128
4-Isopropyltoluene	ND (0.226)	0.0226	8260B		1	10/31/19 15:17	C9J0621	CJ93128
4-Methyl-2-Pentanone	ND (1.13)	0.361	8260B		1	10/31/19 15:17	C9J0621	CJ93128
Acetone	ND (1.13)	0.609	8260B		1	10/31/19 15:17	C9J0621	CJ93128
Benzene	ND (0.226)	0.0226	8260B		1	10/31/19 15:17	C9J0621	CJ93128
Bromobenzene	ND (0.226)	0.0451	8260B		1	10/31/19 15:17	C9J0621	CJ93128

Tel: 401-461-7181 Dependability • Quality Fax: 401-461-4486 Service

٠

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: MW-15 0-2ft Date Sampled: 10/28/19 10:10 Percent Solids: 95 Initial Volume: 14.7 Final Volume: 15 Extraction Method: 5035

ESS Laboratory Work Order: 19J1002 ESS Laboratory Sample ID: 19J1002-01 Sample Matrix: Soil Units: mg/kg dry Analyst: MD

5035/8260B Volatile Organic Compounds / Methanol

Analyte Bromochloromethane	Results (MRL) ND (0.226)	<u>MDL</u> 0.0677	Method 8260B	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/31/19 15:17	Sequence C9J0621	<u>Batch</u> CJ93128
Bromodichloromethane		0.0226	8260B		1	10/31/19 15:17	C9J0621 C9J0621	CJ93128 CJ93128
Bromoform	ND (0.226) ND (0.226)	0.0220	8260B		1	10/31/19 15:17	C9J0621	CJ93128 CJ93128
Bromomethane	ND (0.226)	0.0903	8260B		1	10/31/19 15:17	C9J0621	CJ93128 CJ93128
Carbon Disulfide	ND (0.226)	0.0303	8260B		1	10/31/19 15:17	C9J0621	CJ93128 CJ93128
Carbon Tetrachloride	× /	0.0226	8260B		1	10/31/19 15:17	C9J0621	CJ93128 CJ93128
Chlorobenzene	ND (0.226)	0.0226	8260B		1	10/31/19 15:17	C9J0621	CJ93128 CJ93128
Chloroethane	ND (0.226)	0.0220	8260B		1	10/31/19 15:17	C9J0621	CJ93128 CJ93128
Chloroform	ND (0.226)	0.0903	8260B 8260B		1	10/31/19 15:17	C9J0621 C9J0621	CJ93128 CJ93128
	ND (0.226)							
Chloromethane	ND (0.226)	0.0226	8260B		1	10/31/19 15:17	C9J0621	CJ93128
cis-1,2-Dichloroethene	ND (0.226)	0.0451	8260B		1	10/31/19 15:17	C9J0621	CJ93128
cis-1,3-Dichloropropene	ND (0.226)	0.0677	8260B		1	10/31/19 15:17	C9J0621	CJ93128
Dibromochloromethane	ND (0.226)	0.0451	8260B		1	10/31/19 15:17	C9J0621	CJ93128
Dibromomethane	ND (0.226)	0.0677	8260B		1	10/31/19 15:17	C9J0621	CJ93128
Dichlorodifluoromethane	ND (0.226)	0.0677	8260B		1	10/31/19 15:17	C9J0621	CJ93128
Diethyl Ether	ND (0.226)	0.0677	8260B		1	10/31/19 15:17	C9J0621	CJ93128
Di-isopropyl ether	ND (0.226)	0.0451	8260B		1	10/31/19 15:17	C9J0621	CJ93128
Ethyl tertiary-butyl ether	ND (0.226)	0.0226	8260B		1	10/31/19 15:17	C9J0621	CJ93128
Ethylbenzene	ND (0.226)	0.0226	8260B		1	10/31/19 15:17	C9J0621	CJ93128
Hexachlorobutadiene	ND (0.226)	0.0451	8260B		1	10/31/19 15:17	C9J0621	CJ93128
Isopropylbenzene	ND (0.226)	0.0226	8260B		1	10/31/19 15:17	C9J0621	CJ93128
Methyl tert-Butyl Ether	ND (0.226)	0.0677	8260B		1	10/31/19 15:17	C9J0621	CJ93128
Methylene Chloride	ND (0.451)	0.0451	8260B		1	10/31/19 15:17	C9J0621	CJ93128
Naphthalene	0.298 (0.226)	0.0451	8260B		1	10/31/19 15:17	C9J0621	CJ93128
n-Butylbenzene	ND (0.226)	0.0226	8260B		1	10/31/19 15:17	C9J0621	CJ93128
n-Propylbenzene	ND (0.226)	0.0451	8260B		1	10/31/19 15:17	C9J0621	CJ93128
sec-Butylbenzene	ND (0.226)	0.0226	8260B		1	10/31/19 15:17	C9J0621	CJ93128
Styrene	ND (0.226)	0.0226	8260B		1	10/31/19 15:17	C9J0621	CJ93128
tert-Butylbenzene	ND (0.226)	0.0226	8260B		1	10/31/19 15:17	C9J0621	CJ93128
Tertiary-amyl methyl ether	ND (0.226)	0.0451	8260B		1	10/31/19 15:17	C9J0621	CJ93128
Tetrachloroethene	ND (0.226)	0.0451	8260B		1	10/31/19 15:17	C9J0621	CJ93128
Tetrahydrofuran	ND (1.13)	0.361	8260B		1	10/31/19 15:17	C9J0621	CJ93128
	× /							

Tel: 401-461-7181 Dependability • Quality Fax: 401-461-4486 Service

٠

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: MW-15 0-2ft Date Sampled: 10/28/19 10:10 Percent Solids: 95 Initial Volume: 14.7 Final Volume: 15 Extraction Method: 5035

ESS Laboratory Work Order: 19J1002 ESS Laboratory Sample ID: 19J1002-01 Sample Matrix: Soil Units: mg/kg dry Analyst: MD

5035/8260B Volatile Organic Compounds / Methanol

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Toluene	ND (0.226)	0.0226	8260B		1	10/31/19 15:17	C9J0621	CJ93128
trans-1,2-Dichloroethene	ND (0.226)	0.0677	8260B		1	10/31/19 15:17	C9J0621	CJ93128
trans-1,3-Dichloropropene	ND (0.226)	0.0451	8260B		1	10/31/19 15:17	C9J0621	CJ93128
Trichloroethene	ND (0.226)	0.0451	8260B		1	10/31/19 15:17	C9J0621	CJ93128
Trichlorofluoromethane	ND (0.226)	0.0903	8260B		1	10/31/19 15:17	C9J0621	CJ93128
Vinyl Acetate	ND (0.226)	0.113	8260B		1	10/31/19 15:17	C9J0621	CJ93128
Vinyl Chloride	ND (0.226)	0.0451	8260B		1	10/31/19 15:17	C9J0621	CJ93128
Xylene O	ND (0.226)	0.0226	8260B		1	10/31/19 15:17	C9J0621	CJ93128
Xylene P,M	ND (0.451)	0.0451	8260B		1	10/31/19 15:17	C9J0621	CJ93128
Xylenes (Total)	ND (0.451)		8260B		1	10/31/19 15:17		[CALC]
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		114 %		70-130				
Surrogate: 4-Bromofluorobenzene		107 %		70-130				
Surrogate: Dibromofluoromethane		113 %		70-130				
Surrogate: Toluene-d8		114 %		70-130				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: MW-15 0-2ft Date Sampled: 10/28/19 10:10 Percent Solids: 95 Initial Volume: 20.2 Final Volume: 10 Extraction Method: 3540C

ESS Laboratory Work Order: 19J1002 ESS Laboratory Sample ID: 19J1002-01 Sample Matrix: Soil Units: mg/kg dry Analyst: MJV Prepared: 10/30/19 15:44

8082A Polychlorinated Biphenyls (PCB)

Analyte	<u>Results (MRL)</u>	MDL	<u>Method</u>	<u>Limit</u>	DF	Analyzed Sequence	
Aroclor 1016	ND (0.05)		8082A		1	10/31/19 19:05	CJ93010
Aroclor 1221	ND (0.05)		8082A		1	10/31/19 19:05	CJ93010
Aroclor 1232	ND (0.05)		8082A		1	10/31/19 19:05	CJ93010
Aroclor 1242	ND (0.05)		8082A		1	10/31/19 19:05	CJ93010
Aroclor 1248	ND (0.05)		8082A		1	10/31/19 19:05	CJ93010
Aroclor 1254	ND (0.05)		8082A		1	10/31/19 19:05	CJ93010
Aroclor 1260	ND (0.05)		8082A		1	10/31/19 19:05	CJ93010
Aroclor 1262	ND (0.05)		8082A		1	10/31/19 19:05	CJ93010
Aroclor 1268	ND (0.05)		8082A		1	10/31/19 19:05	CJ93010
	%	6Recovery	Qualifier	Limits			
Surrogate: Decachlorobiphenyl		67 %		30-150			
Surrogate: Decachlorobiphenyl [2C]		63 %		30-150			
Surrogate: Tetrachloro-m-xylene		55 %		30-150			
Surrogate: Tetrachloro-m-xylene [2C]		68 %		30-150			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: MW-15 0-2ft Date Sampled: 10/28/19 10:10 Percent Solids: 95 Initial Volume: 19.5 Final Volume: 1 Extraction Method: 3546

ESS Laboratory Work Order: 19J1002 ESS Laboratory Sample ID: 19J1002-01 Sample Matrix: Soil Units: mg/kg dry Analyst: CAD Prepared: 10/29/19 12:19

8100M Total Petroleum Hydrocarbons

<u>Analyte</u> Total Petroleum Hydrocarbons	Results (MRL) MD 477 (40.5) 477	L <u>Method</u> 8100M	<u>Limit</u>	<u>DF</u> 1	Analyzed 10/30/19 17:48	Sequence C9J0571	<u>Batch</u> CJ92911
	%Recovery	Qualifier	Limits				
Surrogate: O-Terphenyl	77 %		40-140				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: MW-15 0-2ft Date Sampled: 10/28/19 10:10 Percent Solids: 95 Initial Volume: 14.3 Final Volume: 0.5 Extraction Method: 3546

ESS Laboratory Work Order: 19J1002 ESS Laboratory Sample ID: 19J1002-01 Sample Matrix: Soil Units: mg/kg dry Analyst: TAJ Prepared: 10/29/19 13:51

8270D Polynuclear Aromatic Hydrocarbons

Analyte 2-Methylnaphthalene	<u>Results (MRL)</u> ND (0.368)	MDL <u>Method</u> 8270D PAH	Limit <u>DF</u>	<u>Analyzed</u> 11/01/19 17:49	Sequence C9K0009	<u>Batch</u> CJ92909
Acenaphthene	ND (0.368)	8270D PAH	1	11/01/19 17:49	C9K0009	CJ92909
Acenaphthylene	ND (0.368)	8270D PAH	1	11/01/19 17:49	C9K0009	CJ92909
Anthracene	0.656 (0.368)	8270D PAH	1	11/01/19 17:49	C9K0009	CJ92909
Benzo(a)anthracene	1.58 (0.368)	8270D PAH	1	11/01/19 17:49	C9K0009	CJ92909
Benzo(a)pyrene	1.30 (0.185)	8270D PAH	1	11/01/19 17:49	C9K0009	CJ92909
Benzo(b)fluoranthene	1.44 (0.368)	8270D PAH	1	11/01/19 17:49	C9K0009	CJ92909
Benzo(g,h,i)perylene	0.870 (0.368)	8270D PAH	1	11/01/19 17:49	C9K0009	CJ92909
Benzo(k)fluoranthene	0.852 (0.368)	8270D PAH	1	11/01/19 17:49	C9K0009	CJ92909
Chrysene	1.45 (0.185)	8270D PAH	1	11/01/19 17:49	C9K0009	CJ92909
Dibenzo(a,h)Anthracene	0.285 (0.185)	8270D PAH	1	11/01/19 17:49	C9K0009	CJ92909
Fluoranthene	2.92 (0.368)	8270D PAH	1	11/01/19 17:49	C9K0009	CJ92909
Fluorene	ND (0.368)	8270D PAH	1	11/01/19 17:49	C9K0009	CJ92909
Indeno(1,2,3-cd)Pyrene	0.779 (0.368)	8270D PAH	1	11/01/19 17:49	C9K0009	CJ92909
Naphthalene	ND (0.368)	8270D PAH	1	11/01/19 17:49	C9K0009	CJ92909
Phenanthrene	2.23 (0.368)	8270D PAH	1	11/01/19 17:49	C9K0009	CJ92909
Pyrene	2.86 (0.368)	8270D PAH	1	11/01/19 17:49	C9K0009	CJ92909
	0/	Recovery Oualifier	Limits			

<i>MRELOVER</i> y	Quanner	Linits
60 %		30-130
66 %		30-130
62 %		30-130
85 %		30-130
	60 % 66 % 62 %	60 % 66 % 62 %

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: B-14 2-4ft Date Sampled: 10/28/19 11:50 Percent Solids: 99

ESS Laboratory Work Order: 19J1002 ESS Laboratory Sample ID: 19J1002-02 Sample Matrix: Soil Units: mg/kg dry

Extraction Method: 3050B

Total Metals

Analyte	<u>Results (MRL)</u>	<u>MDL</u>	<u>Method</u>	<u>Limit</u>	DF	Analys		I/V	<u>F/V</u>	<u>Batch</u>
Antimony	ND (3.08)		6010C		1	KJK	11/01/19 20:16	3.29	100	CJ93161
Arsenic	2.11 (1.54)		6010C		1	KJK	11/01/19 20:16	3.29	100	CJ93161
Beryllium	0.12 (0.07)		6010C		1	KJK	11/01/19 20:16	3.29	100	CJ93161
Cadmium	ND (0.31)		6010C		1	KJK	11/01/19 20:16	3.29	100	CJ93161
Chromium	3.29 (0.62)		6010C		1	KJK	11/01/19 20:16	3.29	100	CJ93161
Copper	3.58 (1.54)		6010C		1	KJK	11/01/19 20:16	3.29	100	CJ93161
Lead	5.61 (3.08)		6010C		1	KJK	11/01/19 20:16	3.29	100	CJ93161
Mercury	0.268 (0.025)		7471B		1	MKS	11/04/19 12:07	0.8	40	CJ93162
Nickel	2.21 (1.54)		6010C		1	KJK	11/01/19 20:16	3.29	100	CJ93161
Selenium	ND (3.08)		6010C		1	KJK	11/01/19 20:16	3.29	100	CJ93161
Silver	ND (0.31)		6010C		1	KJK	11/01/19 20:16	3.29	100	CJ93161
Thallium	ND (3.08)		6010C		1	KJK	11/01/19 20:16	3.29	100	CJ93161
Zinc	9.87 (1.54)		6010C		1	KJK	11/01/19 20:16	3.29	100	CJ93161

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: B-14 2-4ft Date Sampled: 10/28/19 11:50 Percent Solids: 99 Initial Volume: 19.5 Final Volume: 15 Extraction Method: 5035

ESS Laboratory Work Order: 19J1002 ESS Laboratory Sample ID: 19J1002-02 Sample Matrix: Soil Units: mg/kg dry Analyst: MD

5035/8260B Volatile Organic Compounds / Methanol

Analyte 1,1,1,2-Tetrachloroethane	<u>Results (MRL)</u> ND (0.159)	<u>MDL</u> 0.0159	<u>Method</u> 8260B	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/31/19 15:43	Sequence C9J0621	<u>Batch</u> CJ93128
1,1,1-Trichloroethane	ND (0.159)	0.0318	8260B		1	10/31/19 15:43	C9J0621	CJ93128
1,1,2,2-Tetrachloroethane	ND (0.159)	0.0159	8260B		1	10/31/19 15:43	C9J0621	CJ93128
1,1,2-Trichloroethane	ND (0.159)	0.0318	8260B		1	10/31/19 15:43	C9J0621	CJ93128
1,1-Dichloroethane	ND (0.159)	0.0318	8260B		1	10/31/19 15:43	C9J0621	CJ93128
1,1-Dichloroethene	ND (0.159)	0.0477	8260B		1	10/31/19 15:43	C9J0621	CJ93128
1,1-Dichloropropene	ND (0.159)	0.0318	8260B		1	10/31/19 15:43	C9J0621	CJ93128
1,2,3-Trichlorobenzene	ND (0.159)	0.0318	8260B		1	10/31/19 15:43	C9J0621	CJ93128
1,2,3-Trichloropropane	ND (0.159)	0.0477	8260B		1	10/31/19 15:43	C9J0621	CJ93128
1,2,4-Trichlorobenzene	ND (0.159)	0.0318	8260B		1	10/31/19 15:43	C9J0621	CJ93128
1,2,4-Trimethylbenzene	ND (0.159)	0.0159	8260B		1	10/31/19 15:43	C9J0621	CJ93128
1,2-Dibromo-3-Chloropropane	ND (0.796)	0.159	8260B		1	10/31/19 15:43	C9J0621	CJ93128
1,2-Dibromoethane	ND (0.159)	0.0318	8260B		1	10/31/19 15:43	C9J0621	CJ93128
1,2-Dichlorobenzene	ND (0.159)	0.0159	8260B		1	10/31/19 15:43	C9J0621	CJ93128
1,2-Dichloroethane	ND (0.159)	0.0318	8260B		1	10/31/19 15:43	C9J0621	CJ93128
1,2-Dichloropropane	ND (0.159)	0.0318	8260B		1	10/31/19 15:43	C9J0621	CJ93128
1,3,5-Trimethylbenzene	ND (0.159)	0.0159	8260B		1	10/31/19 15:43	C9J0621	CJ93128
1,3-Dichlorobenzene	ND (0.159)	0.0318	8260B		1	10/31/19 15:43	C9J0621	CJ93128
1,3-Dichloropropane	ND (0.159)	0.0159	8260B		1	10/31/19 15:43	C9J0621	CJ93128
1,4-Dichlorobenzene	ND (0.159)	0.0159	8260B		1	10/31/19 15:43	C9J0621	CJ93128
1,4-Dioxane - Screen	ND (31.8)	30.2	8260B		1	10/31/19 15:43	C9J0621	CJ93128
1-Chlorohexane	ND (0.159)	0.0637	8260B		1	10/31/19 15:43	C9J0621	CJ93128
2,2-Dichloropropane	ND (0.159)	0.0477	8260B		1	10/31/19 15:43	C9J0621	CJ93128
2-Butanone	ND (0.796)	0.541	8260B		1	10/31/19 15:43	C9J0621	CJ93128
2-Chlorotoluene	ND (0.159)	0.0159	8260B		1	10/31/19 15:43	C9J0621	CJ93128
2-Hexanone	ND (0.796)	0.239	8260B		1	10/31/19 15:43	C9J0621	CJ93128
4-Chlorotoluene	ND (0.159)	0.0159	8260B		1	10/31/19 15:43	C9J0621	CJ93128
4-Isopropyltoluene	ND (0.159)	0.0159	8260B		1	10/31/19 15:43	C9J0621	CJ93128
4-Methyl-2-Pentanone	ND (0.796)	0.255	8260B		1	10/31/19 15:43	C9J0621	CJ93128
Acetone	ND (0.796)	0.430	8260B		1	10/31/19 15:43	C9J0621	CJ93128
Benzene	ND (0.159)	0.0159	8260B		1	10/31/19 15:43	C9J0621	CJ93128
Bromobenzene	ND (0.159)	0.0318	8260B		1	10/31/19 15:43	C9J0621	CJ93128

Tel: 401-461-7181 Dependability • Quality Fax: 401-461-4486 Service

٠

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: B-14 2-4ft Date Sampled: 10/28/19 11:50 Percent Solids: 99 Initial Volume: 19.5 Final Volume: 15 Extraction Method: 5035

ESS Laboratory Work Order: 19J1002 ESS Laboratory Sample ID: 19J1002-02 Sample Matrix: Soil Units: mg/kg dry Analyst: MD

5035/8260B Volatile Organic Compounds / Methanol

Analyte Bromochloromethane	Results (MRL)	<u>MDL</u> 0.0477	<u>Method</u> 8260B	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/31/19 15:43	Sequence C9J0621	<u>Batch</u> CJ93128
Bromodichloromethane	ND (0.159)	0.0477	8260B 8260B		1	10/31/19 15:43	C9J0621 C9J0621	CJ93128 CJ93128
	ND (0.159)							
Bromoform	ND (0.159)	0.0318	8260B		1	10/31/19 15:43	C9J0621	CJ93128
Bromomethane	ND (0.159)	0.0637	8260B		1	10/31/19 15:43	C9J0621	CJ93128
Carbon Disulfide	ND (0.159)	0.0159	8260B		1	10/31/19 15:43	C9J0621	CJ93128
Carbon Tetrachloride	ND (0.159)	0.0159	8260B		1	10/31/19 15:43	C9J0621	CJ93128
Chlorobenzene	ND (0.159)	0.0159	8260B		1	10/31/19 15:43	C9J0621	CJ93128
Chloroethane	ND (0.159)	0.0637	8260B		1	10/31/19 15:43	C9J0621	CJ93128
Chloroform	ND (0.159)	0.0318	8260B		1	10/31/19 15:43	C9J0621	CJ93128
Chloromethane	ND (0.159)	0.0159	8260B		1	10/31/19 15:43	C9J0621	CJ93128
cis-1,2-Dichloroethene	ND (0.159)	0.0318	8260B		1	10/31/19 15:43	C9J0621	CJ93128
cis-1,3-Dichloropropene	ND (0.159)	0.0477	8260B		1	10/31/19 15:43	C9J0621	CJ93128
Dibromochloromethane	ND (0.159)	0.0318	8260B		1	10/31/19 15:43	C9J0621	CJ93128
Dibromomethane	ND (0.159)	0.0477	8260B		1	10/31/19 15:43	C9J0621	CJ93128
Dichlorodifluoromethane	ND (0.159)	0.0477	8260B		1	10/31/19 15:43	C9J0621	CJ93128
Diethyl Ether	ND (0.159)	0.0477	8260B		1	10/31/19 15:43	C9J0621	CJ93128
Di-isopropyl ether	ND (0.159)	0.0318	8260B		1	10/31/19 15:43	C9J0621	CJ93128
Ethyl tertiary-butyl ether	ND (0.159)	0.0159	8260B		1	10/31/19 15:43	C9J0621	CJ93128
Ethylbenzene	ND (0.159)	0.0159	8260B		1	10/31/19 15:43	C9J0621	CJ93128
Hexachlorobutadiene	ND (0.159)	0.0318	8260B		1	10/31/19 15:43	C9J0621	CJ93128
Isopropylbenzene	ND (0.159)	0.0159	8260B		1	10/31/19 15:43	C9J0621	CJ93128
Methyl tert-Butyl Ether	ND (0.159)	0.0477	8260B		1	10/31/19 15:43	C9J0621	CJ93128
Methylene Chloride	ND (0.318)	0.0318	8260B		1	10/31/19 15:43	C9J0621	CJ93128
Naphthalene	0.391 (0.159)	0.0318	8260B		1	10/31/19 15:43	C9J0621	CJ93128
n-Butylbenzene	ND (0.159)	0.0159	8260B		1	10/31/19 15:43	C9J0621	CJ93128
n-Propylbenzene	ND (0.159)	0.0318	8260B		1	10/31/19 15:43	C9J0621	CJ93128
sec-Butylbenzene	ND (0.159)	0.0159	8260B		1	10/31/19 15:43	C9J0621	CJ93128
Styrene	ND (0.159)	0.0159	8260B		1	10/31/19 15:43	C9J0621	CJ93128
tert-Butylbenzene	ND (0.159)	0.0159	8260B		1	10/31/19 15:43	C9J0621	CJ93128
Tertiary-amyl methyl ether	ND (0.159)	0.0318	8260B		1	10/31/19 15:43	C9J0621	CJ93128
Tetrachloroethene	ND (0.159)	0.0318	8260B		1	10/31/19 15:43	C9J0621	CJ93128
Tetrahydrofuran	ND (0.796)	0.255	8260B		1	10/31/19 15:43	C9J0621	CJ93128
reading di Ordinan	(0.790)	0.200	02000		1	10/01/17 10:40	0730021	0373120

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: B-14 2-4ft Date Sampled: 10/28/19 11:50 Percent Solids: 99 Initial Volume: 19.5 Final Volume: 15 Extraction Method: 5035

ESS Laboratory Work Order: 19J1002 ESS Laboratory Sample ID: 19J1002-02 Sample Matrix: Soil Units: mg/kg dry Analyst: MD

5035/8260B Volatile Organic Compounds / Methanol

<u>Analyte</u>	Results (MRL)	<u>MDL</u>	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Toluene	ND (0.159)	0.0159	8260B		I	10/31/19 15:43	C9J0621	CJ93128
trans-1,2-Dichloroethene	ND (0.159)	0.0477	8260B		1	10/31/19 15:43	C9J0621	CJ93128
trans-1,3-Dichloropropene	ND (0.159)	0.0318	8260B		1	10/31/19 15:43	C9J0621	CJ93128
Trichloroethene	ND (0.159)	0.0318	8260B		1	10/31/19 15:43	C9J0621	CJ93128
Trichlorofluoromethane	ND (0.159)	0.0637	8260B		1	10/31/19 15:43	C9J0621	CJ93128
Vinyl Acetate	ND (0.159)	0.0796	8260B		1	10/31/19 15:43	C9J0621	CJ93128
Vinyl Chloride	ND (0.159)	0.0318	8260B		1	10/31/19 15:43	C9J0621	CJ93128
Xylene O	ND (0.159)	0.0159	8260B		1	10/31/19 15:43	C9J0621	CJ93128
Xylene P,M	ND (0.318)	0.0318	8260B		1	10/31/19 15:43	C9J0621	CJ93128
Xylenes (Total)	ND (0.318)		8260B		1	10/31/19 15:43		[CALC]
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		114 %		70-130				
Surrogate: 4-Bromofluorobenzene		115 %		70-130				
Surrogate: Dibromofluoromethane		113 %		70-130				
Surrogate: Toluene-d8		114 %		70-130				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: B-14 2-4ft Date Sampled: 10/28/19 11:50 Percent Solids: 99 Initial Volume: 19.8 Final Volume: 10 Extraction Method: 3540C

ESS Laboratory Work Order: 19J1002 ESS Laboratory Sample ID: 19J1002-02 Sample Matrix: Soil Units: mg/kg dry Analyst: MJV Prepared: 10/30/19 15:44

8082A Polychlorinated Biphenyls (PCB)

<u>Analyte</u> Aroclor 1016	Results (MRL) ND (0.05)	<u>MDL</u>	<u>Method</u> 8082A	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> <u>Seque</u> 10/31/19 19:24	ence Batch CJ93010
Aroclor 1221	ND (0.05)		8082A		1	10/31/19 19:24	CJ93010
Aroclor 1232	ND (0.05)		8082A		1	10/31/19 19:24	CJ93010
Aroclor 1242	ND (0.05)		8082A		1	10/31/19 19:24	CJ93010
Aroclor 1248	ND (0.05)		8082A		1	10/31/19 19:24	CJ93010
Aroclor 1254	ND (0.05)		8082A		1	10/31/19 19:24	CJ93010
Aroclor 1260	ND (0.05)		8082A		1	10/31/19 19:24	CJ93010
Aroclor 1262	ND (0.05)		8082A		1	10/31/19 19:24	CJ93010
Aroclor 1268	ND (0.05)		8082A		1	10/31/19 19:24	CJ93010
	9	6Recovery	Qualifier	Limits			
Surrogate: Decachlorobiphenyl		72 %		30-150			
Surrogate: Decachlorobiphenyl [2C]		68 %		30-150			
Surrogate: Tetrachloro-m-xylene		62 %		30-150			
Surrogate: Tetrachloro-m-xylene [2C]		75 %		30-150			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: B-14 2-4ft Date Sampled: 10/28/19 11:50 Percent Solids: 99 Initial Volume: 19.5 Final Volume: 1 Extraction Method: 3546

ESS Laboratory Work Order: 19J1002 ESS Laboratory Sample ID: 19J1002-02 Sample Matrix: Soil Units: mg/kg dry Analyst: CAD Prepared: 10/29/19 12:19

8100M Total Petroleum Hydrocarbons

<u>Analyte</u> Total Petroleum Hydrocarbons	Results (MRL) MI ND (39.0) MI	DL <u>Method</u> 8100M	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 10/30/19 18:24	Sequence C9J0571	<u>Batch</u> CJ92911
	%Recover	v Qualifier	Limits				
Surrogate: O-Terphenyl	76 %		40-140				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: B-14 2-4ft Date Sampled: 10/28/19 11:50 Percent Solids: 99 Initial Volume: 14.6 Final Volume: 0.5 Extraction Method: 3546

ESS Laboratory Work Order: 19J1002 ESS Laboratory Sample ID: 19J1002-02 Sample Matrix: Soil Units: mg/kg dry Analyst: TAJ Prepared: 10/29/19 13:51

8270D Polynuclear Aromatic Hydrocarbons

Analyte 2-Methylnaphthalene	<u>Results (MRL)</u> ND (0.347)	MDL Method 8270D PAH	Limit DF	<u>Analyzed</u> 11/01/19 18:18	Sequence C9K0009	<u>Batch</u> CJ92909
Acenaphthene	ND (0.347)	8270D PAH	1	11/01/19 18:18	C9K0009	CJ92909
Acenaphthylene	ND (0.347) ND (0.347)	8270D PAH	1	11/01/19 18:18	C9K0009	CJ92909
Anthracene	ND (0.347) ND (0.347)	8270D PAH	1	11/01/19 18:18	C9K0009	CJ92909
Benzo(a)anthracene	0.611 (0.347)	8270D PAH	1	11/01/19 18:18	C9K0009	CJ92909
Benzo(a)pyrene	0.454 (0.174)	8270D PAH	1	11/01/19 18:18	C9K0009	CJ92909
Benzo(b)fluoranthene	0.422 (0.347)	8270D PAH	1	11/01/19 18:18	C9K0009	CJ92909
Benzo(g,h,i)perylene	ND (0.347)	8270D PAH	1	11/01/19 18:18	C9K0009	CJ92909
Benzo(k)fluoranthene	ND (0.347)	8270D PAH	1	11/01/19 18:18	C9K0009	CJ92909
Chrysene	0.518 (0.174)	8270D PAH	1	11/01/19 18:18	C9K0009	CJ92909
Dibenzo(a,h)Anthracene	ND (0.174)	8270D PAH	1	11/01/19 18:18	C9K0009	CJ92909
Fluoranthene	1.51 (0.347)	8270D PAH	1	11/01/19 18:18	C9K0009	CJ92909
Fluorene	ND (0.347)	8270D PAH	1	11/01/19 18:18	C9K0009	CJ92909
Indeno(1,2,3-cd)Pyrene	ND (0.347)	8270D PAH	1	11/01/19 18:18	C9K0009	CJ92909
Naphthalene	ND (0.347)	8270D PAH	1	11/01/19 18:18	C9K0009	CJ92909
Phenanthrene	1.48 (0.347)	8270D PAH	1	11/01/19 18:18	C9K0009	CJ92909
Pyrene	1.19 (0.347)	8270D PAH	1	11/01/19 18:18	C9K0009	CJ92909

	%Recovery	Qualifier	Limits
Surrogate: 1,2-Dichlorobenzene-d4	57 %		30-130
Surrogate: 2-Fluorobiphenyl	59 %		30-130
Surrogate: Nitrobenzene-d5	57 %		30-130
Surrogate: p-Terphenyl-d14	66 %		30-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: B-13 2-4ft Date Sampled: 10/28/19 12:50 Percent Solids: 93

ESS Laboratory Work Order: 19J1002 ESS Laboratory Sample ID: 19J1002-03 Sample Matrix: Soil Units: mg/kg dry

Extraction Method: 3050B

Total Metals

Analyte	Results (MRL)	<u>MDL</u>	Method	<u>Limit</u>	DF	Analys		I/V	F/V	Batch
Antimony	ND (4.12)		6010C		1	KJK	11/01/19 20:20	2.6	100	CJ93161
Arsenic	2.65 (2.06)		6010C		1	KJK	11/01/19 20:20	2.6	100	CJ93161
Beryllium	0.13 (0.09)		6010C		1	KJK	11/01/19 20:20	2.6	100	CJ93161
Cadmium	ND (0.41)		6010C		1	KJK	11/01/19 20:20	2.6	100	CJ93161
Chromium	3.90 (0.82)		6010C		1	KJK	11/01/19 20:20	2.6	100	CJ93161
Copper	3.51 (2.06)		6010C		1	KJK	11/01/19 20:20	2.6	100	CJ93161
Lead	13.8 (4.12)		6010C		1	KJK	11/01/19 20:20	2.6	100	CJ93161
Mercury	0.234 (0.028)		7471B		1	MKS	11/04/19 12:09	0.77	40	CJ93162
Nickel	3.04 (2.06)		6010C		1	KJK	11/01/19 20:20	2.6	100	CJ93161
Selenium	ND (4.12)		6010C		1	KJK	11/01/19 20:20	2.6	100	CJ93161
Silver	ND (0.41)		6010C		1	KJK	11/01/19 20:20	2.6	100	CJ93161
Thallium	ND (4.12)		6010C		1	KJK	11/01/19 20:20	2.6	100	CJ93161
Zinc	15.6 (2.06)		6010C		1	KJK	11/01/19 20:20	2.6	100	CJ93161

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: B-13 2-4ft Date Sampled: 10/28/19 12:50 Percent Solids: 93 Initial Volume: 20.2 Final Volume: 15 Extraction Method: 5035

ESS Laboratory Work Order: 19J1002 ESS Laboratory Sample ID: 19J1002-03 Sample Matrix: Soil Units: mg/kg dry Analyst: MD

5035/8260B Volatile Organic Compounds / Methanol

Analyte 1,1,1,2-Tetrachloroethane	Results (MRL)	<u>MDL</u> 0.0173	<u>Method</u> 8260B	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/31/19 16:09	Sequence C9J0621	<u>Batch</u> CJ93128
	ND (0.173)				1			
1,1,1-Trichloroethane	ND (0.173)	0.0346	8260B		1	10/31/19 16:09	C9J0621	CJ93128
1,1,2,2-Tetrachloroethane	ND (0.173)	0.0173	8260B		1	10/31/19 16:09	C9J0621	CJ93128
1,1,2-Trichloroethane	ND (0.173)	0.0346	8260B		1	10/31/19 16:09	C9J0621	CJ93128
1,1-Dichloroethane	ND (0.173)	0.0346	8260B		1	10/31/19 16:09	C9J0621	CJ93128
1,1-Dichloroethene	ND (0.173)	0.0519	8260B		1	10/31/19 16:09	C9J0621	CJ93128
1,1-Dichloropropene	ND (0.173)	0.0346	8260B		1	10/31/19 16:09	C9J0621	CJ93128
1,2,3-Trichlorobenzene	ND (0.173)	0.0346	8260B		1	10/31/19 16:09	C9J0621	CJ93128
1,2,3-Trichloropropane	ND (0.173)	0.0519	8260B		1	10/31/19 16:09	C9J0621	CJ93128
1,2,4-Trichlorobenzene	ND (0.173)	0.0346	8260B		1	10/31/19 16:09	C9J0621	CJ93128
1,2,4-Trimethylbenzene	ND (0.173)	0.0173	8260B		1	10/31/19 16:09	C9J0621	CJ93128
1,2-Dibromo-3-Chloropropane	ND (0.866)	0.173	8260B		1	10/31/19 16:09	C9J0621	CJ93128
1,2-Dibromoethane	ND (0.173)	0.0346	8260B		1	10/31/19 16:09	C9J0621	CJ93128
1,2-Dichlorobenzene	ND (0.173)	0.0173	8260B		1	10/31/19 16:09	C9J0621	CJ93128
1,2-Dichloroethane	ND (0.173)	0.0346	8260B		1	10/31/19 16:09	C9J0621	CJ93128
1,2-Dichloropropane	ND (0.173)	0.0346	8260B		1	10/31/19 16:09	C9J0621	CJ93128
1,3,5-Trimethylbenzene	ND (0.173)	0.0173	8260B		1	10/31/19 16:09	C9J0621	CJ93128
1,3-Dichlorobenzene	ND (0.173)	0.0346	8260B		1	10/31/19 16:09	C9J0621	CJ93128
1,3-Dichloropropane	ND (0.173)	0.0173	8260B		1	10/31/19 16:09	C9J0621	CJ93128
1,4-Dichlorobenzene	ND (0.173)	0.0173	8260B		1	10/31/19 16:09	C9J0621	CJ93128
1,4-Dioxane - Screen	ND (34.6)	32.9	8260B		1	10/31/19 16:09	C9J0621	CJ93128
1-Chlorohexane	ND (0.173)	0.0692	8260B		1	10/31/19 16:09	C9J0621	CJ93128
2,2-Dichloropropane	ND (0.173)	0.0519	8260B		1	10/31/19 16:09	C9J0621	CJ93128
2-Butanone	ND (0.866)	0.589	8260B		1	10/31/19 16:09	C9J0621	CJ93128
2-Chlorotoluene	ND (0.173)	0.0173	8260B		1	10/31/19 16:09	C9J0621	CJ93128
2-Hexanone	ND (0.866)	0.260	8260B		1	10/31/19 16:09	C9J0621	CJ93128
4-Chlorotoluene	ND (0.173)	0.0173	8260B		1	10/31/19 16:09	C9J0621	CJ93128
4-Isopropyltoluene	ND (0.173)	0.0173	8260B		1	10/31/19 16:09	C9J0621	CJ93128
4-Methyl-2-Pentanone	ND (0.866)	0.277	8260B		1	10/31/19 16:09	C9J0621	CJ93128
Acetone	ND (0.866)	0.467	8260B		1	10/31/19 16:09	C9J0621	CJ93128
Benzene	ND (0.173)	0.0173	8260B		1	10/31/19 16:09	C9J0621	CJ93128
Bromobenzene	ND (0.173)	0.0346	8260B		1	10/31/19 16:09	C9J0621	CJ93128
	(0.175)	0.0010	02000		•	10.01/19 10.09	2,70021	20,0120

Tel: 401-461-7181 Dependability • Quality Fax: 401-461-4486 Service

٠

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: B-13 2-4ft Date Sampled: 10/28/19 12:50 Percent Solids: 93 Initial Volume: 20.2 Final Volume: 15 Extraction Method: 5035

ESS Laboratory Work Order: 19J1002 ESS Laboratory Sample ID: 19J1002-03 Sample Matrix: Soil Units: mg/kg dry Analyst: MD

5035/8260B Volatile Organic Compounds / Methanol

Analyte Bromochloromethane	<u>Results (MRL)</u> ND (0.173)	<u>MDL</u> 0.0519	<u>Method</u> 8260B	<u>Limit</u>	$\frac{\mathbf{DF}}{1}$	<u>Analyzed</u> 10/31/19 16:09	Sequence C9J0621	<u>Batch</u> CJ93128
Bromodichloromethane	ND (0.173)	0.0173	8260B		1	10/31/19 16:09	C9J0621	CJ93128
Bromoform	ND (0.173)	0.0346	8260B		1	10/31/19 16:09	C9J0621	CJ93128
Bromomethane	ND (0.173)	0.0692	8260B		1	10/31/19 16:09	C9J0621	CJ93128
Carbon Disulfide	ND (0.173)	0.0173	8260B		1	10/31/19 16:09	C9J0621	CJ93128
Carbon Tetrachloride	ND (0.173)	0.0173	8260B		1	10/31/19 16:09	C9J0621	CJ93128
Chlorobenzene	ND (0.173)	0.0173	8260B		1	10/31/19 16:09	C9J0621	CJ93128
Chloroethane	ND (0.173)	0.0692	8260B		1	10/31/19 16:09	C9J0621	CJ93128
Chloroform	ND (0.173)	0.0346	8260B		1	10/31/19 16:09	C9J0621	CJ93128
Chloromethane	ND (0.173)	0.0173	8260B		1	10/31/19 16:09	C9J0621	CJ93128
cis-1,2-Dichloroethene	ND (0.173)	0.0346	8260B		1	10/31/19 16:09	C9J0621	CJ93128
cis-1,3-Dichloropropene	ND (0.173)	0.0519	8260B		1	10/31/19 16:09	C9J0621	CJ93128
Dibromochloromethane	ND (0.173)	0.0346	8260B		1	10/31/19 16:09	C9J0621	CJ93128
Dibromomethane	ND (0.173)	0.0519	8260B		1	10/31/19 16:09	C9J0621	CJ93128
Dichlorodifluoromethane	ND (0.173)	0.0519	8260B		1	10/31/19 16:09	C9J0621	CJ93128
Diethyl Ether	ND (0.173)	0.0519	8260B		1	10/31/19 16:09	C9J0621	CJ93128
Di-isopropyl ether	ND (0.173)	0.0346	8260B		1	10/31/19 16:09	C9J0621	CJ93128
Ethyl tertiary-butyl ether	ND (0.173)	0.0173	8260B		1	10/31/19 16:09	C9J0621	CJ93128
Ethylbenzene	ND (0.173)	0.0173	8260B		1	10/31/19 16:09	C9J0621	CJ93128
Hexachlorobutadiene	ND (0.173)	0.0346	8260B		1	10/31/19 16:09	C9J0621	CJ93128
Isopropylbenzene	ND (0.173)	0.0173	8260B		1	10/31/19 16:09	C9J0621	CJ93128
Methyl tert-Butyl Ether	ND (0.173)	0.0519	8260B		1	10/31/19 16:09	C9J0621	CJ93128
Methylene Chloride	J 0.0952 (0.346)	0.0346	8260B		1	10/31/19 16:09	C9J0621	CJ93128
Naphthalene	1.42 (0.173)	0.0346	8260B		1	10/31/19 16:09	C9J0621	CJ93128
n-Butylbenzene	ND (0.173)	0.0173	8260B		1	10/31/19 16:09	C9J0621	CJ93128
n-Propylbenzene	ND (0.173)	0.0346	8260B		1	10/31/19 16:09	C9J0621	CJ93128
sec-Butylbenzene	ND (0.173)	0.0173	8260B		1	10/31/19 16:09	C9J0621	CJ93128
Styrene	ND (0.173)	0.0173	8260B		1	10/31/19 16:09	C9J0621	CJ93128
tert-Butylbenzene	ND (0.173)	0.0173	8260B		1	10/31/19 16:09	C9J0621	CJ93128
Tertiary-amyl methyl ether	ND (0.173)	0.0346	8260B		1	10/31/19 16:09	C9J0621	CJ93128
Tetrachloroethene	ND (0.173)	0.0346	8260B		1	10/31/19 16:09	C9J0621	CJ93128
Tetrahydrofuran	ND (0.866)	0.277	8260B		1	10/31/19 16:09	C9J0621	CJ93128

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: B-13 2-4ft Date Sampled: 10/28/19 12:50 Percent Solids: 93 Initial Volume: 20.2 Final Volume: 15 Extraction Method: 5035

ESS Laboratory Work Order: 19J1002 ESS Laboratory Sample ID: 19J1002-03 Sample Matrix: Soil Units: mg/kg dry Analyst: MD

5035/8260B Volatile Organic Compounds / Methanol

<u>Analyte</u> Toluene	<u>Results (MRL)</u> ND (0.173)	<u>MDL</u> 0.0173	<u>Method</u> 8260B	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 10/31/19 16:09	Sequence C9J0621	<u>Batch</u> CJ93128
trans-1,2-Dichloroethene	ND (0.173)	0.0519	8260B		1	10/31/19 16:09	C9J0621	CJ93128
trans-1,3-Dichloropropene	ND (0.173)	0.0346	8260B		1	10/31/19 16:09	C9J0621	CJ93128
Trichloroethene	ND (0.173)	0.0346	8260B		1	10/31/19 16:09	C9J0621	CJ93128
Trichlorofluoromethane	ND (0.173)	0.0692	8260B		1	10/31/19 16:09	C9J0621	CJ93128
Vinyl Acetate	ND (0.173)	0.0866	8260B		1	10/31/19 16:09	C9J0621	CJ93128
Vinyl Chloride	ND (0.173)	0.0346	8260B		1	10/31/19 16:09	C9J0621	CJ93128
Xylene O	ND (0.173)	0.0173	8260B		1	10/31/19 16:09	C9J0621	CJ93128
Xylene P,M	ND (0.346)	0.0346	8260B		1	10/31/19 16:09	C9J0621	CJ93128
Xylenes (Total)	ND (0.346)		8260B		1	10/31/19 16:09		[CALC]
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		122 %		70-130				
Surrogate: 4-Bromofluorobenzene		124 %		70-130				
Surrogate: Dibromofluoromethane		119 %		70-130				
Surrogate: Toluene-d8		119 %		70-130				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: B-13 2-4ft Date Sampled: 10/28/19 12:50 Percent Solids: 93 Initial Volume: 19.5 Final Volume: 10 Extraction Method: 3540C

ESS Laboratory Work Order: 19J1002 ESS Laboratory Sample ID: 19J1002-03 Sample Matrix: Soil Units: mg/kg dry Analyst: MJV Prepared: 10/30/19 15:44

8082A Polychlorinated Biphenyls (PCB)

Analyte	<u>Results (MRL)</u>	<u>MDL</u>	<u>Method</u>	<u>Limit</u>	DF	Analyzed Sequence	
Aroclor 1016	ND (0.05)		8082A		1	10/31/19 19:44	CJ93010
Aroclor 1221	ND (0.05)		8082A		1	10/31/19 19:44	CJ93010
Aroclor 1232	ND (0.05)		8082A		1	10/31/19 19:44	CJ93010
Aroclor 1242	ND (0.05)		8082A		1	10/31/19 19:44	CJ93010
Aroclor 1248	ND (0.05)		8082A		1	10/31/19 19:44	CJ93010
Aroclor 1254	ND (0.05)		8082A		1	10/31/19 19:44	CJ93010
Aroclor 1260	ND (0.05)		8082A		1	10/31/19 19:44	CJ93010
Aroclor 1262	ND (0.05)		8082A		1	10/31/19 19:44	CJ93010
Aroclor 1268	ND (0.05)		8082A		1	10/31/19 19:44	CJ93010
	%	6Recovery	Qualifier	Limits			
Surrogate: Decachlorobiphenyl		77 %		30-150			
Surrogate: Decachlorobiphenyl [2C]		73 %		30-150			
Surrogate: Tetrachloro-m-xylene		74 %		30-150			
Surrogate: Tetrachloro-m-xylene [2C]		78 %		30-150			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: B-13 2-4ft Date Sampled: 10/28/19 12:50 Percent Solids: 93 Initial Volume: 20.2 Final Volume: 1 Extraction Method: 3546

ESS Laboratory Work Order: 19J1002 ESS Laboratory Sample ID: 19J1002-03 Sample Matrix: Soil Units: mg/kg dry Analyst: CAD Prepared: 10/29/19 12:19

8100M Total Petroleum Hydrocarbons

<u>Analyte</u> Total Petroleum Hydrocarbons	<u>Results (MRL)</u> ND (39.7)	<u>MDL</u>	<u>Method</u> 8100M	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 10/30/19 19:00	Sequence C9J0571	<u>Batch</u> CJ92911
	%Re	ecovery	Qualifier	Limits				
Surrogate: O-Terphenyl		78 %		40-140				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: B-13 2-4ft Date Sampled: 10/28/19 12:50 Percent Solids: 93 Initial Volume: 14.8 Final Volume: 0.5 Extraction Method: 3546

ESS Laboratory Work Order: 19J1002 ESS Laboratory Sample ID: 19J1002-03 Sample Matrix: Soil Units: mg/kg dry Analyst: TAJ Prepared: 10/29/19 13:51

8270D Polynuclear Aromatic Hydrocarbons

<u>Analyte</u> 2-Methylnaphthalene	<u>Results (MRL)</u> ND (0.361)	MDL <u>Method</u> 8270D PAH	Limit <u>DF</u>	<u>Analyzed</u> 11/01/19 18:47	Sequence C9K0009	<u>Batch</u> CJ92909
Acenaphthene	ND (0.361)	8270D PAH	1	11/01/19 18:47	C9K0009	CJ92909
Acenaphthylene	ND (0.361)	8270D PAH	1	11/01/19 18:47	C9K0009	CJ92909
Anthracene	ND (0.361)	8270D PAH	1	11/01/19 18:47	C9K0009	CJ92909
Benzo(a)anthracene	ND (0.361)	8270D PAH	1	11/01/19 18:47	C9K0009	CJ92909
Benzo(a)pyrene	ND (0.181)	8270D PAH	1	11/01/19 18:47	C9K0009	CJ92909
Benzo(b)fluoranthene	ND (0.361)	8270D PAH	1	11/01/19 18:47	C9K0009	CJ92909
Benzo(g,h,i)perylene	ND (0.361)	8270D PAH	1	11/01/19 18:47	C9K0009	CJ92909
Benzo(k)fluoranthene	ND (0.361)	8270D PAH	1	11/01/19 18:47	C9K0009	CJ92909
Chrysene	ND (0.181)	8270D PAH	1	11/01/19 18:47	C9K0009	CJ92909
Dibenzo(a,h)Anthracene	ND (0.181)	8270D PAH	1	11/01/19 18:47	C9K0009	CJ92909
Fluoranthene	ND (0.361)	8270D PAH	1	11/01/19 18:47	C9K0009	CJ92909
Fluorene	ND (0.361)	8270D PAH	1	11/01/19 18:47	C9K0009	CJ92909
Indeno(1,2,3-cd)Pyrene	ND (0.361)	8270D PAH	1	11/01/19 18:47	C9K0009	CJ92909
Naphthalene	ND (0.361)	8270D PAH	1	11/01/19 18:47	C9K0009	CJ92909
Phenanthrene	ND (0.361)	8270D PAH	1	11/01/19 18:47	C9K0009	CJ92909
Pyrene	ND (0.361)	8270D PAH	1	11/01/19 18:47	C9K0009	CJ92909

	%Recovery	Qualifier	Limits
Surrogate: 1,2-Dichlorobenzene-d4	65 %		30-130
Surrogate: 2-Fluorobiphenyl	62 %		30-130
Surrogate: Nitrobenzene-d5	63 %		30-130
Surrogate: p-Terphenyl-d14	78 %		30-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: B010282019 Date Sampled: 10/28/19 08:00 Percent Solids: 95

ESS Laboratory Work Order: 19J1002 ESS Laboratory Sample ID: 19J1002-04 Sample Matrix: Soil Units: mg/kg dry

Extraction Method: 3050B

Total Metals

Analyte	<u>Results (MRL)</u>	MDL	Method	<u>Limit</u>	DF	Analyst	· · · · · · · · · · · · · · · · · · ·	<u>I/V</u>	<u>F/V</u>	Batch
Antimony	ND (4.27)		6010C		1	KJK	11/01/19 20:24	2.46	100	CJ93161
Arsenic	3.01 (2.14)		6010C		1	KJK	11/01/19 20:24	2.46	100	CJ93161
Beryllium	0.14 (0.09)		6010C		1	KJK	11/01/19 20:24	2.46	100	CJ93161
Cadmium	ND (0.43)		6010C		1	KJK	11/01/19 20:24	2.46	100	CJ93161
Chromium	3.17 (0.85)		6010C		1	KJK	11/01/19 20:24	2.46	100	CJ93161
Copper	3.15 (2.14)		6010C		1	KJK	11/01/19 20:24	2.46	100	CJ93161
Lead	13.0 (4.27)		6010C		1	KJK	11/01/19 20:24	2.46	100	CJ93161
Mercury	0.179 (0.024)		7471B		1	MKS	11/04/19 12:11	0.88	40	CJ93162
Nickel	2.51 (2.14)		6010C		1	KJK	11/01/19 20:24	2.46	100	CJ93161
Selenium	ND (4.27)		6010C		1	KJK	11/01/19 20:24	2.46	100	CJ93161
Silver	ND (0.43)		6010C		1	KJK	11/01/19 20:24	2.46	100	CJ93161
Thallium	ND (4.27)		6010C		1	KJK	11/01/19 20:24	2.46	100	CJ93161
Zinc	7.76 (2.14)		6010C		1	KJK	11/01/19 20:24	2.46	100	CJ93161

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: B010282019 Date Sampled: 10/28/19 08:00 Percent Solids: 95 Initial Volume: 18.6 Final Volume: 15 Extraction Method: 5035

ESS Laboratory Work Order: 19J1002 ESS Laboratory Sample ID: 19J1002-04 Sample Matrix: Soil Units: mg/kg dry Analyst: MD

5035/8260B Volatile Organic Compounds / Methanol

Analyte	Results (MRL)	<u>MDL</u>	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
1,1,1,2-Tetrachloroethane	ND (0.180)	0.0180	8260B		1	10/31/19 16:35	C9J0621	CJ93128
1,1,1-Trichloroethane	ND (0.180)	0.0360	8260B		1	10/31/19 16:35	C9J0621	CJ93128
1,1,2,2-Tetrachloroethane	ND (0.180)	0.0180	8260B		1	10/31/19 16:35	C9J0621	CJ93128
1,1,2-Trichloroethane	ND (0.180)	0.0360	8260B		1	10/31/19 16:35	C9J0621	CJ93128
1,1-Dichloroethane	ND (0.180)	0.0360	8260B		1	10/31/19 16:35	C9J0621	CJ93128
1,1-Dichloroethene	ND (0.180)	0.0540	8260B		1	10/31/19 16:35	C9J0621	CJ93128
1,1-Dichloropropene	ND (0.180)	0.0360	8260B		1	10/31/19 16:35	C9J0621	CJ93128
1,2,3-Trichlorobenzene	ND (0.180)	0.0360	8260B		1	10/31/19 16:35	C9J0621	CJ93128
1,2,3-Trichloropropane	ND (0.180)	0.0540	8260B		1	10/31/19 16:35	C9J0621	CJ93128
1,2,4-Trichlorobenzene	ND (0.180)	0.0360	8260B		1	10/31/19 16:35	C9J0621	CJ93128
1,2,4-Trimethylbenzene	ND (0.180)	0.0180	8260B		1	10/31/19 16:35	C9J0621	CJ93128
1,2-Dibromo-3-Chloropropane	ND (0.899)	0.180	8260B		1	10/31/19 16:35	C9J0621	CJ93128
1,2-Dibromoethane	ND (0.180)	0.0360	8260B		1	10/31/19 16:35	C9J0621	CJ93128
1,2-Dichlorobenzene	ND (0.180)	0.0180	8260B		1	10/31/19 16:35	C9J0621	CJ93128
1,2-Dichloroethane	ND (0.180)	0.0360	8260B		1	10/31/19 16:35	C9J0621	CJ93128
1,2-Dichloropropane	ND (0.180)	0.0360	8260B		1	10/31/19 16:35	C9J0621	CJ93128
1,3,5-Trimethylbenzene	ND (0.180)	0.0180	8260B		1	10/31/19 16:35	C9J0621	CJ93128
1,3-Dichlorobenzene	ND (0.180)	0.0360	8260B		1	10/31/19 16:35	C9J0621	CJ93128
1,3-Dichloropropane	ND (0.180)	0.0180	8260B		1	10/31/19 16:35	C9J0621	CJ93128
1,4-Dichlorobenzene	ND (0.180)	0.0180	8260B		1	10/31/19 16:35	C9J0621	CJ93128
1,4-Dioxane - Screen	ND (36.0)	34.2	8260B		1	10/31/19 16:35	C9J0621	CJ93128
1-Chlorohexane	ND (0.180)	0.0720	8260B		1	10/31/19 16:35	C9J0621	CJ93128
2,2-Dichloropropane	ND (0.180)	0.0540	8260B		1	10/31/19 16:35	C9J0621	CJ93128
2-Butanone	ND (0.899)	0.612	8260B		1	10/31/19 16:35	C9J0621	CJ93128
2-Chlorotoluene	ND (0.180)	0.0180	8260B		1	10/31/19 16:35	C9J0621	CJ93128
2-Hexanone	ND (0.899)	0.270	8260B		1	10/31/19 16:35	C9J0621	CJ93128
4-Chlorotoluene	ND (0.180)	0.0180	8260B		1	10/31/19 16:35	C9J0621	CJ93128
4-Isopropyltoluene	ND (0.180)	0.0180	8260B		1	10/31/19 16:35	C9J0621	CJ93128
4-Methyl-2-Pentanone	ND (0.899)	0.288	8260B		1	10/31/19 16:35	C9J0621	CJ93128
Acetone	ND (0.899)	0.486	8260B		1	10/31/19 16:35	C9J0621	CJ93128
Benzene	ND (0.180)	0.0180	8260B		1	10/31/19 16:35	C9J0621	CJ93128
Bromobenzene	ND (0.180)	0.0360	8260B		1	10/31/19 16:35	C9J0621	CJ93128
	100 (0.100)	0.0000	02000		-	10.01/19 10.00	2,70021	20,0120

Tel: 401-461-7181 Dependability • Quality Fax: 401-461-4486 Service

٠

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: B010282019 Date Sampled: 10/28/19 08:00 Percent Solids: 95 Initial Volume: 18.6 Final Volume: 15 Extraction Method: 5035

ESS Laboratory Work Order: 19J1002 ESS Laboratory Sample ID: 19J1002-04 Sample Matrix: Soil Units: mg/kg dry Analyst: MD

5035/8260B Volatile Organic Compounds / Methanol

Analyte Bromochloromethane	<u>Results (MRL)</u> ND (0.180)	<u>MDL</u> 0.0540	<u>Method</u> 8260B	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/31/19 16:35	Sequence C9J0621	<u>Batch</u> CJ93128
Bromodichloromethane		0.0340	8260B		1	10/31/19 16:35	C9J0621 C9J0621	CJ93128 CJ93128
Bromoform	ND (0.180) ND (0.180)	0.0180	8260B		1	10/31/19 16:35	C9J0621	CJ93128 CJ93128
Bromomethane	ND (0.180)	0.0720	8260B		1	10/31/19 16:35	C9J0621	CJ93128 CJ93128
Carbon Disulfide	× ,	0.0120	8260B		1	10/31/19 16:35	C9J0621	CJ93128 CJ93128
Carbon Tetrachloride	ND (0.180)	0.0180	8260B		1	10/31/19 16:35	C9J0621 C9J0621	CJ93128 CJ93128
Chlorobenzene	ND (0.180)	0.0180	8260B		1	10/31/19 16:35	C9J0621 C9J0621	CJ93128 CJ93128
Chloroethane	ND (0.180)		8260B		1	10/31/19 16:35	C9J0621 C9J0621	CJ93128 CJ93128
	ND (0.180)	0.0720						
Chloroform	ND (0.180)	0.0360	8260B		1	10/31/19 16:35	C9J0621	CJ93128
Chloromethane	ND (0.180)	0.0180	8260B		1	10/31/19 16:35	C9J0621	CJ93128
cis-1,2-Dichloroethene	ND (0.180)	0.0360	8260B		1	10/31/19 16:35	C9J0621	CJ93128
cis-1,3-Dichloropropene	ND (0.180)	0.0540	8260B		1	10/31/19 16:35	C9J0621	CJ93128
Dibromochloromethane	ND (0.180)	0.0360	8260B		1	10/31/19 16:35	C9J0621	CJ93128
Dibromomethane	ND (0.180)	0.0540	8260B		1	10/31/19 16:35	C9J0621	CJ93128
Dichlorodifluoromethane	ND (0.180)	0.0540	8260B		1	10/31/19 16:35	C9J0621	CJ93128
Diethyl Ether	ND (0.180)	0.0540	8260B		1	10/31/19 16:35	C9J0621	CJ93128
Di-isopropyl ether	ND (0.180)	0.0360	8260B		1	10/31/19 16:35	C9J0621	CJ93128
Ethyl tertiary-butyl ether	ND (0.180)	0.0180	8260B		1	10/31/19 16:35	C9J0621	CJ93128
Ethylbenzene	ND (0.180)	0.0180	8260B		1	10/31/19 16:35	C9J0621	CJ93128
Hexachlorobutadiene	ND (0.180)	0.0360	8260B		1	10/31/19 16:35	C9J0621	CJ93128
Isopropylbenzene	ND (0.180)	0.0180	8260B		1	10/31/19 16:35	C9J0621	CJ93128
Methyl tert-Butyl Ether	ND (0.180)	0.0540	8260B		1	10/31/19 16:35	C9J0621	CJ93128
Methylene Chloride	J 0.0971 (0.360)	0.0360	8260B		1	10/31/19 16:35	C9J0621	CJ93128
Naphthalene	0.473 (0.180)	0.0360	8260B		1	10/31/19 16:35	C9J0621	CJ93128
n-Butylbenzene	ND (0.180)	0.0180	8260B		1	10/31/19 16:35	C9J0621	CJ93128
n-Propylbenzene	ND (0.180)	0.0360	8260B		1	10/31/19 16:35	C9J0621	CJ93128
sec-Butylbenzene	ND (0.180)	0.0180	8260B		1	10/31/19 16:35	C9J0621	CJ93128
Styrene	ND (0.180)	0.0180	8260B		1	10/31/19 16:35	C9J0621	CJ93128
tert-Butylbenzene	ND (0.180)	0.0180	8260B		1	10/31/19 16:35	C9J0621	CJ93128
Tertiary-amyl methyl ether	ND (0.180)	0.0360	8260B		1	10/31/19 16:35	C9J0621	CJ93128
Tetrachloroethene	ND (0.180)	0.0360	8260B		1	10/31/19 16:35	C9J0621	CJ93128
Tetrahydrofuran	ND (0.899)	0.288	8260B		1	10/31/19 16:35	C9J0621	CJ93128

Tel: 401-461-7181 Dependability • Quality Fax: 401-461-4486 Service

٠

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: B010282019 Date Sampled: 10/28/19 08:00 Percent Solids: 95 Initial Volume: 18.6 Final Volume: 15 Extraction Method: 5035

ESS Laboratory Work Order: 19J1002 ESS Laboratory Sample ID: 19J1002-04 Sample Matrix: Soil Units: mg/kg dry Analyst: MD

5035/8260B Volatile Organic Compounds / Methanol

<u>Analyte</u> Toluene	<u>Results (MRL)</u> ND (0.180)	<u>MDL</u> 0.0180	<u>Method</u> 8260B	<u>Limit</u>	<u>DF</u> 1	Analyzed	Sequence C9J0621	<u>Batch</u> CJ93128
trans-1,2-Dichloroethene	ND (0.180)	0.0540	8260B		1	10/31/19 16:35	C9J0621	CJ93128
trans-1,3-Dichloropropene	ND (0.180)	0.0360	8260B		1	10/31/19 16:35	C9J0621	CJ93128
Trichloroethene	ND (0.180)	0.0360	8260B		1	10/31/19 16:35	C9J0621	CJ93128
Trichlorofluoromethane	ND (0.180)	0.0720	8260B		1	10/31/19 16:35	C9J0621	CJ93128
Vinyl Acetate	ND (0.180)	0.0899	8260B		1	10/31/19 16:35	C9J0621	CJ93128
Vinyl Chloride	ND (0.180)	0.0360	8260B		1	10/31/19 16:35	C9J0621	CJ93128
Xylene O	ND (0.180)	0.0180	8260B		1	10/31/19 16:35	C9J0621	CJ93128
Xylene P,M	ND (0.360)	0.0360	8260B		1	10/31/19 16:35	C9J0621	CJ93128
Xylenes (Total)	ND (0.360)		8260B		1	10/31/19 16:35		[CALC]
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		117 %		70-130				
Surrogate: 4-Bromofluorobenzene		115 %		70-130				
Surrogate: Dibromofluoromethane		119 %		70-130				
Surrogate: Toluene-d8		118 %		70-130				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: B010282019 Date Sampled: 10/28/19 08:00 Percent Solids: 95 Initial Volume: 19.5 Final Volume: 10 Extraction Method: 3540C

ESS Laboratory Work Order: 19J1002 ESS Laboratory Sample ID: 19J1002-04 Sample Matrix: Soil Units: mg/kg dry Analyst: MJV Prepared: 10/30/19 15:44

8082A Polychlorinated Biphenyls (PCB)

Analyte	<u>Results (MRL)</u>	MDL	Method	<u>Limit</u>	DF	Analyzed Sequen	<u>e Batch</u>
Aroclor 1016	ND (0.05)		8082A		1	10/31/19 20:03	CJ93010
Aroclor 1221	ND (0.05)		8082A		1	10/31/19 20:03	CJ93010
Aroclor 1232	ND (0.05)		8082A		1	10/31/19 20:03	CJ93010
Aroclor 1242	ND (0.05)		8082A		1	10/31/19 20:03	CJ93010
Aroclor 1248	ND (0.05)		8082A		1	10/31/19 20:03	CJ93010
Aroclor 1254	ND (0.05)		8082A		1	10/31/19 20:03	CJ93010
Aroclor 1260	ND (0.05)		8082A		1	10/31/19 20:03	CJ93010
Aroclor 1262	ND (0.05)		8082A		1	10/31/19 20:03	CJ93010
Aroclor 1268	ND (0.05)		8082A		1	10/31/19 20:03	CJ93010
	9	%Recovery	Qualifier	Limits			
Surrogate: Decachlorobiphenyl		87 %		30-150			
Surrogate: Decachlorobiphenyl [2C]		78 %		30-150			
Surrogate: Tetrachloro-m-xylene		81 %		30-150			
Surrogate: Tetrachloro-m-xylene [2C]		86 %		30-150			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: B010282019 Date Sampled: 10/28/19 08:00 Percent Solids: 95 Initial Volume: 20.4 Final Volume: 1 Extraction Method: 3546

ESS Laboratory Work Order: 19J1002 ESS Laboratory Sample ID: 19J1002-04 Sample Matrix: Soil Units: mg/kg dry Analyst: CAD Prepared: 10/29/19 12:19

8100M Total Petroleum Hydrocarbons

<u>Analyte</u> Total Petroleum Hydrocarbons	<u>Results (MRL)</u> ND (38.7)	<u>MDL</u>	<u>Method</u> 8100M	<u>Limit</u>	<u>DF</u> 1	Analyzed 10/30/19 19:37	Sequence C9J0571	<u>Batch</u> CJ92911
	%Re	covery	Qualifier	Limits				
Surrogate: O-Terphenyl	2	36 %		40-140				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: B010282019 Date Sampled: 10/28/19 08:00 Percent Solids: 95 Initial Volume: 15.9 Final Volume: 0.5 Extraction Method: 3546

ESS Laboratory Work Order: 19J1002 ESS Laboratory Sample ID: 19J1002-04 Sample Matrix: Soil Units: mg/kg dry Analyst: TAJ Prepared: 10/29/19 13:51

8270D Polynuclear Aromatic Hydrocarbons

Analyte 2-Methylnaphthalene	<u>Results (MRL)</u> ND (0.330)	MDL <u>Method</u> 8270D PAH	Limit DF	<u>Analyzed</u> 11/01/19 19:16	<u>Sequence</u> C9K0009	<u>Batch</u> CJ92909
Acenaphthene	ND (0.330)	8270D PAH	1	11/01/19 19:16	C9K0009	CJ92909
Acenaphthylene	ND (0.330)	8270D PAH	1	11/01/19 19:16	C9K0009	CJ92909
Anthracene	ND (0.330)	8270D PAH	1	11/01/19 19:16	C9K0009	CJ92909
Benzo(a)anthracene	ND (0.330)	8270D PAH	1	11/01/19 19:16	C9K0009	CJ92909
Benzo(a)pyrene	ND (0.166)	8270D PAH	1	11/01/19 19:16	C9K0009	CJ92909
Benzo(b)fluoranthene	ND (0.330)	8270D PAH	1	11/01/19 19:16	C9K0009	CJ92909
Benzo(g,h,i)perylene	ND (0.330)	8270D PAH	1	11/01/19 19:16	C9K0009	CJ92909
Benzo(k)fluoranthene	ND (0.330)	8270D PAH	1	11/01/19 19:16	C9K0009	CJ92909
Chrysene	ND (0.166)	8270D PAH	1	11/01/19 19:16	C9K0009	CJ92909
Dibenzo(a,h)Anthracene	ND (0.166)	8270D PAH	1	11/01/19 19:16	C9K0009	CJ92909
Fluoranthene	ND (0.330)	8270D PAH	1	11/01/19 19:16	C9K0009	CJ92909
Fluorene	ND (0.330)	8270D PAH	1	11/01/19 19:16	C9K0009	CJ92909
Indeno(1,2,3-cd)Pyrene	ND (0.330)	8270D PAH	1	11/01/19 19:16	C9K0009	CJ92909
Naphthalene	ND (0.330)	8270D PAH	1	11/01/19 19:16	C9K0009	CJ92909
Phenanthrene	ND (0.330)	8270D PAH	1	11/01/19 19:16	C9K0009	CJ92909
Pyrene	ND (0.330)	8270D PAH	1	11/01/19 19:16	C9K0009	CJ92909

	%Recovery	Qualifier	Limits
Surrogate: 1,2-Dichlorobenzene-d4	67 %		30-130
Surrogate: 2-Fluorobiphenyl	65 %		30-130
Surrogate: Nitrobenzene-d5	66 %		30-130
Surrogate: p-Terphenyl-d14	88 %		30-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: Trip Blank Date Sampled: 10/28/19 08:00 Percent Solids: N/A Initial Volume: 15 Final Volume: 15 Extraction Method: 5035

ESS Laboratory Work Order: 19J1002 ESS Laboratory Sample ID: 19J1002-05 Sample Matrix: Soil Units: mg/kg wet Analyst: MD

5035/8260B Volatile Organic Compounds / Methanol

Analyte	<u>Results (MRL)</u>	<u>MDL</u>	Method	<u>Limit</u>	DF	Analyzed	<u>Sequence</u>	Batch
1,1,1,2-Tetrachloroethane	ND (0.200)	0.0200	8260B		1	10/31/19 12:41	C9J0621	CJ93128
1,1,1-Trichloroethane	ND (0.200)	0.0400	8260B		1	10/31/19 12:41	C9J0621	CJ93128
1,1,2,2-Tetrachloroethane	ND (0.200)	0.0200	8260B		1	10/31/19 12:41	C9J0621	CJ93128
1,1,2-Trichloroethane	ND (0.200)	0.0400	8260B		1	10/31/19 12:41	C9J0621	CJ93128
1,1-Dichloroethane	ND (0.200)	0.0400	8260B		1	10/31/19 12:41	C9J0621	CJ93128
1,1-Dichloroethene	ND (0.200)	0.0600	8260B		1	10/31/19 12:41	C9J0621	CJ93128
1,1-Dichloropropene	ND (0.200)	0.0400	8260B		1	10/31/19 12:41	C9J0621	CJ93128
1,2,3-Trichlorobenzene	ND (0.200)	0.0400	8260B		1	10/31/19 12:41	C9J0621	CJ93128
1,2,3-Trichloropropane	ND (0.200)	0.0600	8260B		1	10/31/19 12:41	C9J0621	CJ93128
1,2,4-Trichlorobenzene	ND (0.200)	0.0400	8260B		1	10/31/19 12:41	C9J0621	CJ93128
1,2,4-Trimethylbenzene	ND (0.200)	0.0200	8260B		1	10/31/19 12:41	C9J0621	CJ93128
1,2-Dibromo-3-Chloropropane	ND (1.00)	0.200	8260B		1	10/31/19 12:41	C9J0621	CJ93128
1,2-Dibromoethane	ND (0.200)	0.0400	8260B		1	10/31/19 12:41	C9J0621	CJ93128
1,2-Dichlorobenzene	ND (0.200)	0.0200	8260B		1	10/31/19 12:41	C9J0621	CJ93128
1,2-Dichloroethane	ND (0.200)	0.0400	8260B		1	10/31/19 12:41	C9J0621	CJ93128
1,2-Dichloropropane	ND (0.200)	0.0400	8260B		1	10/31/19 12:41	C9J0621	CJ93128
1,3,5-Trimethylbenzene	ND (0.200)	0.0200	8260B		1	10/31/19 12:41	C9J0621	CJ93128
1,3-Dichlorobenzene	ND (0.200)	0.0400	8260B		1	10/31/19 12:41	C9J0621	CJ93128
1,3-Dichloropropane	ND (0.200)	0.0200	8260B		1	10/31/19 12:41	C9J0621	CJ93128
1,4-Dichlorobenzene	ND (0.200)	0.0200	8260B		1	10/31/19 12:41	C9J0621	CJ93128
1,4-Dioxane - Screen	ND (40.0)	38.0	8260B		1	10/31/19 12:41	C9J0621	CJ93128
1-Chlorohexane	ND (0.200)	0.0800	8260B		1	10/31/19 12:41	C9J0621	CJ93128
2,2-Dichloropropane	ND (0.200)	0.0600	8260B		1	10/31/19 12:41	C9J0621	CJ93128
2-Butanone	ND (1.00)	0.680	8260B		1	10/31/19 12:41	C9J0621	CJ93128
2-Chlorotoluene	ND (0.200)	0.0200	8260B		1	10/31/19 12:41	C9J0621	CJ93128
2-Hexanone	ND (1.00)	0.300	8260B		1	10/31/19 12:41	C9J0621	CJ93128
4-Chlorotoluene	ND (0.200)	0.0200	8260B		1	10/31/19 12:41	C9J0621	CJ93128
4-Isopropyltoluene	ND (0.200)	0.0200	8260B		1	10/31/19 12:41	C9J0621	CJ93128
4-Methyl-2-Pentanone	ND (1.00)	0.320	8260B		1	10/31/19 12:41	C9J0621	CJ93128
Acetone	ND (1.00)	0.540	8260B		1	10/31/19 12:41	C9J0621	CJ93128
Benzene	ND (0.200)	0.0200	8260B		1	10/31/19 12:41	C9J0621	CJ93128
Bromobenzene	ND (0.200)	0.0400	8260B		1	10/31/19 12:41	C9J0621	CJ93128

Tel: 401-461-7181 Dependability • Quality Fax: 401-461-4486 Service

٠

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: Trip Blank Date Sampled: 10/28/19 08:00 Percent Solids: N/A Initial Volume: 15 Final Volume: 15 Extraction Method: 5035

ESS Laboratory Work Order: 19J1002 ESS Laboratory Sample ID: 19J1002-05 Sample Matrix: Soil Units: mg/kg wet Analyst: MD

5035/8260B Volatile Organic Compounds / Methanol

<u>Analyte</u> Bromochloromethane	Results (MRL)	<u>MDL</u> 0.0600	Method 8260B	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/31/19 12:41	Sequence C9J0621	<u>Batch</u> CJ93128
Bromodichloromethane	ND (0.200)	0.0200	8260B		1	10/31/19 12:41	C9J0621 C9J0621	CJ93128 CJ93128
Bromoform	ND (0.200)	0.0200	8260B		1	10/31/19 12:41	C9J0621 C9J0621	CJ93128 CJ93128
Bromomethane	ND (0.200)	0.0400	8260B		1	10/31/19 12:41	C9J0621 C9J0621	CJ93128 CJ93128
Carbon Disulfide	ND (0.200)	0.0200	8260B		1	10/31/19 12:41	C9J0621 C9J0621	CJ93128 CJ93128
Carbon Tetrachloride	ND (0.200)	0.0200	8260B		1	10/31/19 12:41	C9J0621 C9J0621	CJ93128 CJ93128
Chlorobenzene	ND (0.200)				1	10/31/19 12:41	C9J0621 C9J0621	CJ93128 CJ93128
Chloroethane	ND (0.200)	0.0200	8260B 8260B		1			CJ93128 CJ93128
	ND (0.200)	0.0800				10/31/19 12:41	C9J0621	
Chloroform	ND (0.200)	0.0400	8260B		1	10/31/19 12:41	C9J0621	CJ93128
Chloromethane	ND (0.200)	0.0200	8260B		1	10/31/19 12:41	C9J0621	CJ93128
cis-1,2-Dichloroethene	ND (0.200)	0.0400	8260B		1	10/31/19 12:41	C9J0621	CJ93128
cis-1,3-Dichloropropene	ND (0.200)	0.0600	8260B		1	10/31/19 12:41	C9J0621	CJ93128
Dibromochloromethane	ND (0.200)	0.0400	8260B		1	10/31/19 12:41	C9J0621	CJ93128
Dibromomethane	ND (0.200)	0.0600	8260B		1	10/31/19 12:41	C9J0621	CJ93128
Dichlorodifluoromethane	ND (0.200)	0.0600	8260B		1	10/31/19 12:41	C9J0621	CJ93128
Diethyl Ether	ND (0.200)	0.0600	8260B		1	10/31/19 12:41	C9J0621	CJ93128
Di-isopropyl ether	ND (0.200)	0.0400	8260B		1	10/31/19 12:41	C9J0621	CJ93128
Ethyl tertiary-butyl ether	ND (0.200)	0.0200	8260B		1	10/31/19 12:41	C9J0621	CJ93128
Ethylbenzene	ND (0.200)	0.0200	8260B		1	10/31/19 12:41	C9J0621	CJ93128
Hexachlorobutadiene	ND (0.200)	0.0400	8260B		1	10/31/19 12:41	C9J0621	CJ93128
Isopropylbenzene	ND (0.200)	0.0200	8260B		1	10/31/19 12:41	C9J0621	CJ93128
Methyl tert-Butyl Ether	ND (0.200)	0.0600	8260B		1	10/31/19 12:41	C9J0621	CJ93128
Methylene Chloride	J 0.110 (0.400)	0.0400	8260B		1	10/31/19 12:41	C9J0621	CJ93128
Naphthalene	ND (0.200)	0.0400	8260B		1	10/31/19 12:41	C9J0621	CJ93128
n-Butylbenzene	ND (0.200)	0.0200	8260B		1	10/31/19 12:41	C9J0621	CJ93128
n-Propylbenzene	ND (0.200)	0.0400	8260B		1	10/31/19 12:41	C9J0621	CJ93128
sec-Butylbenzene	ND (0.200)	0.0200	8260B		1	10/31/19 12:41	C9J0621	CJ93128
Styrene	ND (0.200)	0.0200	8260B		1	10/31/19 12:41	C9J0621	CJ93128
tert-Butylbenzene	ND (0.200)	0.0200	8260B		1	10/31/19 12:41	C9J0621	CJ93128
Tertiary-amyl methyl ether	ND (0.200)	0.0400	8260B		1	10/31/19 12:41	C9J0621	CJ93128
Tetrachloroethene	ND (0.200)	0.0400	8260B		1	10/31/19 12:41	C9J0621	CJ93128
Tetrahydrofuran	ND (1.00)	0.320	8260B		1	10/31/19 12:41	C9J0621	CJ93128

Tel: 401-461-7181 Dependability • Quality Fax: 401-461-4486 Service

٠

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company Client Sample ID: Trip Blank Date Sampled: 10/28/19 08:00 Percent Solids: N/A Initial Volume: 15 Final Volume: 15 Extraction Method: 5035

ESS Laboratory Work Order: 19J1002 ESS Laboratory Sample ID: 19J1002-05 Sample Matrix: Soil Units: mg/kg wet Analyst: MD

5035/8260B Volatile Organic Compounds / Methanol

<u>Analyte</u> Toluene	<u>Results (MRL)</u> ND (0.200)	<u>MDL</u> 0.0200	<u>Method</u> 8260B	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 10/31/19 12:41	Sequence C9J0621	<u>Batch</u> CJ93128
trans-1,2-Dichloroethene	ND (0.200)	0.0600	8260B		1	10/31/19 12:41	C9J0621	CJ93128
trans-1,3-Dichloropropene	ND (0.200)	0.0400	8260B		1	10/31/19 12:41	C9J0621	CJ93128
Trichloroethene	ND (0.200)	0.0400	8260B		1	10/31/19 12:41	C9J0621	CJ93128
Trichlorofluoromethane	ND (0.200)	0.0800	8260B		1	10/31/19 12:41	C9J0621	CJ93128
Vinyl Acetate	ND (0.200)	0.100	8260B		1	10/31/19 12:41	C9J0621	CJ93128
Vinyl Chloride	ND (0.200)	0.0400	8260B		1	10/31/19 12:41	C9J0621	CJ93128
Xylene O	ND (0.200)	0.0200	8260B		1	10/31/19 12:41	C9J0621	CJ93128
Xylene P,M	ND (0.400)	0.0400	8260B		1	10/31/19 12:41	C9J0621	CJ93128
Xylenes (Total)	ND (0.400)		8260B		1	10/31/19 12:41		[CALC]
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		116 %		70-130				
Surrogate: 4-Bromofluorobenzene		110 %		70-130				
Surrogate: Dibromofluoromethane		115 %		70-130				
Surrogate: Toluene-d8		110 %		70-130				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company

ESS Laboratory Work Order: 19J1002

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
			Total Meta	ls						
Batch CJ93161 - 3050B										
Blank										
ntimony	ND	5.00	mg/kg wet							
rsenic	ND	2.50	mg/kg wet							
eryllium	ND	0.11	mg/kg wet							
admium	ND	0.50	mg/kg wet							
hromium	ND	1.00	mg/kg wet							
opper	ND	2.50	mg/kg wet							
ead	ND	5.00	mg/kg wet							
ickel	ND	2.50	mg/kg wet							
elenium	ND	5.00	mg/kg wet							
ilver	ND	0.50	mg/kg wet							
hallium	ND	5.00	mg/kg wet							
inc	ND	2.50	mg/kg wet							
cs										
ntimony	35.6	16.1	mg/kg wet	51.30		69	0-302			
rsenic	184	8.06	mg/kg wet	202.0		91	80-120			
eryllium	44.7	0.35	mg/kg wet	52.10		86	80-120			
admium	123	1.61	mg/kg wet	149.0		83	80-120			
hromium	156	3.23	mg/kg wet	182.0		86	80-120			
opper	197	8.06	mg/kg wet	225.0		88	80-120			
ead	285	16.1	mg/kg wet	333.0		85	80-120			
ickel	146	8.06	mg/kg wet	167.0		87	80-120			
elenium	152	16.1	mg/kg wet	169.0		90	80-120			
ilver	41.2	1.61	mg/kg wet	48.90		84	80-120			
hallium	64.0	16.1	mg/kg wet	82.30		78	62-139			
inc	390	8.06	mg/kg wet	459.0		85	80-120			
CS Dup										
ntimony	36.9	16.4	mg/kg wet	51.30		72	0-302	3	20	
rsenic	191	8.20	mg/kg wet	202.0		95	80-120	4	20	
eryllium	47.1	0.36	mg/kg wet	52.10		90	80-120	5	20	
admium	129	1.64	mg/kg wet	149.0		87	80-120	5	20	
hromium	165	3.28	mg/kg wet	182.0		91	80-120	5	20	
Copper	209	8.20	mg/kg wet	225.0		93	80-120	6	20	
ead	298	16.4	mg/kg wet	333.0		89	80-120	4	20	
ickel	153	8.20	mg/kg wet	167.0		92	80-120	5	20	
elenium	156	16.4	mg/kg wet	169.0		92	80-120	3	20	
ilver	43.5	1.64	mg/kg wet	48.90		89	80-120	6	20	
hallium	68.2	16.4	mg/kg wet	82.30		83	62-139	6	20	
inc	406	8.20	mg/kg wet	459.0		88	80-120	4	20	
atch CJ93162 - 7471B										
lank	ND	0.022	ma /!t							
1ercury	ND	0.033	mg/kg wet							
cs										
lercury	7.91	0.609	mg/kg wet	7.760		102	80-120			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company

ESS Laboratory Work Order: 19J1002

Quality Control Data

		Qua	lity Cont		lld					
Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
			Total Meta	als						
Batch CJ93162 - 7471E	3									
LCS Dup										
Mercury	8.26	0.514	mg/kg wet	7.760		106	80-120	4	20	
	50	35/8260B Vo	latile Organic (Compound	ds / Metha	anol				
		,	iatile el gaine t	p	,					
Batch CJ93128 - 5035										
Blank										
1,1,1,2-Tetrachloroethane	ND	0.200	mg/kg wet							
1,1,1-Trichloroethane	ND	0.200	mg/kg wet							
,1,2,2-Tetrachloroethane	ND	0.200	mg/kg wet							
,1,2-Trichloroethane	ND	0.200	mg/kg wet							
,1-Dichloroethane	ND	0.200	mg/kg wet							
,1-Dichloroethene	ND	0.200	mg/kg wet							
,1-Dichloropropene	ND	0.200	mg/kg wet							
,2,3-Trichlorobenzene	ND	0.200	mg/kg wet							
,2,3-Trichloropropane	ND	0.200	mg/kg wet							
,2,4-Trichlorobenzene	ND	0.200	mg/kg wet							
,2,4-Trimethylbenzene	ND	0.200	mg/kg wet							
,2-Dibromo-3-Chloroprop	ane ND	1.00	mg/kg wet							
,2-Dibromoethane	ND	0.200	mg/kg wet							
,2-Dichlorobenzene	ND	0.200	mg/kg wet							
,2-Dichloroethane	ND	0.200	mg/kg wet							
,2-Dichloropropane	ND	0.200	mg/kg wet							
,3,5-Trimethylbenzene	ND	0.200	mg/kg wet							
,3-Dichlorobenzene	ND	0.200	mg/kg wet							
,3-Dichloropropane	ND	0.200	mg/kg wet							
,4-Dichlorobenzene	ND	0.200	mg/kg wet							
,4-Dioxane - Screen	ND	40.0	mg/kg wet							
-Chlorohexane	ND	0.200	mg/kg wet							
2,2-Dichloropropane	ND	0.200	mg/kg wet							
2-Butanone	ND	1.00	mg/kg wet							
-Chlorotoluene	ND	0.200	mg/kg wet							
P-Hexanone	ND	1.00	mg/kg wet							
-Chlorotoluene	ND	0.200	mg/kg wet							
-Isopropyltoluene	ND	0.200	mg/kg wet							
-Methyl-2-Pentanone	ND	1.00	mg/kg wet							
Acetone	ND	1.00	mg/kg wet							
enzene	ND	0.200	mg/kg wet							
Bromobenzene	ND	0.200	mg/kg wet							
Bromochloromethane	ND	0.200	mg/kg wet							
Bromodichloromethane	ND	0.200	mg/kg wet							
Bromoform	ND	0.200 0.200	mg/kg wet							
Bromomethane Carbon Disulfide	ND	0.200	mg/kg wet mg/kg wet							
Carbon Tetrachloride	ND ND	0.200	mg/kg wet							
Chlorobenzene	ND	0.200	mg/kg wet							
	185 Frances Avenue, Cranston, RI		Tel: 401-461-71	01 5	ax: 401-461-	1196	http://www	DOCT -1-		

Dependability

Quality

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company

ESS Laboratory Work Order: 19J1002

Quality Control Data

Analista		MD	11-1	Spike	Source		%REC	000	RPD	0
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
	5035/8	3260B Volati	le Organic C	ompound	ds / Metha	anol				
atch CJ93128 - 5035										
Chloroethane	ND	0.200	mg/kg wet							
Chloroform	ND	0.200	mg/kg wet							
Chloromethane	ND	0.200	mg/kg wet							
is-1,2-Dichloroethene	ND	0.200	mg/kg wet							
is-1,3-Dichloropropene	ND	0.200	mg/kg wet							
biromochloromethane	ND	0.200	mg/kg wet							
biromomethane	ND	0.200	mg/kg wet							
vichlorodifluoromethane	ND	0.200	mg/kg wet							
iethyl Ether	ND	0.200	mg/kg wet							
i-isopropyl ether	ND	0.200	mg/kg wet							
thyl tertiary-butyl ether	ND	0.200	mg/kg wet							
thylbenzene	ND	0.200	mg/kg wet							
lexachlorobutadiene	ND	0.200	mg/kg wet							
sopropylbenzene	ND	0.200	mg/kg wet							
lethyl tert-Butyl Ether	ND	0.200	mg/kg wet							
lethylene Chloride	ND	0.400	mg/kg wet							
aphthalene	ND	0.200	mg/kg wet							
-Butylbenzene	ND	0.200	mg/kg wet							
-Propylbenzene	ND	0.200	mg/kg wet							
ec-Butylbenzene	ND	0.200	mg/kg wet							
tyrene	ND	0.200	mg/kg wet							
ert-Butylbenzene	ND	0.200	mg/kg wet							
ertiary-amyl methyl ether	ND	0.200	mg/kg wet							
etrachloroethene	ND	0.200	mg/kg wet							
etrahydrofuran	ND	1.00	mg/kg wet							
oluene	ND	0.200	mg/kg wet							
rans-1,2-Dichloroethene	ND	0.200	mg/kg wet							
rans-1,3-Dichloropropene	ND	0.200	mg/kg wet							
richloroethene	ND	0.200	mg/kg wet							
richlorofluoromethane	ND	0.200	mg/kg wet							
/inyl Acetate	ND	0.200	mg/kg wet							
/inyl Chloride	ND	0.200	mg/kg wet							
(ylene O	ND	0.200	mg/kg wet							
ylene P,M	ND	0.400	mg/kg wet							
Surrogate: 1,2-Dichloroethane-d4	5.16		mg/kg wet	5.000		103	70-130			
Surrogate: 1,2-Dichloroethane-u4	4.85		mg/kg wet	5.000		97	70-130			
Surrogate: 4-Bromonuorobenzene Surrogate: Dibromofluoromethane	5.03		mg/kg wet	5.000		101	70-130			
Surrogate: Toluene-d8	4.87		mg/kg wet	5.000		97	70-130			
CS			5, 5	-			-			
,1,1,2-Tetrachloroethane	1.84	0.200	mg/kg wet	2.000		92	70-130			
,1,1-Trichloroethane	2.00	0.200	mg/kg wet	2.000		100	70-130			
	2.00			2.000			70-130			
.,1,2,2-Tetrachloroethane		0.200	mg/kg wet			102				
1,2-Trichloroethane	2.04	0.200	mg/kg wet	2.000		102	70-130			
,1-Dichloroethane ,1-Dichloroethene	2.17 2.20	0.200 0.200	mg/kg wet mg/kg wet	2.000 2.000		109 110	70-130 70-130			

910-2211 Tel: 401-461-7181 Dependability + Qualit

-7181 Fax: 401-461-4486 Quality • Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company

ESS Laboratory Work Order: 19J1002

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
	5035/8	8260B Volati	le Organic C	ompound	ds / Metha	nol				
Batch CJ93128 - 5035										
1,1-Dichloropropene	2.11	0.200	mg/kg wet	2.000		106	70-130			
1,2,3-Trichlorobenzene	2.10	0.200	mg/kg wet	2.000		105	70-130			
1,2,3-Trichloropropane	2.22	0.200	mg/kg wet	2.000		111	70-130			
1,2,4-Trichlorobenzene	2.06	0.200	mg/kg wet	2.000		103	70-130			
1,2,4-Trimethylbenzene	2.08	0.200	mg/kg wet	2.000		104	70-130			
1,2-Dibromo-3-Chloropropane	1.96	1.00	mg/kg wet	2.000		98	70-130			
1,2-Dibromoethane	1.95	0.200	mg/kg wet	2.000		98	70-130			
1,2-Dichlorobenzene	1.98	0.200	mg/kg wet	2.000		99	70-130			
I,2-Dichloroethane	2.13	0.200	mg/kg wet	2.000		107	70-130			
1,2-Dichloropropane	2.15	0.200	mg/kg wet	2.000		108	70-130			
1,3,5-Trimethylbenzene	2.04	0.200	mg/kg wet	2.000		102	70-130			
1,3-Dichlorobenzene	1.98	0.200	mg/kg wet	2.000		99	70-130			
1,3-Dichloropropane	2.12	0.200	mg/kg wet	2.000		106	70-130			
1,4-Dichlorobenzene	2.05	0.200	mg/kg wet	2.000		103	70-130			
1,4-Dioxane - Screen	41.6	40.0	mg/kg wet	40.00		104	44-241			
1-Chlorohexane	1.84	0.200	mg/kg wet	2.000		92	70-130			
2,2-Dichloropropane	2.17	0.200	mg/kg wet	2.000		108	70-130			
2-Butanone	10.8	1.00	mg/kg wet	10.00		108	70-130			
2-Chlorotoluene	2.02	0.200	mg/kg wet	2.000		101	70-130			
2-Hexanone	9.56	1.00	mg/kg wet	10.00		96	70-130			
1-Chlorotoluene	2.04	0.200	mg/kg wet	2.000		102	70-130			
1-Isopropyltoluene	1.95	0.200	mg/kg wet	2.000		98	70-130			
1-Methyl-2-Pentanone	10.9	1.00	mg/kg wet	10.00		109	70-130			
Acetone	10.4	1.00	mg/kg wet	10.00		104	70-130			
Benzene	2.09	0.200	mg/kg wet	2.000		104	70-130			
Bromobenzene	1.96	0.200	mg/kg wet	2.000		98	70-130			
Bromochloromethane	2.14	0.200	mg/kg wet	2.000		107	70-130			
Bromodichloromethane	2.02	0.200	mg/kg wet	2.000		101	70-130			
Bromoform	1.72	0.200	mg/kg wet	2.000		86	70-130			
Bromomethane	1.55	0.200	mg/kg wet	2.000		78	70-130			
Carbon Disulfide	2.05	0.200	mg/kg wet	2.000		102	70-130			
Carbon Tetrachloride	2.01	0.200	mg/kg wet	2.000		100	70-130			
Chlorobenzene	1.87	0.200	mg/kg wet	2.000		94	70-130			
Chloroethane	1.84	0.200	mg/kg wet	2.000		92	70-130			
Chloroform	2.11	0.200	mg/kg wet	2.000		106	70-130			
Chloromethane	1.81	0.200	mg/kg wet	2.000		91	70-130			
cis-1,2-Dichloroethene	2.05	0.200	mg/kg wet	2.000		103	70-130			
cis-1,3-Dichloropropene	1.98	0.200	mg/kg wet	2.000		99	70-130			
Dibromochloromethane	1.87	0.200	mg/kg wet	2.000		94	70-130			
Dibromomethane	2.11	0.200	mg/kg wet	2.000		106	70-130			
Dichlorodifluoromethane	1.91	0.200	mg/kg wet	2.000		96	70-130			
Diethyl Ether	1.96	0.200	mg/kg wet	2.000		98	70-130			
Di-isopropyl ether	1.90	0.200	mg/kg wet	2.000		99	70-130			
Ethyl tertiary-butyl ether	1.97	0.200	mg/kg wet	2.000		99 97	70-130			
Lary callery buly culo	1.94	0.200	mg/kg wet	2.000		97 96	70-130			

2211 Tel: 401-461-7181 Dependability • Quality

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

185 Frances Avenue, Cranston, RI 02910-2211

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company

ESS Laboratory Work Order: 19J1002

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
<u>.</u>			ile Organic C						-	
Batch CJ93128 - 5035										
lexachlorobutadiene	2.53	0.200	mg/kg wet	2.000		127	70-130			
sopropylbenzene	1.95	0.200	mg/kg wet	2.000		98	70-130			
1ethyl tert-Butyl Ether	2.01	0.200	mg/kg wet	2.000		101	70-130			
1ethylene Chloride	2.11	0.400	mg/kg wet	2.000		105	70-130			
aphthalene	1.78	0.200	mg/kg wet	2.000		89	70-130			
Butylbenzene	2.04	0.200	mg/kg wet	2.000		102	70-130			
Propylbenzene	1.96	0.200	mg/kg wet	2.000		98	70-130			
ec-Butylbenzene	2.03	0.200	mg/kg wet	2.000		102	70-130			
yrene	1.82	0.200	mg/kg wet	2.000		91	70-130			
rt-Butylbenzene	1.93	0.200	mg/kg wet	2.000		96	70-130			
ertiary-amyl methyl ether	1.96	0.200	mg/kg wet	2.000		98	70-130			
etrachloroethene	1.77	0.200	mg/kg wet	2.000		88	70-130			
etrahydrofuran	2.26	1.00	mg/kg wet	2.000		113	70-130			
bluene	2.00	0.200	mg/kg wet	2.000		100	70-130			
ans-1,2-Dichloroethene	2.15	0.200	mg/kg wet	2.000		107	70-130			
ans-1,3-Dichloropropene	2.01	0.200	mg/kg wet	2.000		100	70-130			
ichloroethene	2.00	0.200	mg/kg wet	2.000		100	70-130			
ichlorofluoromethane	2.19	0.200	mg/kg wet	2.000		110	70-130			
nyl Acetate	2.11	0.200	mg/kg wet	2.000		106	70-130			
nyl Chloride	1.71	0.200	mg/kg wet	2.000		86	70-130			
lene O	1.89	0.200	mg/kg wet	2.000		95	70-130			
lene P,M	3.74	0.400	mg/kg wet	4.000		94	70-130			
ırrogate: 1,2-Dichloroethane-d4	4.98		mg/kg wet	5.000		100	70-130			
irrogate: 4-Bromofluorobenzene	5.24		mg/kg wet	5.000		105	70-130			
urrogate: Dibromofluoromethane	5.10		mg/kg wet	5.000		102	70-130			
urrogate: Toluene-d8	4.72		mg/kg wet	5.000		94	70-130			
CS Dup										
1,1,2-Tetrachloroethane	1.86	0.200	mg/kg wet	2.000		93	70-130	1	25	
1,1-Trichloroethane	2.01	0.200	mg/kg wet	2.000		100	70-130	0.4	25	
1,2,2-Tetrachloroethane	2.02	0.200	mg/kg wet	2.000		101	70-130	1	25	
1,2-Trichloroethane	1.90	0.200	mg/kg wet	2.000		95	70-130	8	25	
1-Dichloroethane	2.12	0.200	mg/kg wet	2.000		106	70-130	2	25	
1-Dichloroethene	2.14	0.200	mg/kg wet	2.000		107	70-130	3	25	
1-Dichloropropene	2.06	0.200	mg/kg wet	2.000		103	70-130	2	25	
2,3-Trichlorobenzene	2.04	0.200	mg/kg wet	2.000		102	70-130	3	25	
2,3-Trichloropropane	2.15	0.200	mg/kg wet	2.000		108	70-130	3	25	
2,4-Trichlorobenzene	1.96	0.200	mg/kg wet	2.000		98	70-130	5	25	
2,4-Trimethylbenzene	2.01	0.200	mg/kg wet	2.000		100	70-130	3	25	
2-Dibromo-3-Chloropropane	1.67	1.00	mg/kg wet	2.000		83	70-130	16	25	
2-Dibromoethane	2.00	0.200	mg/kg wet	2.000		100	70-130	2	25	
2-Dichlorobenzene	1.93	0.200	mg/kg wet	2.000		96	70-130	3	25	
2-Dichloroethane	2.08	0.200	mg/kg wet	2.000		104	70-130	2	25	
.2-Dichloropropane	2.11	0.200	mg/kg wet	2.000		105	70-130	2	25	
3,5-Trimethylbenzene	2.01	0.200	mg/kg wet	2.000		101	70-130	1	25	
3-Dichlorobenzene	2.03	0.200	mg/kg wet	2.000		101	70-130	2	25	

Tel: 401-461-7181

•

Quality

Dependability

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company

ESS Laboratory Work Order: 19J1002

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
	5035/8	8260B Volati	le Organic C	ompound	ls / Metha	anol				
Batch CJ93128 - 5035										
,3-Dichloropropane	2.19	0.200	mg/kg wet	2.000		110	70-130	4	25	
,4-Dichlorobenzene	2.01	0.200	mg/kg wet	2.000		100	70-130	2	25	
,4-Dioxane - Screen	ND	40.0	mg/kg wet	40.00		0	44-241	200	200	B-
-Chlorohexane	1.84	0.200	mg/kg wet	2.000		92	70-130	0.2	25	
2,2-Dichloropropane	2.08	0.200	mg/kg wet	2.000		104	70-130	4	25	
2-Butanone	9.97	1.00	mg/kg wet	10.00		100	70-130	8	25	
2-Chlorotoluene	2.04	0.200	mg/kg wet	2.000		102	70-130	1	25	
P-Hexanone	9.74	1.00	mg/kg wet	10.00		97	70-130	2	25	
-Chlorotoluene	2.01	0.200	mg/kg wet	2.000		101	70-130	1	25	
I-Isopropyltoluene	1.93	0.200	mg/kg wet	2.000		96	70-130	1	25	
-Methyl-2-Pentanone	9.64	1.00	mg/kg wet	10.00		96	70-130	12	25	
Acetone	9.46	1.00	mg/kg wet	10.00		95	70-130	10	25	
Benzene	2.07	0.200	mg/kg wet	2.000		104	70-130	0.8	25	
Bromobenzene	2.01	0.200	mg/kg wet	2.000		100	70-130	2	25	
romochloromethane	2.02	0.200	mg/kg wet	2.000		101	70-130	5	25	
romodichloromethane	1.92	0.200	mg/kg wet	2.000		96	70-130	5	25	
romoform	1.70	0.200	mg/kg wet	2.000		85	70-130	1	25	
romomethane	1.71	0.200	mg/kg wet	2.000		86	70-130	10	25	
arbon Disulfide	2.02	0.200	mg/kg wet	2.000		101	70-130	1	25	
arbon Tetrachloride	1.99	0.200	mg/kg wet	2.000		99	70-130	1	25	
hlorobenzene	1.94	0.200	mg/kg wet	2.000		97	70-130	3	25	
hloroethane	1.85	0.200	mg/kg wet	2.000		93	70-130	0.4	25	
hloroform	2.10	0.200	mg/kg wet	2.000		105	70-130	0.7	25	
hloromethane	1.73	0.200	mg/kg wet	2.000		87	70-130	5	25	
is-1,2-Dichloroethene	2.05	0.200	mg/kg wet	2.000		102	70-130	0.2	25	
s-1,3-Dichloropropene	1.90	0.200	mg/kg wet	2.000		95	70-130	4	25	
ibromochloromethane	1.87	0.200	mg/kg wet	2.000		94	70-130	0	25	
bibromomethane	2.01	0.200	mg/kg wet	2.000		100	70-130	5	25	
vichlorodifluoromethane	1.79	0.200	mg/kg wet	2.000		89	70-130	7	25	
Diethyl Ether	1.83	0.200	mg/kg wet	2.000		91	70-130	7	25	
Di-isopropyl ether	1.93	0.200	mg/kg wet	2.000		97	70-130	2	25	
ithyl tertiary-butyl ether	1.85	0.200	mg/kg wet	2.000		93	70-130	5	25	
ithylbenzene	1.97	0.200	mg/kg wet	2.000		98	70-130	2	25	
lexachlorobutadiene	2.41	0.200	mg/kg wet	2.000		121	70-130	5	25	
sopropylbenzene	2.02	0.200	mg/kg wet	2.000		101	70-130	4	25	
lethyl tert-Butyl Ether	1.90	0.200	mg/kg wet	2.000		95	70-130	6	25	
lethylene Chloride	2.16	0.400	mg/kg wet	2.000		108	70-130	2	25	
aphthalene	1.70	0.200	mg/kg wet	2.000		85	70-130	5	25	
-Butylbenzene	2.11	0.200	mg/kg wet	2.000		106	70-130	4	25	
-Propylbenzene	1.98	0.200	mg/kg wet	2.000		99	70-130	1	25	
ec-Butylbenzene	1.99	0.200	mg/kg wet	2.000		100	70-130	2	25	
ityrene	1.84	0.200	mg/kg wet	2.000		92	70-130	1	25	
ert-Butylbenzene	1.84	0.200	mg/kg wet	2.000		97	70-130	0.8	25	
ertiary-amyl methyl ether	1.95	0.200	mg/kg wet	2.000		97 95	70-130	4	25 25	
crucity diffyr meuryr culer	1.90	0.200	mg/kg wet	2.000		95 93	70-130	4 5	25 25	

Tel: 401-461-7181 Fax: lity • Quality •

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company

ESS Laboratory Work Order: 19J1002

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
	5035/8	8260B Volat	ile Organic C	ompound	ds / Meth	anol				
atch CJ93128 - 5035										
Fetrahydrofuran	2.15	1.00	mg/kg wet	2.000		108	70-130	5	25	
Toluene	1.98	0.200	mg/kg wet	2.000		99	70-130	1	25	
rans-1,2-Dichloroethene	2.02	0.200	mg/kg wet	2.000		101	70-130	6	25	
rans-1,3-Dichloropropene	1.94	0.200	mg/kg wet	2.000		97	70-130	4	25	
richloroethene	1.96	0.200	mg/kg wet	2.000		98	70-130	2	25	
richlorofluoromethane	2.19	0.200	mg/kg wet	2.000		109	70-130	0.09	25	
/inyl Acetate	2.03	0.200	mg/kg wet	2.000		102	70-130	4	25	
inyl Chloride	1.73	0.200	mg/kg wet	2.000		86	70-130	1	25	
íylene O	1.97	0.200	mg/kg wet	2.000		99	70-130	4	25	
(ylene P,M	3.85	0.400	mg/kg wet	4.000		96	70-130	3	25	
Surrogate: 1,2-Dichloroethane-d4	4.95		mg/kg wet	5.000		99	70-130			
Surrogate: 4-Bromofluorobenzene	5.33		mg/kg wet	5.000		107	70-130			
Surrogate: Dibromofluoromethane	5.08		mg/kg wet	5.000		102	70-130			
Gurrogate: Toluene-d8	4.97		mg/kg wet	5.000		99	70-130			
		8082A Poly	chlorinated E	Biphenyls	(PCB)					
atch CJ93010 - 3540C 										
roclor 1016	ND	0.05	mg/kg wet							
roclor 1016 [2C]	ND	0.05	mg/kg wet							
roclor 1221	ND	0.05	mg/kg wet							
roclor 1221 [2C]	ND	0.05	mg/kg wet							
roclor 1222 [20]	ND	0.05	mg/kg wet							
roclor 1232 [2C]	ND	0.05	mg/kg wet							
vroclor 1242	ND	0.05	mg/kg wet							
vroclor 1242 [2C]	ND	0.05	mg/kg wet							
vroclor 1248	ND	0.05	mg/kg wet							
vroclor 1248 [2C]	ND	0.05	mg/kg wet							
vroclor 1254	ND	0.05	mg/kg wet							
Aroclor 1254 [2C]	ND	0.05	mg/kg wet							
vroclor 1254 [20]	ND	0.05	mg/kg wet							
Aroclor 1260 [2C]	ND	0.05	mg/kg wet							
vroclor 1262	ND	0.05	mg/kg wet							
Aroclor 1262 [2C]	ND	0.05	mg/kg wet							
Aroclor 1268	ND	0.05	mg/kg wet							
Aroclor 1268 [2C]	ND	0.05	mg/kg wet							
	0.0014			0.02500		00	30 150			
Surrogate: Decachlorobiphenyl	0.0214		mg/kg wet	0.02500		86 84	<i>30-150</i>			
Surrogate: Decachlorobiphenyl [2C]	0.0209		mg/kg wet	0.02500		84 64	30-150 20.150			
Surrogate: Tetrachloro-m-xylene	0.0161		mg/kg wet	0.02500		64 67	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0167		mg/kg wet	0.02500		67	30-150			
.cs										
LCS Aroclor 1016	0.5	0.05	mg/kg wet	0.5000		96	40-140			
.cs	0.5 0.5 0.5	0.05 0.05 0.05	mg/kg wet mg/kg wet mg/kg wet	0.5000 0.5000 0.5000		96 97	40-140 40-140 40-140			

Dependability

٠

Quality

٠

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company

ESS Laboratory Work Order: 19J1002

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
		8082A Poly	chlorinated E	Biphenyls	(PCB)					
Batch CJ93010 - 3540C										
Aroclor 1260 [2C]	0.5	0.05	mg/kg wet	0.5000		100	40-140			
Surrogate: Decachlorobiphenyl	0.0211		mg/kg wet	0.02500		84	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0215		mg/kg wet	0.02500		86	30-150			
Surrogate: Tetrachloro-m-xylene	0.0179		mg/kg wet	0.02500		71	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0172		mg/kg wet	0.02500		69	30-150			
LCS Dup										
Aroclor 1016	0.4	0.05	mg/kg wet	0.5000		87	40-140	10	30	
Aroclor 1016 [2C]	0.4	0.05	mg/kg wet	0.5000		87	40-140	10	30	
Aroclor 1260	0.4	0.05	mg/kg wet	0.5000		88	40-140	11	30	
Aroclor 1260 [2C]	0.4	0.05	mg/kg wet	0.5000		90	40-140	11	30	
Surrogate: Decachlorobiphenyl	0.0190		mg/kg wet	0.02500		76	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0193		mg/kg wet	0.02500		77	30-150			
Surrogate: Tetrachloro-m-xylene	0.0159		mg/kg wet	0.02500		64	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0152		mg/kg wet	0.02500		61	30-150			
		8100M Tot	al Petroleum	Hydroca	irbons					

Blank							
Decane (C10)	ND	0.2	mg/kg wet				
Docosane (C22)	ND	0.2	mg/kg wet				
Dodecane (C12)	ND	0.2	mg/kg wet				
Eicosane (C20)	ND	0.2	mg/kg wet				
Hexacosane (C26)	ND	0.2	mg/kg wet				
Hexadecane (C16)	ND	0.2	mg/kg wet				
Nonadecane (C19)	ND	0.2	mg/kg wet				
Nonane (C9)	ND	0.2	mg/kg wet				
Octacosane (C28)	ND	0.2	mg/kg wet				
Octadecane (C18)	ND	0.2	mg/kg wet				
Tetracosane (C24)	ND	0.2	mg/kg wet				
Tetradecane (C14)	ND	0.2	mg/kg wet				
Total Petroleum Hydrocarbons	ND	37.5	mg/kg wet				
Triacontane (C30)	ND	0.2	mg/kg wet				
Surrogate: O-Terphenyl	5.07		mg/kg wet	5.000	101	40-140	
LCS							
Decane (C10)	1.9	0.2	mg/kg wet	2.500	75	40-140	
Docosane (C22)	2.5	0.2	mg/kg wet	2.500	100	40-140	
Dodecane (C12)	2.1	0.2	mg/kg wet	2.500	83	40-140	
Eicosane (C20)	2.4	0.2	mg/kg wet	2.500	97	40-140	
Hexacosane (C26)	2.5	0.2	mg/kg wet	2.500	99	40-140	
Hexadecane (C16)	2.3	0.2	mg/kg wet	2.500	90	40-140	
Nonadecane (C19)	2.5	0.2	mg/kg wet	2.500	100	40-140	
Nonane (C9)	1.6	0.2	mg/kg wet	2.500	66	30-140	

2211 Tel: 401-461-7181 Dependability • Quality Fax: 401-461-4486

Service

٠

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company

ESS Laboratory Work Order: 19J1002

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
		8100M Tot	al Petroleum	Hydroca	arbons					
Batch CJ92911 - 3546										
Octacosane (C28)	2.5	0.2	mg/kg wet	2.500		100	40-140			
Octadecane (C18)	2.3	0.2	mg/kg wet	2.500		94	40-140			
Tetracosane (C24)	2.5	0.2	mg/kg wet	2.500		100	40-140			
Tetradecane (C14)	2.2	0.2	mg/kg wet	2.500		87	40-140			
Total Petroleum Hydrocarbons	32.1	37.5	mg/kg wet	35.00		92	40-140			
Triacontane (C30)	2.5	0.2	mg/kg wet	2.500		100	40-140			
Surrogate: O-Terphenyl	5.18		mg/kg wet	5.000		104	40-140			
LCS Dup										
Decane (C10)	1.9	0.2	mg/kg wet	2.500		77	40-140	2	25	
Docosane (C22)	2.6	0.2	mg/kg wet	2.500		103	40-140	3	25	
Dodecane (C12)	2.1	0.2	mg/kg wet	2.500		85	40-140	2	25	
Eicosane (C20)	2.5	0.2	mg/kg wet	2.500		100	40-140	3	25	
Hexacosane (C26)	2.6	0.2	mg/kg wet	2.500		103	40-140	3	25	
Hexadecane (C16)	2.3	0.2	mg/kg wet	2.500		92	40-140	2	25	
Nonadecane (C19)	2.6	0.2	mg/kg wet	2.500		103	40-140	2	25	
Nonane (C9)	1.7	0.2	mg/kg wet	2.500		67	30-140	2	25	
Octacosane (C28)	2.6	0.2	mg/kg wet	2.500		104	40-140	3	25	
Octadecane (C18)	2.4	0.2	mg/kg wet	2.500		96	40-140	2	25	
Tetracosane (C24)	2.6	0.2	mg/kg wet	2.500		104	40-140	4	25	
Tetradecane (C14)	2.2	0.2	mg/kg wet	2.500		89	40-140	2	25	
Total Petroleum Hydrocarbons	33.0	37.5	mg/kg wet	35.00		94	40-140	3	25	
Triacontane (C30)	2.6	0.2	mg/kg wet	2.500		103	40-140	3	25	
Surrogate: O-Terphenyl	5.24		mg/kg wet	5.000		105	40-140			

8270D Polynuclear Aromatic Hydrocarbons

Batch CJ92909 - 3546			
Blank			
2-Methylnaphthalene	ND	0.333	mg/kg wet
Acenaphthene	ND	0.333	mg/kg wet
Acenaphthylene	ND	0.333	mg/kg wet
Anthracene	ND	0.333	mg/kg wet
Benzo(a)anthracene	ND	0.333	mg/kg wet
Benzo(a)pyrene	ND	0.167	mg/kg wet
Benzo(b)fluoranthene	ND	0.333	mg/kg wet
Benzo(g,h,i)perylene	ND	0.333	mg/kg wet
Benzo(k)fluoranthene	ND	0.333	mg/kg wet
Chrysene	ND	0.167	mg/kg wet
Dibenzo(a,h)Anthracene	ND	0.167	mg/kg wet
Fluoranthene	ND	0.333	mg/kg wet
Fluorene	ND	0.333	mg/kg wet
Indeno(1,2,3-cd)Pyrene	ND	0.333	mg/kg wet
Naphthalene	ND	0.333	mg/kg wet
Phenanthrene	ND	0.333	mg/kg wet

2211 Tel: 401-461-7181 Dependability • Quality

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company

ESS Laboratory Work Order: 19J1002

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
	8	270D Polynı	uclear Aroma	tic Hydro	carbons					
atch CJ92909 - 3546										
/rene	ND	0.333	mg/kg wet							
urrogate: 1,2-Dichlorobenzene-d4	2.19		mg/kg wet	3.333		66	30-130			
urrogate: 2-Fluorobiphenyl	2.24		mg/kg wet	3.333		67	30-130			
urrogate: Nitrobenzene-d5	2.23		mg/kg wet	3.333		67	30-130			
urrogate: p-Terphenyl-d14	3.37		mg/kg wet	3.333		101	30-130			
xs										
Methylnaphthalene	2.16	0.333	mg/kg wet	3.333		65	40-140			
enaphthene	2.34	0.333	mg/kg wet	3.333		70	40-140			
enaphthylene	2.38	0.333	mg/kg wet	3.333		71	40-140			
thracene	2.86	0.333	mg/kg wet	3.333		86	40-140			
nzo(a)anthracene	3.03	0.333	mg/kg wet	3.333		91	40-140			
nzo(a)pyrene	2.87	0.167	mg/kg wet	3.333		86	40-140			
nzo(b)fluoranthene	2.94	0.333	mg/kg wet	3.333		88	40-140			
nzo(g,h,i)perylene	3.30	0.333	mg/kg wet	3.333		99	40-140			
nzo(k)fluoranthene	2.89	0.333	mg/kg wet	3.333		87	40-140			
rysene	2.91	0.167	mg/kg wet	3.333		87	40-140			
penzo(a,h)Anthracene	3.08	0.167	mg/kg wet	3.333		92	40-140			
oranthene	3.01	0.333	mg/kg wet	3.333		90	40-140			
orene	2.77	0.333	mg/kg wet	3.333		83	40-140			
leno(1,2,3-cd)Pyrene	3.18	0.333	mg/kg wet	3.333		95	40-140			
phthalene	1.96	0.333	mg/kg wet	3.333		59	40-140			
enanthrene	2.77	0.333	mg/kg wet	3.333		83	40-140			
rene	2.90	0.333	mg/kg wet	3.333		87	40-140			
rrogate: 1,2-Dichlorobenzene-d4	1.95		mg/kg wet	3.333		59	30-130			
rrogate: 2-Fluorobiphenyl	2.18		mg/kg wet	3.333		65	30-130			
urrogate: Nitrobenzene-d5	1.99		mg/kg wet	3.333		60	30-130			
- rrogate: p-Terphenyl-d14	2.96		mg/kg wet	3.333		89	30-130			
S Dup										
1ethylnaphthalene	2.21	0.333	mg/kg wet	3.333		66	40-140	2	30	
enaphthene	2.31	0.333	mg/kg wet	3.333		69	40-140	1	30	
enaphthylene	2.34	0.333	mg/kg wet	3.333		70	40-140	2	30	
thracene	2.70	0.333	mg/kg wet	3.333		81	40-140	6	30	
nzo(a)anthracene	2.85	0.333	mg/kg wet	3.333		85	40-140	6	30	
nzo(a)pyrene	2.67	0.167	mg/kg wet	3.333		80	40-140	7	30	
nzo(b)fluoranthene	2.72	0.333	mg/kg wet	3.333		82	40-140	8	30	
nzo(g,h,i)perylene	3.03	0.333	mg/kg wet	3.333		91	40-140	8	30	
nzo(k)fluoranthene	2.69	0.333	mg/kg wet	3.333		81	40-140	7	30	
rysene	2.75	0.167	mg/kg wet	3.333		83	40-140	6	30	
penzo(a,h)Anthracene	2.86	0.167	mg/kg wet	3.333		86	40-140	8	30	
oranthene	2.79	0.333	mg/kg wet	3.333		84	40-140	8	30	
orene	2.64	0.333	mg/kg wet	3.333		79	40-140	5	30	
deno(1,2,3-cd)Pyrene	2.93	0.333	mg/kg wet	3.333		88	40-140	8	30	
phthalene	2.10	0.333	mg/kg wet	3.333		63	40-140	7	30	
enanthrene	2.62	0.333	mg/kg wet	3.333		78	40-140	6	30	
rene	2.79	0.333	mg/kg wet	3.333		84	40-140	4	30	

Dependability • Quality Fax: 401-461-4486 • Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company

ESS Laboratory Work Order: 19J1002

Quality Control Data

Analyte	Result	MRL Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
	82	270D Polynuclear Aroma	atic Hydro	ocarbons					
Batch CJ92909 - 3546									
Surrogate: 1,2-Dichlorobenzene-d4	2.06	mg/kg wet	3.333		62	30-130			
Surrogate: 2-Fluorobiphenyl	2.11	mg/kg wet	3.333		63	30-130			
Surrogate: Nitrobenzene-d5	2.06	mg/kg wet	3.333		62	30-130			
Surrogate: p-Terphenyl-d14	2.77	mg/kg wet	3.333		83	30-130			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company

ESS Laboratory Work Order: 19J1002

Notes and Definitions

U	Analyte included in the analysis, but not detected
J	Reported between MDL and MRL
D	Diluted.
B-	Blank Spike recovery is below lower control limit (B-).
ND	Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
MDL	Method Detection Limit
MRL	Method Reporting Limit
LOD	Limit of Detection
LOQ	Limit of Quantitation
DL I/V	Detection Limit Initial Volume
I/V F/V	Final Volume
§ 1	Subcontracted analysis; see attached report
1 2	Range result excludes concentrations of surrogates and/or internal standards eluting in that range. Range result excludes concentrations of target analytes eluting in that range.
2	Range result excludes the concentration of the C9-C10 aromatic range.
Avg	
NR	Results reported as a mathematical average. No Recovery
[CALC]	Calculated Analyte
SUB	Subcontracted analysis; see attached report
RL	Reporting Limit
EDL	Estimated Detection Limit
MF	Membrane Filtration
MPN	Most Probably Number
	•
TNTC	Too numerous to Count
CFU	Colony Forming Units

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Seville Dyeing Company

ESS Laboratory Work Order: 19J1002

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental health/environmental laboratories/pdf/OutofStateCommercialLaboratories.pdf

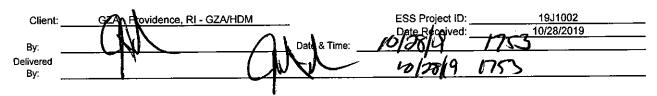
Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

> Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715


United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

ESS Laboratory Sample and Cooler Receipt Checklist

Client:	GZ/	A - Providen	ce, RI - GZA/	HDM		ESS	Project ID:	19J1002	
Shinned/D	alivered Via		ESS Courier			Date	Received: Due Date:	10/28/2019 11/4/2019	
omppearb			LOG COUNCI				for Project:	5 Day	
	nanifest pres		[No]	6. Does COC	match bottles?		Yes
	stody seals		[No	1	7. Is COC cor	mplete and correct	?	Yes
			Ľ		1	8. Were samp	ples received intac	1?	Yes
3. Is radiat	ion count <1	DO CPM?	L	Yes		9. Were labs	informed about s	hort holds & rushes?	Yes / No (NA
	ler Present?			Yes		10. Were any	analyses received	d outside of hold time?	Yes / KO
5. Was CC	C signed an	d dated by c	lient?	Yes					
	bcontracting Sample IDs: Analysis: TAT:		Yes	_			As received? s in aqueous VOA: nanol cover soil coi		Qes / No Yes / No Yee) / No / NA
a. If metals	e samples pro preserved u vel VOA vials	pon receipt:		(e) / No Date:		_ Time: _		Ву: Ву:	
	ceiving Note:			Date.		11me:		ву:	
	re a need to		oject Manage client?		Yes / 🙀 Yes / No	_ Time:		Ву:	
Sample Number	Container ID	Proper Container	Air Bubbles Present	Sufficient Volume	Contain	er Type	Preservative		vanide and 608 cides)
01	405898	Yes	NA	Yes	VOA Vial		MeOH		
01 02	405902 405897	Yes Yes	NA NA	Yes Yes	8 oz. Jar VOA Vial⊸	- Unpres Methanol	NP MeOH		
02	405901	Yes	NA	Yes	8 oz. Jar	- Unpres	NP		
03 03	405896 405900	Yes Yes	NA NA	Yes Yes	VOA Vial -		MeOH NP		
04	405895	Yes	NA	Yes	VOA Vial	- Unpres - Methanol	MeOH		
04 05	405899 405894	Yes Yes	NA NA	Yes Yes	8 oz. Jar VOA Vial -	- Unpres - Methanol	NP MeOH		
Are barcode Are all Flash Are all Hex Are all QC s	e labels on co	orrect contai rs attached/c kers attached hed?	container ID # d?	circled?	Initials <u></u>	Yes/No/NA Yes/No/NA Yes/No/NA Yes/No/NA Yes/No/NA			
Completed By: Reviewed		L			Date & Time:	(10 28 109	1701	

ESS Laboratory Sample and Cooler Receipt Checklist

951002		er es Specify →) P 0 F				m	51-											10				Please specify "Other" preservative and containers types in this space		Received By: (Signature, Date & Time)		· · · · · · · · · · · · · · · · · · ·	Received by: (Signature, Date a much	
ESS Lab #	Reporting	Electonic X Data Checker Dativerables S Other (Please Specify		 	v siskle	1 511 uv	10 10 10 10 10 10 10 10 10 10 10 10 10 1	49 2 77 1	7 , 7 -	7	× × × ×		XXXXX				S-Sterile V-Vial V NA No No	22 11-Other* 7 110 (0 10	H20 11-Other* (c. 1 1 1	Jer Sample: 1 (++)		specify "Other" preservative al	elotin - lacoul simpili-	n. (cirrothro Data & Time)	Relinquished By: (Signature, Care & Time)		Relinquished By: (Signature, Date & Time)	
CHAIN OF CUSTODY	5 Days	R I project for any of the foli	õ	Sculle Dy Rigger Name	I. R. Furt SW	0 20 000	NCLANTAL A WW P D T & CON	Sample ID	(10-0) SI-MW	B-14 (2-41)	B-13(2-41)	the Blank	BD1099019				C-Cubitainer J-Jar O-Other P-Poly S-S	6-1L 7-VOA 8-2 oz 9-4 oz 10-	7-Na2S2	3	Sampled by : Converting Herry of	nts:	of palled		ed By: (Signature, Date & Time) Relinquished	in 126/2/1620		
Ū	Turn Time	Regulatory State is th	OCTRO	3450 - 04	10.5 Value.	e State	FAX Number	Sample Matrix	Soil	ડાયો	501/		Sù l					1	13						Received By:		Received By.	
		10 86				e s	FAXI	Sample Type	Grade	Grevo	CANN		Grab					tte AG-Amber Glass	2-2.5 gai 3-200		t aboratory I ise Only		- O Pickup	ပ	ate & Time)	witalla lieto	ate & Time)	
	ESS Laboratory	185 Frances Avenue, Cranston RI 02910 185 Frances Avenue, Cranston RI 02910 エュ・メのハ メ61-7181 Fax (401) 461-4486		Company Name	Contact Person	K.C.M.D.OI LOVI WW.	Telephone Number	at	191	0511 5198 101 Z			1.5	-				й I		Preservation Code: 1-Non Preserveu 2-1701	L aborator		Seals Intact:	Cooler Temperature:	Relinquished by: (Signature, Date & Time)		Relinduished by Signature	51 of :

Ľ,

APPENDIX D

FIELD SAMPLING LOGS

File No. Project: Location: <u>Weather:</u>	34502.04 RIDEM - Seville Dyei City: Woonsocket 52, Cloudy	ng Company State: RI								MW-14 11/22/2019 Rowan Hayes
Pipeirs: RDEM-Solid Depine Company Chy: Wonnocket Suite RI Sample Data Sample Data 1/2/2019 Sample Name Variance: Suite RI Sample Data Sample Data 1/2/2019 Variance: PVC Rise: State Casing 2.00 Ground Company Measurement Data/Time: 1/12/19 10:20 Variance: PVC Rise: State Casing 2.00 Ground Company Ground Company Measurement Data/Time: 1/12/19 10:20 Point of Measurement: PVC Rise: State Casing 2.00 Ground Company Ground Company Standing Water in Well (feet): 25 Point of Measurement: PVC Rise: 2.00 State Casing: Ground Company Ground Company Measurement Data/Time: Value 205 Popto Io NAPAI (feet): -										
Total Well Depth Depth to LNAPL Depth to Water (f Depth to DNAPL Well Screened Int	(feet): (feet): feet): (feet): terval (feet BGS):	32.00 22.45 24.5 to 34.:		Expansion Cap-X Yes	No Well ID-	Well Diameter (in.) Sample Depth (feet B Standpipe: TPVC to 0 Roadbox: TPVC to 0	GS): Ground Surface (feet) Ground Surface (feet)	29.5		Poor X Good
EQUIPMENT				Sample Method: Bail	X Pump /	X Low Flow				
Pump Type: Meter Type:	· · · ·			-				Flow-Thru C	ell Vol (mL):	500
INSTRUMENT	MEASUREMENTS:			Start time:10	:40			Stop time:	12:04	-
		1	2	3	4	5	6	7		8
	(drawdown <0.3 or		pH (s.u.) (± 0.1)	Spec. Cond. (mS/cm) (±3%)		* · · /				Notes
10:55	22.45	-52.7	6.46	464.2	0.56	12.3	208.72	<500		
11:05	22.45	-47.3	6.46	456.8	0.41	12.4	233.22	<500		
11:15	22.45	-38.3	6.45	450.3	0.34	12.6	105.31	<500		
11:25	22.45	-44.5	6.47	454.2	0.32	12.4	48.69	<500		
11:55	22.45	-42.3	6.47	450.5	0.29	12.7	9.01	<500		
11:58	22.45	-42.9	6.47	450.2	0.29	12.7	4.43	<500		

0.28

0.28

SAMPLE TESTING INFORMATION:

SAMPLE TIME: 12:04

12.7

12.7

4.77

4.43

<500

<500

Analysis	Method	No. Bottles	Bottle Type	Volume	Preservation	Handling
VOCs	8260B	3	VOA	40 mL	HCl	Ice

Sample observations:

12:01

12:04

22.45

22.45

-42.7

-42.3

6.47

6.47

450.0

349.9

Color: None Odor: None Clarity: Clear

Total Purge Volume: 3.5 gallons	Tubi	ng Volume:	_	2" WELL = 0.163	GAL /FT = 0.617 LITE	RS/FT		
				1" WELL = 0.013	GAL /FT = 0.0492 LIT	ERS/FT		
				3/8" TUBING - 0.	0057 GAL/FT - 0.0217	LITERS/FT		
Notes:				1/4" TUBING - 0.	0025 GAL/FT - 0.0096	LITERS/FT		
NM - Not Measured	NP - No Product observed	BGS - below ground surface	FT - feet	in - inches	mL - milliliters	GAL - gallons	mvolts - millivolts	s.u standard units
mS/cm - microsiemens per centimeter	mg/L - milligrams per liter	°C - degrees Celcius	ntu - Neph	elometric Turbidit	y Unit	mL/min - millilite	rs per minute	

File No. Project: Location: Weather:	34502.04 RIDEM - Seville Dyei City: Woonsocket 52, Cloudy	ng Company State: RI								MW-16 1/22/2019 Rowan Hayes
WATER LEVE	L OBSERVATIONS	5			Me	asurement Date/Time:	11/22/19 8:30			
Point of Measuren Total Well Depth Depth to LNAPL (Depth to Water (fc Depth to DNAPL Well Screened Inte	(feet): (feet): xet): (feet): rrval (feet BGS):	X Steel Casing 18.45 13.68 5 to 20	_			Standing Water in Wo Well Diameter (in.) Sample Depth (feet B Standpipe: TPVC to G Roadbox: TPVC to G	GS): Ground Surface (feet) Ground Surface (feet)			
Well Condition: P	rotective Casing-	Poor X Good	Lock-Yes X No	Expansion Cap- X Yes			Concrete Collar-	X Yes No	Well-	Poor X Good
EOUIPMENT Pump Type: Meter Type:	Geotech Geopump Mo	xdel Ii No. No.	Rental	Sample Method: Bail	X Pump /	X Low Flow		Flow-Thru C	ell Vol (mL):	500
INSTRUMENT !	MEASUREMENTS:			Start time: 12	::40			Stop time:	13:04	
		1	2	3	4	5	6	7		8
Time: (start)	Depth to Water (ft) (drawdown <0.3 or stable)	ORP (mvolts) (± 10)	pH (s.u.) (± 0.1)	Spec. Cond. (mS/cm) (±3%)	DO (mg/L) (±10% or 3 rdgs <0.5)	Temperature (°C) (±3%)	Turbidity (ntu) (±10% or <5ntu)	Flow (ml/min) (<500 ml/min)		Notes
12:50	13.70	-61.0	6.53	1115	0.62	14.0	9.72	<500		
12:58	13.70	-62.4	6.50	1115	0.42	14.0	4.27	<500		
13:01	13.70	-63.6	6.50	1114	0.39	14.0	3.03	<500		
13:04	13.70	-65.3	6.50	1114	0.31	14.1	2.55	<500		
	+									
	1									
	T									
SAMPLE TESTI	ING INFORMATION	<u>.</u>			SAMI	PLE TIME: 13:04	<u>-</u>			
	Analysis			Aethod	No. Bottles	Bottle		Volume	Preservation	Handling
	VOCs		٤	8260B	3	VC)A	40 mL	HCl	Ice

2" WELL = 0.163 GAL /FT = 0.617 LITERS/FT 1" WELL = 0.013 GAL /FT = 0.0492 LITERS/FT 3/8" TUBING - 0.0057 GAL/FT - 0.0217 LITERS/FT 1/4" TUBING - 0.0025 GAL/FT - 0.0096 LITERS/FT

mL - milliliters

GAL - gallons

mL/min - milliliters per minute

mvolts - millivolts

s.u. - standard units

mS/cm - microsiemens per centimeter Sheen observed in purge water.

Sample observations: Color: None

NM - Not Measured

Notes:

Total Purge Volume: 2 gallons

Odor: Petroleum

NP - No Product observed

mg/L - milligrams per liter

Clarity: Clear

Tubing Volume:

BGS - below ground surface °C - degrees Celcius FT - feet

in - inches

ntu - Nephelometric Turbidity Unit

APPENDIX E

BIOVENT PILOT TEST

Vent Pilot Test

Seville Dyeing 117 & 229 First Avenue Woonsocket, Rhode Island

Date	Well I.D.	Time	Vacuum	Vacuum Diff.	Flow	TVOC	O_2	CO ₂	LEL	CH ₄	Notes
			(inches of H2O)	(inches of H2O)	(CFM)	(ppmv)	%	%	%	%	
11/22/2019	MW-7	8:30	1.50	5.6	39.9	-	-	-	-	-	Failed test. Pulling atmosphere air from within steel casing. DTW approx. 15.4'.
11/22/2019	MW-8	11:30	19.6	1.15	17.7	9.1	5.9	11.2	0	0.0	SSD Start-up. Oriface Plate #80153
		12:15	19.6	1.15	17.7	3.8	7.6	11.4	0	0.0	DTW approx. 9.8'.
		13:45	19.6	1.15	17.7	3.5	9.6	11.4	0	0.0	Summa Canister sample TO-15.
11/22/2019	MW-16	9:00	12.7	0.60	12.9	5.5	3.0	17.8	0	0.0	SSD Start-up. Oriface Plate #80153
		10:00	12.7	0.60	12.9	5.6	4.1	16.8	0	0.0	Note: Pulled water @ 24" of vacuum.
		11:25	12.7	0.60	12.9	6.6	7.9	14.6	0	0.0	Summa Canister sample TO-15.

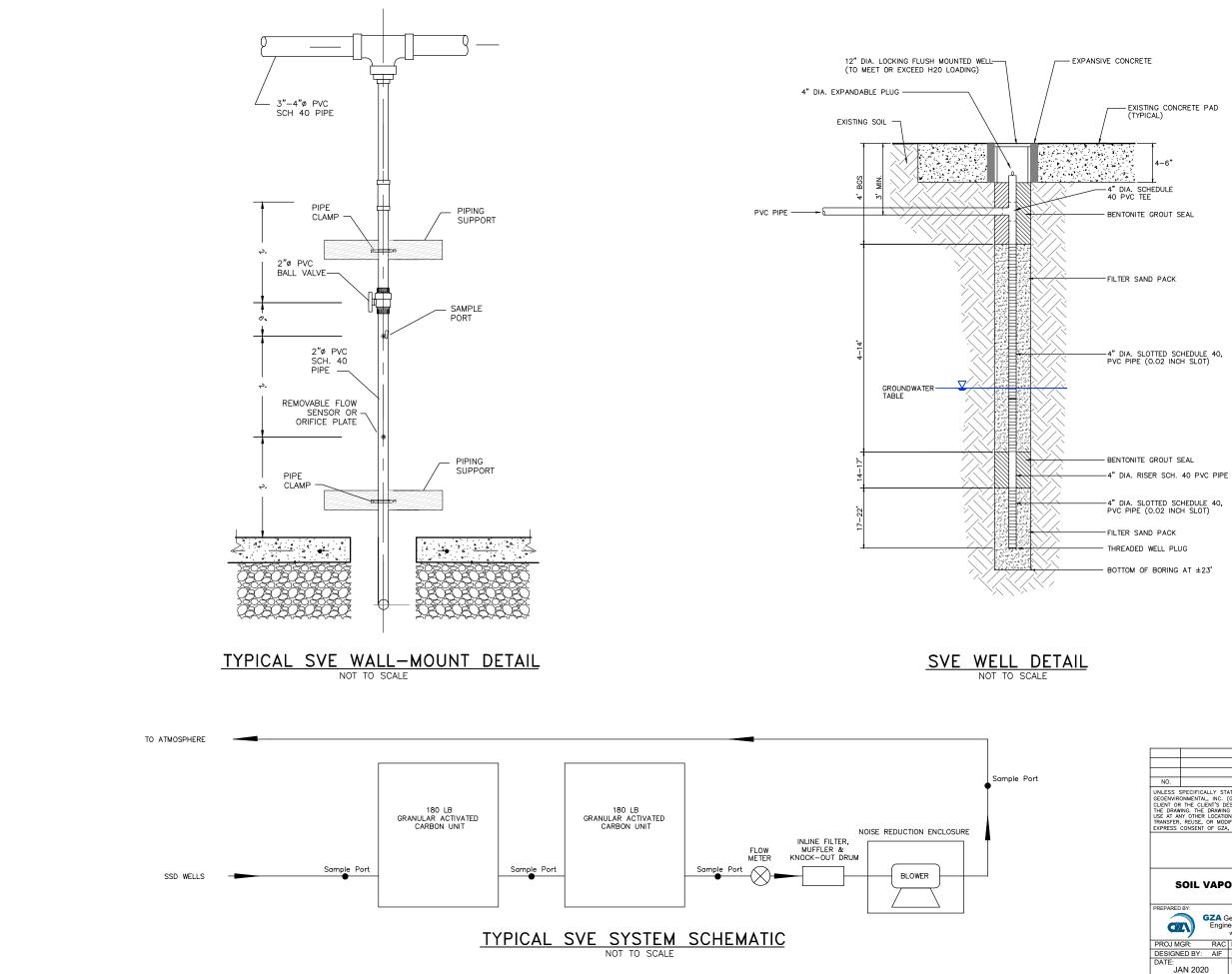
Notes: 1. Air Flow measurements made through Oriface #80153 (Pipe ID: 1.939", Bore: 1.100").

2. Equipment Utilized: Landtec Model GEM 2000 Landfill Gas Meter, MiniRAE 3000 PID w/ 10.6 eV lamp, Dwyer Digital Manometer Series 475 and GAST Air Pump.

Radius of Influence Data November 22, 2019

Seville Dyeing 117 & 229 First Avenue Woonsocket, Rhode Island

		Soil Gas Points		SS	D Pilot Test	
Vent Well	Well I.D.	Distance From Vent Well	Vacuum	Vacuum	Vacuum Diff.	Flow
Operating		(ft)	(inches of H2O)	(inches of H2O)	(inches of H2O)	(CFM)
MW-8	MW-16	17	0.250	19.6	1.15	17.7
	MW-7	33	0.000			
	SG-1	59	0.000			
	SG-2	32	0.057			
	SG-3	18	0.093			
	SG-4	44	0.000			
	B-18	60	0.000			
MW-8	MW-16	17	0.190	13.3	0.57	12.6
	MW-7	33	0.000			
	SG-1	59	0.000			
	SG-2	32	0.047			
	SG-3	18	0.089			
	SG-4	44	0.000			
	B-18	60	0.000			
MW-8	MW-16	17	0.137	8.3	0.26	8.6
	MW-7	33	0.000			
	SG-1	59	0.000			
	SG-2	32	0.032			
	SG-3	18	0.080			
	SG-4	44	0.000			
	B-18	60	0.000			


Note: 1. Equipment Utilized: Dwyer Digital Manometer Series 475.

Radius of Influence Data November 22, 2019

Seville Dyeing 117 & 229 First Avenue Woonsocket, Rhode Island

		Soil Gas Points	SSD Pilot Test			
Vent Well	Well I.D.	Distance From Vent Well	Vacuum	Vacuum	Vacuum Diff.	Flow
Operating		(ft)	(inches of H2O)	(inches of H2O)	(inches of H2O)	(CFM)
MW-16	SG-1	58	0.000	12.7	0.60	12.9
	SG-2	29	0.042			
	SG-3	10	0.230			
	SG-4	40	0.000			
	B-18	43	0.000			
	MW-7	16	0.012			
	MW-8	17	0.195			
MW-16	SG-1	58	0.000	4.95	0.26	8.6
	SG-2	29	0.033			
	SG-3	10	0.179			
	SG-4	40	0.000			
	B-18	43	0.000			
	MW-7	16	0.009			
	MW-8	17	0.163			

Note: 1. Equipment Utilized: Dwyer Digital Manometer Series 475.

		100115 (050			BY	DATE
NO.	NO. ISSUE/DESCRIPTION					DATE
GEOENVIR CLIENT OF THE DRAW USE AT AI TRANSFER	UNLESS SPECIFICALLY STATED BY WRITTEN AGREEMENT, THIS DRAWING IS THE SOLE PROPERTY OF GZA GEONNROMMENTAL, INC. (GZA). THE INFORMATION SHOWN ON THE DRAWING IS SOLELY FOR USE BY GZA'S CLIENT OR THE CLIENT'S DESIGNATED REPRESENTATIVE FOR THE SPECIFIC PROJECT AND LOCATION DENTIFIED ON THE DRAWING. THE DRAWING SHALL NOT BE TRANSFERRER, RUSED, COPIED, OR ALTERED IN ANY MANNER FOR USE AT ANY OTHER LOCATION OR FOR ANY OTHER PURPOSE WITHOUT THE PRIOR WRITTEN CONSENT OF GZA. ANY TRANSFER, REUSE, OR MODIFICATION TO THE DRAWING BY THE CLIENT OR OTHERS, WITHOUT THE PRIOR WRITTEN EXPRESS CONSENT OF GZA, WILL BE AT THE USER'S SOLE RISK AND WITHOUT ANY RISK OR LIABILITY TO GZA.					
	PLAT 6, LOT 118 WOONSOCKET, RHODE ISLAND					
s	SOIL VAPOR EXTRACTION (SVE) SYSTEM DETAILS					
PREPARED	BY:			PREPARED FOR:		
đ		eoEnvironmental, eers and Scientist www.gza.com		RI	DEM	
PROJ M	GR: RAC	REVIEWED BY:	EAS	CHECKED BY: JJS	FIGU	RE
DESIGN	ED BY: AIF	DRAWN BY:	AIF	SCALE: AS NOTED	_ г	- 1
DATE: J/	AN 2020	PROJECT NO. 34502.0	4	REVISION NO.	SHEET NO.	= 1

MW-8 Vent Pilot Test November 22, 2019

Seville Dyeing 117 & 229 First Avenue Woonsocket, Rhode Island

Serial #80153 Pipe I.D. = 1.939 Bore = 1.100

Qscfm = (K1*d^2*K2*Y*SQRhw*SGRdensity of fluid)/0.0764

AP - Applied Pressure

Line pressure = 14.7 + AP(psig)

MW-8

Date: November 22, 2019

Applied Vacuum (inch of H ₂ O)	Line Pressure (psig)	hw (inchs of H2O)	Q (scfm)
19.6	14.0	1.15	17.7
13.3	14.2	0.57	12.6
8.3	14.4	0.26	8.6

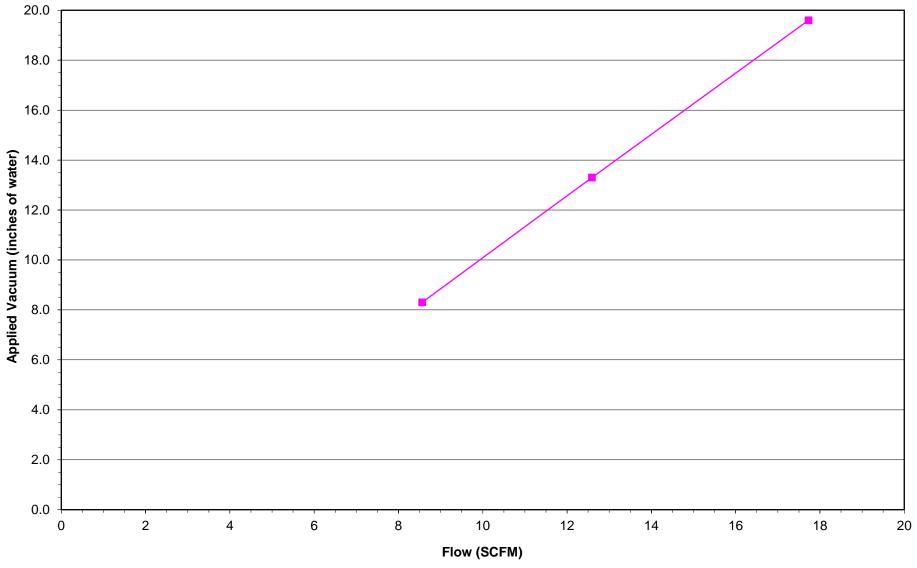
MW-16 Vent Pilot Test November 22, 2019

Seville Dyeing 117 & 229 First Avenue Woonsocket, Rhode Island

Serial #80153 Pipe I.D. = 1.939 Bore = 1.100

Qscfm = (K1*d^2*K2*Y*SQRhw*SGRdensity of fluid)/0.0764

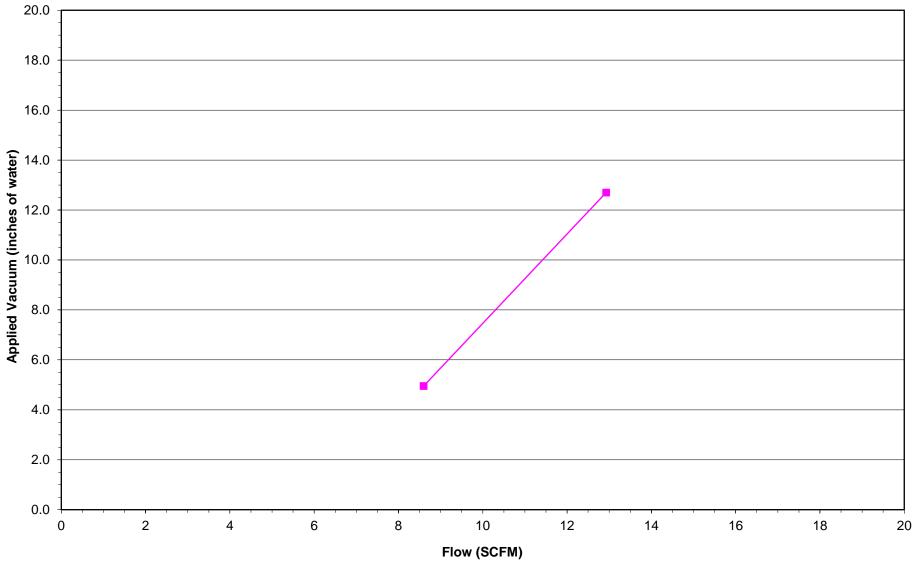
AP - Applied Pressure


Line pressure = 14.7 + AP(psig)

MW-16 Date: November 22, 2019

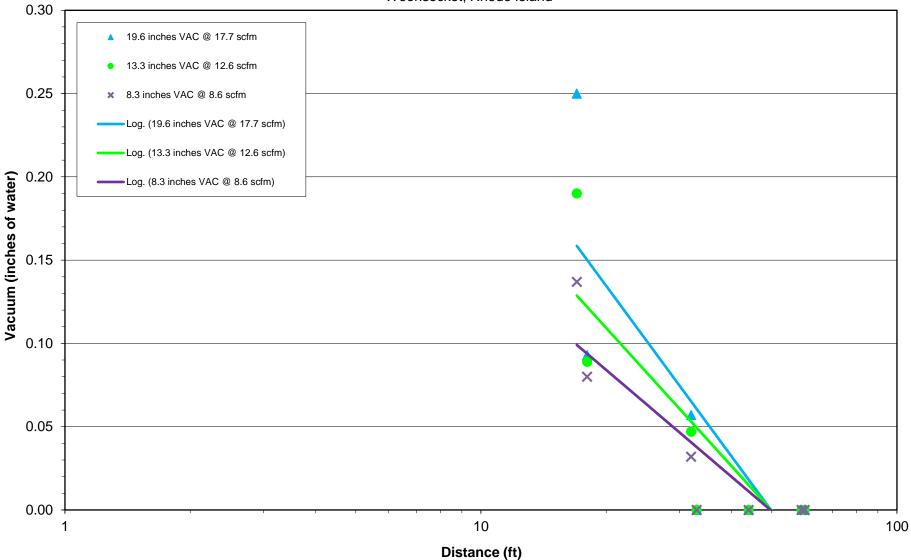
Applied Vacuum (inch of H ₂ O)	Line Pressure (psig)	hw (inchs of H2O)	Q (scfm)
12.7	14.2	0.60	12.9
4.95	14.5	0.26	8.6

Flow Curve (MW-8) November 22, 2019

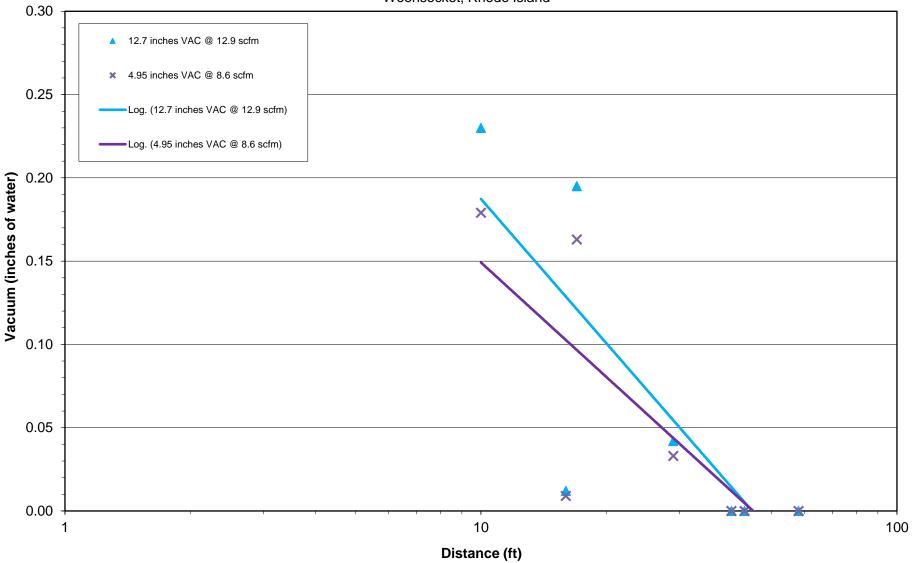

Seville Dyeing 117 & 229 First Avenue Woonsocket, Rhode Island

J:\RIDEM TAC\34502.04.rac\Reports\RAWP\Appendix E - Biovent Pilot Test\Seville Dyeing (Woonsocket, RI) - SVE Pilot Test - November 22, 2019

Flow Curve (MW-16) November 22, 2019


Seville Dyeing 117 & 229 First Avenue Woonsocket, Rhode Island

J:\RIDEM TAC\34502.04.rac\Reports\RAWP\Appendix E - Biovent Pilot Test\Seville Dyeing (Woonsocket, RI) - SVE Pilot Test - November 22, 2019


Radius of Influence (MW-8) November 22, 2019

Seville Dyeing 117 & 229 First Avenue Woonsocket, Rhode Island

Radius of Influence (MW-16) November 22, 2019

Seville Dyeing 117 & 229 First Avenue Woonsocket, Rhode Island

J:\RIDEM TAC\34502.04.rac\Reports\RAWP\Appendix E - Biovent Pilot Test\Seville Dyeing (Woonsocket, RI) - SVE Pilot Test - November 22, 2019

Calculate the mass of Acetone, Benzene, Chloromethane, Dichlorodifluoromethane, Ethyl Alcohol, n-Hexane, Isopropyl Alcohol, Propylene, Toluene, and Trichlorofluoromethane, potentially discharged to the atmosphere from the Proposed Soil Vapor Extraction (SVE) System at the Former Seville Dyeing Company property at 117 and 229 First Avenue in Woonsocket, Rhode Island. The calculations are based on the November 22, 2019 soil vapor data from the SVE pilot test at MW-8 and MW-16 with an estimated soil vapor extraction rate, Q, of 50 standard cubic feet per minute (scfm), with continuous operation (24 hour day - 365 days/year) for the proposed full scale SVE system design.

Compound	MW-8	MW-16	Avera	age	Molecula	ar Weight
Acetone	0.002980	0.004250	0.003615	ppmv	58.08	g/mole
Benzene	0.000367	0.000354	0.000361	ppmv	78.11	g/mole
Chloromethane	0.000548	0.000526	0.000537	ppmv	50.49	g/mole
Dichlorodifluoromethane	0.000462	0.000400	0.000462	ppmv	120.91	g/mole
Ethyl Alcohol	<0.00500	0.011700	0.008350	ppmv	46.06	g/mole
n-Hexane	0.000212	0.000227	0.000220	ppmv	86.17	g/mole
Isopropyl Alcohol	<0.00500	0.000774	0.033339	ppmv	60.10	g/mole
Propylene	0.000804	0.016400	0.008602	ppmv	42.08	g/mole
Toluene	0.000509	0.000542	0.000526	ppmv	92.13	g/mole
Trichlorofluoromethane	0.000394	0.003490	0.001942	ppmv	137.38	g/mole

SVE System Characteristics

Number of SVE Wells
Approximate Flow per SVE Well
Total Flow
Approximate Vacuum Pressure

5 Total 10 cfm 50 cfm 12 inches of water column

Equation 1: VOC in Pounds per year = [Q(scfm)] X [VOC (µI/I)] X [MW of VOC(g/mole)] X

[V_{voc} (l/mole)]

VOCs (lb/year) = 3.8 (l) X 7.481 (gal) X 1440 (min) X 365 (day) X 1 (l) X 1 (lb) 1 (gallon) X 1 (CF) X 1 (day) X 1 (year) X 10⁶ (µl) X 454 (g)

Equation 1 Reduces to:

VOCs (lb/year) = $[Q(scfm)] X [VOC (\mu I/I)] X [MW of VOC(g/mole)] X [3.29 X 10⁻² (l² X min X lb)]$ $[V_{VOC}(I/mole)] X [(CF) X (year) X (µI) X (g)]$

Assuming an operating temperature of 60° F and a line pressure of -12 inches of water column

Where:

V _{VOC} = RT (1/P) n	

T = Temp in degrees Kelvin $^{\circ}$ K = $^{\circ}$ C + 273.15 $^{\circ}C = (^{\circ}F-32) \times (5/9)$

> T = [(60-32) X (5/9)] + 273.15 = 288.71 P= Pressure in Atmosphere

R = Universal Gas Constant (0.082057)

1 atm = 34 feet of water column 1 foot water column = 0.0294

atm P = 1 - 0.0294 = 0.9706 atm

٥K

n= 1, for one mole of gas

V_{voc} (l/mole)= 0.082057 X 288.71 (°K) X 1/0.9706 (atm) X 1 (mole)

For Acetone

24.4 l/mole

0.003615 ppmv, MW = 58.08 g/mole, VVOC = 24.4 l/ Mole

Acetone (lb/year)= <u>Q (scfm) X 0.003615 (ppm or μl/l) X 58.08 (g/mole)X [3.29 X 10⁻² (lb X min X lb)]</u>					
	24.4 (I/mole) X [(CF) X (year) X (μl) X (g)]				
Acetone (lb/year)=	(50 X 0.003615*58.08*.0329)/24.4 = 0.014 lbs/year				
For Benzene	0.0003605 ppmv, MW = 78.11 g/mole, VVOC = 24.4 l/ Mole				
Benzene (lb/year)= <u>Q (scfm) X 0.</u>	24.4 (I/mole) X [(CF) X (year) X (μl) X (g)]				
Benzene (lb/year)=	(50 X 0.0003605*78.11*.0329)/24.4 = 0.002 lbs/year				
For Chloromethane	0.000537 ppmv, MW = 50.49 g/mole, VVOC = 24.4 l/ Mole				
Chloromethane (lb/year)= <u>Q (scf</u>	m) X 0.000537 (ppm or μl/l) X 50.49 (g/mole)X [3.29 X 10 ⁻² (lb X min X lb)] 24.4 (l/mole) X [(CF) X (year) X (μl) X (g)]				
Chloromethane (lb/year)=	(50 X 0.000537*50.49*.0329)/24.4 = 0.002 lbs/year				

For Dichlorodifluoromethane	0.000462 ppmv, MW = 120.91 g/mole, VVOC = 24.4 l/ Mole
Dichlorodifluoromethane (lb/vear)= 0	.(scfm) X 0.000462 (ppm or μl/l) X 120.91 (g/mole)X [3.29 X 10 ⁻² (lb X min X lb)]
	24.4 (I/mole) X [(CF) X (year) X (μ I) X (g)]
Dichlorodifluoromethane (lb/year)=	(50 X 0.000462*120.91*.0329)/24.4 = 0.004 lbs/year
For Ethyl Alcohol	0.008350 ppmv, MW = 46.06 g/mole, VVOC = 24.4 l/ Mole
Ethyl Alcohol (lb/year)= O (scfm) X 0.0	08350 (ppm or μl/l) X 46.06 (g/mole)X [3.29 X 10 ⁻² (lb X min X lb)]
	24.4 (l/mole) X [(CF) X (γear) X (μl) X (g)]
Ethyl Alcohol (lb/year)=	$(50 \times 0.008350^{*}46.06^{*}.0329)/24.4 = 0.026$ lbs/year
For n-Hexane 0.000220 pp	mv, MW = 86.17 g/mole, V _{voc} = 24.4 l/ Mole
n-Hexane (lb/year)= O (scfm) X 0 0002	20 (ppm or μl/l) X 86.17 (g/mole)X [3.29 X 10 ⁻² (lb X min X lb)]
	24.4 (I/mole) X [(CF) X (year) X (μ I) X (g)]
n-Hexane (lb/year)=	(50 X 0.000220*86.17*.0329)/24.4 = 0.001 lbs/year
For Isopropyl Alcohol	0.033339 ppmv, MW = 60.10 g/mole, VVOC = 24.4 l/ Mole
licopropyl Alcohol (lh(yoar) - O (ccfm))	< 0.033339 (ppm or μl/l) X 60.10 (g/mole)X [3.29 X 10 ⁻² (lb X min X lb)]
(scrift) /	24.4 (I/mole) X [(CF) X (year) X (μ I) X (g)]
lsopropyl Alcohol (lb/year)=	(50 X 0.033339*60.10*.0329)/24.4 = 0.135 lbs/year
For Propylene	0.008602 ppmv, MW = 42.08 g/mole, VVOC = 24.4 l/ Mole
Propylene (lb/year)= <u>Q (scfm) X 0.008</u>	602 (ppm or μl/l) X 42.08 (g/mole)X [3.29 X 10 ⁻² (lb X min X lb)] 24.4 (l/mole) X [(CF) X (year) X (μl) X (g)]
	24.4 (i/mole) \land [(Cr) \land (year) \land (μ) \land (g)]
Propylene (lb/year)=	(50 X 0.008602*42.08*.0329)/24.4 = 0.024 lbs/year
	mv, MW = 92.13 g/mole, V _{VOC} = 24.4 l/ Mole
Toluene (lb/year)= <u>Q (scfm) X 0.00052</u>	6 (ppm or μl/l) X 92.13 (g/mole)X [3.29 X 10 ⁻² (lb X min X lb)]
	24.4 (I/mole) X [(CF) X (γear) X (μl) X (g)]
Toluene (lb/year)=	(50 X 0.000526*92.13*.0329)/24.4 = 0.003 lbs/year
For Trichlorofluoromethane	0.001942 ppmv, MW = 137.38 g/mole, VVOC = 24.4 l/ Mole
Trichlorofluoromethane (lb/year)= Q (scfm) X 0.001942 (ppm or μl/l) X 137.38 (g/mole)X [3.29 X 10 ⁻² (lb X min X lb)]
	24.4 (I/mole) X [(CF) X (year) X (μl) X (g)]
Trichlorofluoromethane (lb/year)=	(50 X 0.001942*137.38*.0329)/24.4 = 0.018 lbs/year

RIDEM AIR POLLUTION CONTROL REGULATION NO.22 TABLE III, MINIMUM QUANTITIES COMPARISON (POUNDS PER YEAR)					
Chemical Name	(Pounds/Year)	(Pounds/Year)			
Acetone	20,000	0.014			
Benzene	10	0.002			
Chloromethane	NA	0.002			
Dichlorodifluoromethane	NA	0.004			
Ethyl Alcohol	NA	0.026			
n-Hexane	20,000	0.001			
Isopropyl Alcohol	1,000	0.135			
Propylene	36,500	0.024			
Toluene	1,000	0.003			

Trichlorofluoromethane 3,000 0.018		Tolucile	1,000	0.005
	-	Trichlorofluoromethane	3,000	0.018

OR 404 & CP 404

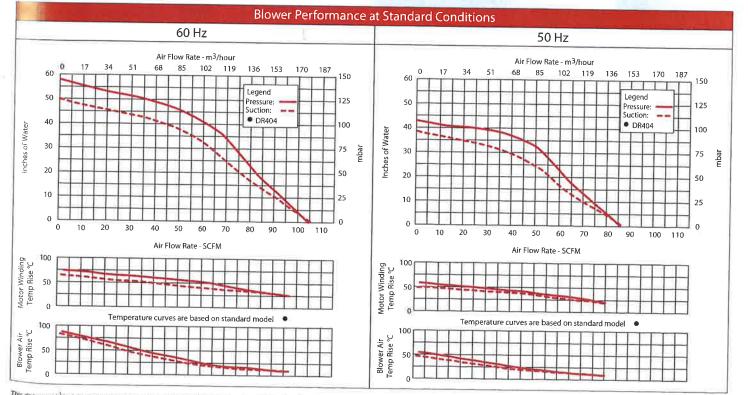
1.0 HP Regenerative Blower

FEATURES

- · Manufactured in the USA ISO 9001 and NAFTA compliant
- · CE compliant Declaration of Conformity on file
- Maximum flow: 105 SCFM
- Maximum pressure: 58 IWG
- Maximum vacuum: 50 IWG
- Standard motor: 1.0 HP, TEFC
- Cast aluminum blower housing, impeller & cover; cast iron flanges (threaded)
- UL & CSA approved motor with permanently sealed ball bearings
- Inlet & outlet internal muffling
- Quiet operation within OSHA standards

MOTOR OPTIONS

- International voltage & frequency (Hz)
- · Chemical duty, high efficiency, inverter duty or industry-specific designs
- Various horsepowers for application-specific needs


BLOWER OPTIONS

- Corrosion resistant surface treatments & sealing options
- Remote drive (motorless) models
- Slip-on or face flanges for application-specific needs

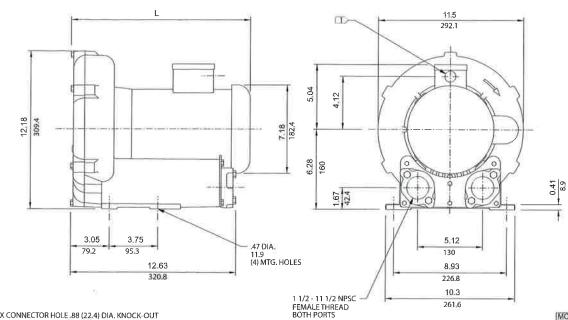
ACCESSORIES

- Flowmeters reading in SCFM
- Filters & moisture separators
- Pressure gauges, vacuum gauges, & relief valves
- · Switches air flow, pressure, vacuum, or temperature
- External mufflers for additional silencing
- Air knives (used on blow-off applications)
- Variable frequency drive package

This document is for informational purposes only and should not be considered as a binding description of the products or their performance in all applications. The performance data on this page depicts typical performance under controlled laboratory conditions. AMETEK is not responsible for blowers driven beyond factory specified speed, temperature, pressure, flow or without proper alignment. Actual performance will vary depending on the operating environment and applications. AMETEK products are not designed for and should not be used in medical life support applications. AMETEK reserves the right to revise its products without notification. The above characteristics represent standard products. For product designed to meet specific applications, contact AMETEK Technical & Industrial Products Sales department.

AMETEK TECHNICAL & INDUSTRIAL PRODUCTS 76 North Street, Saugerlies, NY 12477 USA: +1 215-256-5601 - Europe: +44 (0) 845 366 9664 - Asia: +86 21 5763 1258 Cuatomer Service Fax: +1 215-256-1338 Www.ametoktip.com

C 14



Industrial / Chemical Processing Blowers

DR 404 & CP 404

1.0 HP Regenerative Blower

ROTRON[®]

NOTES

TERMINAL BOX CONNECTOR HOLE 88 (22.4) DIA. KNOCK-OUT

2 DRAWING NOT TO SCALE, CONTACT FACTORY FOR SCALE CAD DRAWING

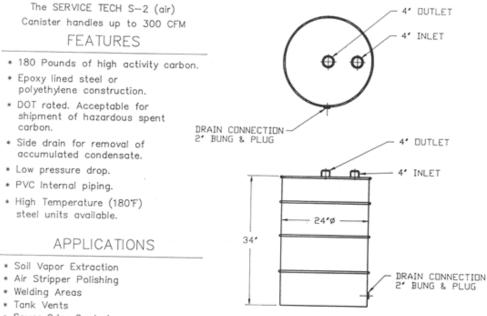
3 CONTACT FACTORY FOR BLOWER MODEL LENGTHS NOT SHOWN.

		Part/Model Number				
		DR404AL58M	DR404AL72M	DR404AL86M	CP404CU72MLR	
Specification	Units	037407	037406	037408	038233	
Motor Enclosure - Shaft Mtl.	5	TEFC - CS	TEFC - CS	TEFC - CS	Chem TEFC - SS	
Horsepower	•	1.0	1.0	1.0	1.0	
Voltage	AC	115/230	230/460	575	230/460	
Phase - Frequency		Single - 60 Hz	Three - 60 Hz	Three - 60 Hz	Three - 60 Hz	
Insulation Class	-	F	F	F	F	
NEMA Rated Motor Amps	Amps (A)	11.4/5.7	3.0/1.5	1.2	3.0/1.5	
Service Factor	1996 (1,15	1.15	1.15	1,15	
Locked Rotor Amps	Amps (A)	70/35	21.0/10.5	7.6	21.0/10.5	
Max. Blower Amps	Amps (A)	14.5/7.25	4.0/2.0	1.4	4.0/2.0	
NEMA Starter Size		00/00	00/00	00	00/00	
Shipping Weight	Lbs	69	64	64	64	
	Ka	31.3	29	29	29	

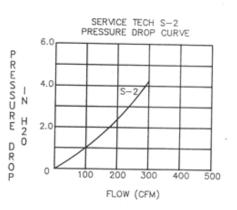
Voltage - ROTRON motors are designed to handle a broad range of world voltages and power supply variations. Our dual voltage 3 phase motors are factory tested and certified to operate on both: 208-230/415-460 VAC-3 ph-60 Hz and 190-208/380-415 VAC-3 ph-50 Hz. Our dual voltage 1 phase motors are factory tested and certified to operate on both: 104-115/208-230 VAC-1 ph-60 Hz and 100-110/200-220 VAC-1 ph-50 Hz. All voltages above can handle a ±10% voltage fluctuation. Special wound motors can be ordered for voltages outside our certified range.

Operating Temperatures - Maximum operating temperature: Motor winding temperature (winding rise plus ambient) should not exceed 140°C for Class F rated motors or 120°C for Class B rated motors. Blower outlet air temperature should not exceed 140°C (air temperature rise plus inlet temperature). Performance curve maximum pressure and suction points are based on a 40°C inlet and ambient temperature. Consult factory for inlet or ambient temperatures above 40°C.

Maximum Blower Amps - Corresponds to the performance point at which the motor or blower temperature rise with a 40°C inlet and/or ambient temperature reaches the maximum operating temperature.


This document is for informational purposes only and should not be considered as a binding description of the products or their performance in all applications. The performance data on this page depicts typical performance under controlled laboratory conditions. AMETEK is not responsible for biovers driven beyond factory specified speed, temperature, pressure, flow or without proper alignment. Actual performance will vary depending on the operating environment and applications. AMETEK products are not designed for and should not be used in medical life support applications. AMETEK reserves the right to revise its products without notification. The above characteristics represent standard products. For product designed to meet specific applications, contact AMETEK rectined & Industrial Products Sales department.

S-2 AIRCLEAN 180 POUND ACTIVATED CARBON AIR PURIFICATION ADSORBER



- * Sewer Odor Control
- * Printing Operations

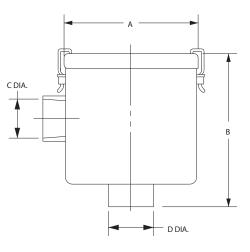
SPECIFY : POLYTHYLENE (P) OR DOUBLE EPOXY LINED STEEL (S)

SPECIFICATIONS

Container	 24" dia/ x 34" hgt. (D) double epoxy lined steel (S) high density polythylene
Carbon	 180 lbs. virgin high activity carbon
Max. Suggested Flow	- 300 CFM
Max. Rated Flow	- 350 CFM
Shipping Weight	- 235 lbs.
Inlet	– 4″ fpt
Outlet	- 4" fpt
Drain	- 2" Bung

<< Previous Page Home Next Page>>

Filtration - Inline Filter (Dual Connection)


Inline Filters protect the blower from harmful dust and other particles that may be drawn into the blower through the air distribution system. Normally used in vacuum systems.

SPECIFICATIONS:

Inline filter PN 271200 is a straight through design Inlet is directly opposite of outlet

HOUSING – Steel MEDIA – Polyester EFFICIENCY – 97-98% (8 to 10 micron particle size) FILTER ELEMENT – Replaceable (see filter elements) NOTE: "Z" MEDIA (1 to 3 micron particle size) available

* Feature 1/4" threaded tap for gauge connection on inlet and outlet

ROTRON®

					Part/Mode	el Number			
Specification	Units	271200	516461	515254	515255	515256	516463*	516465*	517611*
Filter Element	-	271078	516434	516434	516435	516435	515135	515135	516515
Ref Blower Model	-	A	В	C, D	E	F	G	Н	Н
Inlet Connection	-	1.75 SO	1.00 NPSC-F	1.50 NPSC-F	2.00 NPSC-F	2.50 NPSC-F	3.00 NPT-M	4.00 NPT-M	6.00 NPT-M
Outlet Connection	-	2.00 SO	1.00 NPSC-F	1.50 NPSC-F	2.00 NPSC-F	2.50 NPSC-F	3.00 NPT-M	4.00 NPT-M	6.00 NPT-M
Dimension A	Inches	5.25	7.25	7.00	8.00	8.00	14.00	14.00	18.00
Dimension A	mm	133.4	184.2	177.8	203.2	203.2	355.6	355.6	457.2
Dimension B	Inches	8.31	6.50	6.50	10.25	10.25	26.50	27.00	28.00
Dimension B	mm	211.1	165.1	165.1	260.4	260.4	673.1	685.8	711.2
Dimension C	Inches	2.00	1.00	1.50	2.00	2.50	3.00	4.00	6.00
Dimension C	mm	50.8	25.4	38.1	50.8	63.5	76.2	101.6	152.4
	Inches	1.75	1.00	1.50	2.00	2.50	3.00	4.00	6.00
Dimension D	mm	44.5	25.4	38.1	50.8	63.5	76.2	101.6	152.4
Z Media Filter PN	-		517886	517887	517888	517889	517890	517891	517892

Blower Model Reference Key					
A = SPIRAL	E = DR/EN/CP 656, 6, 633, S7				
B = DR/EN/CP 068, 083, 101, 202	F = DR/EN/CP 757, 808, 858, S9, P9 (Inlet Only)				
C = DR/EN/CP 303, 312, 313, 353	G = DR/EN/CP 833, S13, P13 (Inlet Only)				
D = DR/EN/CP 404, 454, 513, 505, 555, 523	H = DR/EN/CP 909, 979, 1233, 14, S15, P15 (Inlet Only)				

This document is for informational purposes only and should not be considered as a binding description of the products or their performance in all applications. The performance data on this page depicts typical performance under controlled laboratory conditions. AMETEK is not responsible for blowers driven beyond factory specified speed, temperature, pressure, flow or without proper alignment. Actual performance will vary depending on the operating environment and applications. AMETEK products are not designed for and should not be used in medical life support applications. AMETEK reserves the right to revise its products without notification. The above characteristics represent standard products. For product designed to meet specific applications, contact AMETEK Technical & Industrial Products Sales department.

Measurement - Air Flow Meter

ROTRON[®]

FEATURES

- Direct reading in SCFM
- Low pressure drop (2-4" typical) across the ow meter
- Non-clogging, low impedance air streamLight weight aluminum
- Light weight alumi
 No moving parts
- Large easy-to-read dial
- Accurate within 2% at standard conditions
- Good repeatability
- Available in 2", 3" and 4" sizes
- Factory con gured for quick installation
- .048" Allen key supplied for gauge adjustment

OPTIONS

- Corrosion-resistant version with Chem-Tough
 ™
 or in stainless steel
- FDA-approved Food Tough™surface conversion

BENEFITS

- OPTIMIZE SYSTEM EFFICIENCY
- Measuring the correct air ow can assist you in ne-tuning to your system's optimal e ciency.
- BALANCE MULTI-PIPING SYSTEMS

When evacuating CFM from more than one pipe, di erent run lengths or end system impedance can cause one pipe to handle more CFM than the other. With an accurate CFM reading, piping can be balanced by bleeding air in/out or by creating an extra impedance.

DETECT CHANNELING OR PLUGGING

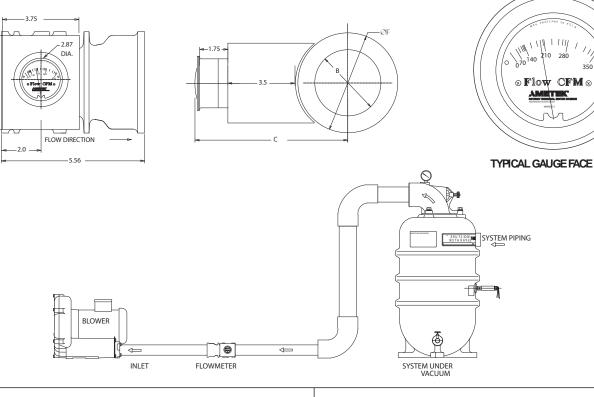
For systems in which channeling or plugging can occur, a change in the CFM measured can help indicate the unseen changes in your system.

Part/Model Number							
		FM20C030Q	FM20C045Q	FM20C065Q	FM20C125Q	FM20C175Q	FM20C225Q
Specification	Units	550599	550600	550601	550602	550603	550604
Flow Rate	CFM	2	2	2	2	2	2
FIOW Rate	m3/hr	3.4	3.4	3.4	3.4	3.4	3.4
Threads B	-	6-30	9-45	13-65	25-125	35-175	45-225
Dimension C	Inches	7.18	7.18	7.18	7.18	7.18	7.18
Dimension	mm	182.4	182.4	182.4	182.4	182.4	182.4
Dimension D	Inches	7.0	7.0	7.0	5.8	5.8	5.8
Dimension D	mm	177.8	177.8	177.8	147.3	147.3	147.3
Dimension F	Inches	2.0	2.0	2.0	2.0	2.0	2.0
Dimension E	mm	50.8	50.8	50.8	50.8	50.8	50.8
Dimension F	Inches	3.75	3.75	3.75	3.75	3.75	3.75
Dimension F	mm	95.3	95.3	95.3	95.3	95.3	95.3

Part/Model Number							
		FM30C250Q	FM30C350Q	FM30C475Q	FM40C450Q	FM40C600Q	FM40C850Q
Specification	Units	550605	550606	550607	550608	550609	550610
Elever Dete	CFM	2	2	2	2	2	2
Flow Rate	m3/hr	3.4	3.4	3.4	3.4	3.4	3.4
Threads B	-	50-250	70-350	95-475	90-450	120-600	170-850
Dimension C	Inches	7.18	7.18	7.18	7.18	7.18	7.18
Dimension C	mm	182.4	182.4	182.4	182.4	182.4	182.4
Dimension D	Inches	7.0	7.0	7.0	5.8	5.8	5.8
Dimension D	mm	177.8	177.8	177.8	147.3	147.3	147.3
Dimension E	Inches	2.0	2.0	2.0	2.0	2.0	2.0
Dimension E	mm	50.8	50.8	50.8	50.8	50.8	50.8
Dimension F	Inches	3.75	3.75	3.75	3.75	3.75	3.75
Dimension F	mm	95.3	95.3	95.3	95.3	95.3	95.3

This document is for informational purposes only and should not be considered as a binding description of the products or their performance in all applications. The performance data on this page depicts typical performance under controlled laboratory conditions. AMETEK is not responsible for blowers driven beyond factory specified speed, temperature, pressure, flow or without proper alignment. Actual performance will vary depending on the operating environment and applications. AMETEK products are not designed for and should not be used in medical life support applications. AMETEK reserves the right to revise its products without notifications. The above characteristics represent standard products. For product designed to meet specific applications, contact AMETEK Technical & Industrial Products also department.

3.75

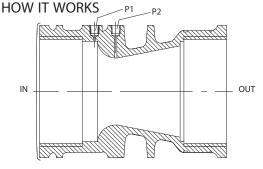

Measurement - Air Flow Meter

ROTRON[®]

' 1 /

350

TYPICAL FLOW METER ARRANGEMENT


HIGH TEMPERATURE/PRESSURE CORRECTION

SCFM 1 SCFM $_2$ = 530 х

Pf₂ = Absolute Pressure in PSIA

Tf₂ = Temperature in °F

- Use on inlet to limit need to correct for high pressure or elevated outlet temperature
- Standard model limits = 140°F and 30 PSIG

ROTRON'S ow meter is a venturi style design. After air enters the inlet, the pressure is measured in the P1 tap. The second tap, P2, measures the pressure at the throat. The di erential between P1 and P2 registers across a special calibrated CFM gauge to provide accurate readings. The throat is then expanded back to the original size to keep pressure loss to under 2-4 IWG.

This document is for informational purposes only and should not be considered as a binding description of the products or their performance in all applications. The performance data on this page depicts typical performance under controlled laboratory conditions. AMETEK is not responsible for blowers driven beyond factory specified speed, temperature, pressure, flow or without proper alignment. Actual performance will vary depending on the operating environment and application. AMETEK products are not designed for and should not be used in medical life support applications. AMETEK reserves the right to revise its products without notification. The above characteristics represent standard products. For product designed to meet specific applications, contact AMETEK Technical & Industrial Products Sales department.

G 8

Accessories

Noise Reduction - Inline Muffler (Dual Connection)

Inline Mufflers are utilized for noise reduction in applications where piping systems are connected directly to both ends of the muffler. Muffler may be used on inlet or outlet of blower.

SPECIFICATIONS:

HOUSING - Steel MEDIA - Acoustical Material CONNECTION

R

OUTLET CONNECTION

						Part/Mode	el Number				
Specification	Units	550888	522948	529900	551377	515185	511569	515210	551565	516264	516265
Ref Blower Model	-	D	E	E	E	F	G	G	G	Н	Н
Inlet Connection	-	1.5 NPT-M	2.0 NPT-M	2.0 NPSC-F	2.0 NPT-M	2.5 NPT-M	3.0 NPT-M	4.0 NPT-M	4.0 NPT-M	4.0 NPT-M	6.0 NPT-M
Outlet Connection	-	2.0 NPT-F	2.0 NPSC-F	2.0 NPSC-F	2.0 NPT-M	2.5 NPT-F	3.0 NPT-F	4.0 NPT-F	4.0 NPT-M	4.0 NPT-F	6.0 NPT-F
Dimension A	Inches	4.00	4.00	4.38	4.00	6.12	7.00	10.00	10.00	8.00	12.00
Dimension A	mm	101.6	101.6	111.3	101.6	155.4	177.8	254	254	203.2	304.8
Dimension D	Inches	7.75	15.75	15.75	15.75	15.00	18.00	24.00	24.00	22.00	30.00
Dimension B	mm	196.9	400.1	400.1	400.1	381	457.2	609.6	609.6	558.8	762
	Inches	15.5	18.45	18.45	18.15	19.00	22.25	30.00	30.00	27.75	36.75
Dimension C	mm	393.7	468.6	468.6	461	482.6	565.2	762	762	704.9	933.5

INLET

Blower Model Reference Key					
A = SPIRAL	E = DR/EN/CP 656, 6, 633, S7				
B = DR/EN/CP 068, 083, 101, 202	F = DR/EN/CP 757, 808, 858, S9, P9 (Inlet Only)				
C = DR/EN/CP 303, 312, 313, 353	G = DR/EN/CP 833, S13, P13 (Inlet Only)				
D = DR/EN/CP 404, 454, 513, 505, 555, 523	H = DR/EN/CP 909, 979, 1233, 14, S15, P15 (Inlet Only)				

This document is for informational purposes only and should not be considered as a binding description of the products or their performance in all applications. The performance data on this page depicts typical performance under controlled laboratory conditions. AMETEK is not responsible for blowers driven beyond factory specified speed, temperature, pressure, flow or without proper alignment. Actual performance will vary depending on the operating environment and applications. AMETEK products are not designed for and should not be used in medical life support applications. AMETEK products are not designed for and should not be used in medical life support applications. AMETEK products are not performed and should not be used in medical life support applications. AMETEK products are not performed and should not be used in medical life support applications. AMETEK products are not performed and should not be used in medical life support applications. American and applications contact AMETEK Technical & Industrial Products Sales department.

G 12

Filtration - Moisture Separator

By separating and containing entrained liquids, ROTRON'S™ moisture separator helps protect our regenerative blowers and the end treatment system from corrosion and mineralization damage. Recommended for all soil vacuum extraction Applications.

ROTRON[®]

SPECIFICATIONS:

SEPARATION METHOD – High Effciency Cyclonic RELIEF VALVE MATERIAL – Brass & Stainless Steel FLOAT MATERIAL – Copper FLOAT SWITCH – SPDT, Explosion-proof NEMA 7&9, 5 Amp max.

"A" O.D. INI FT "A" O.D. INLET FLOAT LEVEL SWITCH (OPTIONAL) FLOAT LEVEL SWITCH (OPTIONAL) 1/4" NPT (PLUGGED) 1/4" NPT (PLUGGED) 1/4" NPT (PLUGGED) P P "A"O INLI E-Fail-- नि applications. - Hн VACUUM GAUGE (OPTIONAL) VACUUM GAUGE (OPTIONAL) VACUUM RELIEF VACUUM GAUGE ß <u></u>₽⁄ VACUUM GAUG (OPTIONAL) VACUUM RELIEF VALVE VACUUM RELIEF FLOAT SWITCH (OPTIONAL) <u>س</u> OUTLET VALVE - 252 OUTLET 3/4" NPT-MOI STURE <u>گ</u> G OPTIONAL WATER LEVEL CAPACITY (PER CHART) 3.90 DRAIN 3/4" NPT 3/4" NPT đ ٩ DRAIN - 1" NPT INTERNAL THD

PLASTIC "P" DESIGN

METAL "D" DESIGN

METAL "B" DESIGN

		Part/Model Number					
		MS200PS	MS300PS	MS350BS	MS500BS	MS600BS	MS1000BS
Specification	Units	038519	038520	038357	080660	080659	038914
Dimension A	Inches	2.38	2.88	3.25	3.25	4.00	6.00
Dimension A	mm	60.5	73.2	82.6	82.6	101.6	152.4
CFM Max.	CFM	200	300	350	500	600	1000
	m3/hr	340	510	595	850	1020	1700
Dimension B	Inches	22.46	22.46	28.00	28.00	27.00	31.00
Dimension B	mm	570.5	570.5	711.2	711.2	685.8	787.4
Dimension C	Inches	16.00	16.00	23.00	23.00	23.00	27.00
	mm	406.4	406.4	584.2	584.2	584.2	685.8
Dimension D	Inches	3.25	3.25	4.00	4.00	4.00	4.00
Dimension D	mm	82.6	82.6	101.6	101.6	101.6	101.6
Dimension F	Inches	31.05	31.05	37.25	37.37	37.37	47.32
Dimension E	mm	788.7	788.7	946.2	949.2	949.2	1201.9
Dimension F	Inches	33.30	33.30	39.50	54.50	54.50	51.70
Dimension F	mm	845.8	845.8	1003.3	1384.3	1384.3	1313.2
Dimension II	Inches	6	6.00	9.75	9.75	9.25	10.00
Dimension H	mm	152.4	152.4	247.7	247.7	235	254
Dimension O	Inches	4.50 OD	4.50 D	4.50 OD	6.63 ID	6.63 ID	8.62 OD
Dimension G	mm	114.3	114.3	114.3	168.4	168.4	218.9
Dimension I	Inches	13.25	13.25	17.50	17.50	17.50	19.88
Dimension J	mm	336.6	336.6	444.5	444.5	444.5	505
Drain Internal Thd	-	3/4	3/4	1	1	1	1
Obianias Weight	Lbs	42	42	82	95	96	150
Shipping Weight	Kg	19.1	19.1	37.2	43.1	43.5	68

This document is for informational purposes only and should not be considered as a binding description of the products or their performance in all applications. The performance data on this page depicts typical performance under controlled laboratory conditions. AMETEK is not responsible for blowers driven beyond factory specified speed, temperature, pressure, flow or without proper alignment. Actual performance will vary depending on the operating environment and application. AMETEK products are not designed for and should not be used in medical life support applications. AMETEK reserves the right to revise its products without notification. The above characteristics represent standard products. For product designed to meet specific applications, contact AMETEK rechnical & Industrial Products Sales department.

ROTRON[®]

2.0 Moisture Separator[™] Specifications

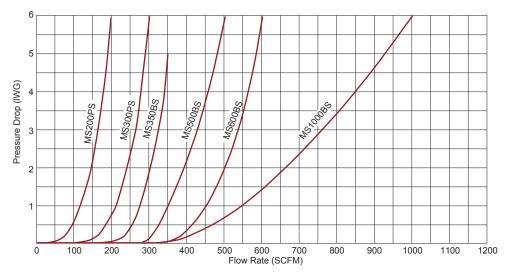
2.1 Duty

The moisture separator shall be designed for use in a soil vapor extraction system capable of continuous operation with a pressure drop of less than six inches of water at the rated flow of ______ SCFM. The separator shall be capable of operation under various inlet conditions randing from a fine mist to slugs of water with high efficiency.

2.2 Principle of Operation

The moisture separator shall incorporate cyclonic separation to remove entrained water. The separator must protect against an overflow by fail safe mechanical means. An electrical switch or contact(s) alone is not an acceptable means of protection against overflow, but is a good backup.

2.3 Construction


The body of the moisture separator shall be constructed of heavy wall plastic or heavy gauge cold rolled steel. The steel interior and exterior shall be epoxy (powder) coated to resist abrasion, corrosion, and chipping that might expose the surface. The inlet shall be tangentially located and welded to the body. The outlet port shall be constructed of PVC or cast aluminum alloy, flanged and sealed to the center of the top of the separator. The separator shall incorporate a non-sparking copper float ball and an adjustable relief valve to protect against overflow and overheating the blower.

2.4 Capacity and Dimension

The moisture separator must have a liquid capacity of _____ gallons. The inlet shall be _____ inch OD slip-on type. The outlet shall be _____ inch OD slip-on type.

2.5 Pressure Drop

For DR/EN/CP Blower Model	Selector Moisture Separator Model	Liquid- holding Capacity (gallons)	Inlet (OD)	Outlet	Max Vacuum Allow (IHG)
404 454 505 513 523 555 633 833	MS200PS	7	2.38	4.5 OD	12
656 6 757	MS300PS	7	2.88		
808	MS350BS				
858 1233	MS500BS	40	3.25	6.63 ID	22
909	MS600BS		4.0		
979 14	MS1000BS	65	6.0	8.62 OD	

This document is for informational purposes only and should not be considered as a binding description of the products or their performance in all applications. The performance data on this page depicts typical performance under controlled laboratory conditions. AMETEK is not responsible for blowers driven beyond factory specified speed, temperature, pressure, flow or without proper alignment. Actual performance will vary depending on the operating environment and application. AMETEK products are not designed for and should not be used in medical life support applications. AMETEK reserves the right to revise its products without notification. The above characteristics represent standard products. For product designed to meet specific applications, contact AMETEK Technical & Industrial Products Sales department.

PRECISION MOTION CONTROL DYNAMIC FLUID SOLUTIONS

G 6

Accessories

Noise Reduction - Sound Attenuating Enclosure

Frameless sound attenuating enclosures are a proven way to reduce regeenrative blower mechanical noise when additional mufflers are just not enough. Additional enclosure options are available.

FEATURES:

Excellent noise reduction (~10DbA) Resistance to elements and aesthetic appearance Compact size for ease of installation Easy access for routine maintenance (removable foor

> 18" FAN -ASSEMBLY

and sidewalls)

LIFTING HOLE -(PLUGGED) TWO (2) PER SIDE (TOTAL 4)

SPECIFICATIONS:

Roof, floor and walls: galvanized 16 ga. carbon steel sheet metal

Louvers and/or hood: Riveted aluminum Hardware: Chrome plated aluminum handles with stainless steel fastners

ROTRON[®]

Latches: Over center glvanized with adjustable tension and padlock eye

Sound attenuating material: 2" rigid polyester foam with mylar facing (rated UL-94)

Exterior finish: Polyurethane enamel

Enclosure ventilation: 1/3 HP, 230/460V, 3-phase or 1-phase 50/60Hz fan, TEFC or XP motors Fan Guard: Nickel plated wire type

 $\begin{array}{c} 15.00 \\ 15.00 \\ 15.00 \\ 15.00 \\ 15.00 \\ 15.00 \\ 15.00 \\ 15.00 \\ 15.00 \\ 15.00 \\ 15.00 \\ 15.00 \\ 16.00 \\$

		Part/Model Number					
		SAE30W72F	SAE36W72F				
Specification	Units	552904	552905				
Width	Inches	30	36				
widui	mm	762	914.4				
Blower Size	-	656, 707, 757, 808, 858, 909, 979, P9, S9	14, P13, S13, P15, S15				
Height	Inches	46	52				
Height	mm	1168.4	1320.8				
Longth	Inches	50	60				
Length	mm	1270	1524				

This document is for informational purposes only and should not be considered as a binding description of the products or their performance in all applications. The performance data on this page depicts typical performance under controlled laboratory conditions. AMETEK is not responsible for blowers driven beyond factory specified speed, temperature, pressure, flow or without proper alignment. Actual performance will vary depending on the operating environment and applications. AMETEK products are not designed for and should not be used in medical life support applications. AMETEK reserves the right to revise its products without notification. The above characteristics represent standard products. For product designed to meet specific applications, contact AMETEK restricts all industrial Products Sales department.

G 10

APPENDIX F

ABCA

SEVILLE DYE ABCA

Analysis of Brownfields Cleanup Alternatives – Preliminary Evaluation Former Seville Dyeing Company, 117 and 229 First Avenue, Woonsocket, RI RIDEM Case No.: SR-39-1211A&B

Prepared by the City of Woonsocket

Please note that the draft Analysis of Brownfields Cleanup Alternatives (ABCA) submitted as part of the proposal is intended as a brief preliminary document. The format of this document is suitable for the purpose of grant proposal submission, but not for compliance with the Terms and Conditions of an awarded grant. In addition, this document may not meet state requirements for the evaluation of cleanup alternatives.*

I. Introduction & Background

a. Site Location (*address*)

The site is located at 117 and 229 First Avenue in Woonsocket, RI (herein referred to as "the Site").

a.1 Forecasted Climate Conditions

According to the US Global Change Research Program (USGCRP), climate trends for the northeast region of the United States include increased temperatures, increased precipitation with greater variability, increased extreme precipitation events, and rises in sea level. Some of these factors, most specifically increased precipitation that may affect flood waters and stormwater runoff, are most applicable to the cleanup of the Site.

The Site is adjacent to the Blackstone River. Based on a review of Federal Emergency Management Agency (FEMA) Map #44007C0069G dated March 2, 2009, the majority of the Site is located within Zone X. The Zone X designation is for areas with a 0.2% annual chance of flood; areas of 1% annual chance of flood with average depths of less than 1 foot or with drainage areas less than 1-square mile; and areas protected by levees from 1% annual chance of flood. The northeastern portion of the Site is located with an "AE, 0.2% Annual Chance Flood Hazard Zone. However, greater storm frequency and intensity in a changing climate may result in more frequent and more powerful flood waters within the Blackstone River, which may result in changes to the flood zone and increased risk of flooding of the Site.

Under current Site conditions, increased precipitation and extreme weather could result in additional stormwater runoff and potential erosion to the Site from the onsite concrete/asphalt areas.

Based on the nature of the Site and its proposed reuse, changing temperature, rising sea levels, wildfires, changing dates of ground thaw/freezing, changing ecological zone, saltwater intrusion and changing groundwater table are not likely to significantly affect the Site.

b. Previous Site Use(s) and any previous cleanup/remediation

The 229 First Avenue portion of the Site consists of 4.3 acres that was a textile/mercantile mill complex from 1903 until demolition in 2011. The 117 First Avenue portion of the Site consists of 1.08 acres that was previously utilized as a motor freight terminal from 1949 to 1997.

A series of documented releases and/or other episodes of environmental non-compliance associated with prior activities were identified on the 117 First Avenue parcel. Environmental investigations from the 1990s identified the storage of oil containers, 25 drums of gasoline and sludge, an empty 500-gallon above ground storage tank (former contents unknown), and soil staining. Soil testing indicated elevated levels of total petroleum hydrocarbons (TPH) and polyaromatic hydrocarbons (PAHs) in soil. This work culminated with the implementation of engineered and institutional controls.

An abandoned, suspected 20,000-gallon No. 6 heating oil underground storage tank (UST) is located within a concrete bunker on the western perimeter of the Site (229 First Avenue parcel).

c. Site Assessment Findings (briefly summarize the environmental investigations that have occurred at the site, including what the Phase I and Phase II assessment reports revealed in terms of contamination present, if applicable)

GZA completed a Phase I Environmental Site Assessment dated September 2018 for the Site, on behalf of the Rhode Island Department of Environmental Management (RIDEM), as part of a Target Brownfields Assessment. GZA's Phase I ESA identified three Recognized Environmental Conditions (RECs) and one Controlled Recognized Environmental Condition (CREC) in connection with the property:

- An abandoned, suspected 20,000-gallon No. 6 heating oil underground storage tank (UST) located within a concrete bunker on the western perimeter of the Site.
- The presence of solid waste and areas of soil staining observed in the northern portion of the Site.
- The former mill buildings were utilized for approximately 100 years for textile manufacturing which likely has resulted in impacts to soil and/or groundwater as a result of historic use and/or undocumented releases of oil and/or hazardous materials.
- A series of documented releases and/or other episodes of environmental non-compliance associated with prior activities were identified on the 117 First Avenue parcel. Environmental investigations from the 1990s identified the storage of oil containers, 25 drums of gasoline and sludge, an empty 500-gallon above ground storage tank (former contents unknown), and soil staining. Soil testing indicated elevated levels of TPH and PAHs in soil. This work culminated with the implementation of engineered and institutional controls identified as a CREC

consisting of an asphalt cap and an Environmental Land Use Restriction (ELUR) that was recorded on Lot 117.

To evaluate these RECs, GZA conducted a subsurface investigation at the Site in November/December 2018. GZA completed 14 soil test borings and the collected soil samples for field screening and laboratory analysis. The 14 borings (B-1 through B-3, B-5 through B-11, MW-3, MW-4, MW-7 and MW-8) were completed to depths of 8 to 20 feet below ground surface (bgs). Two of the borings were located directly downgradient of the #6 oil UST bunker. Four borings were completed as shallow overburden groundwater monitoring wells. Soil samples recovered during the boring program were observed to generally consist of fine to coarse sand with varying amounts of gravel and silt in all borings. A majority of the borings also had traces of asphalt, brick and concrete between 0-10 ft bgs, indicating that the area has been filled. Groundwater was encountered at a depth of 8 to 13 feet bgs. A layer of petroleum impacted soil was observed in borings MW-7 and MW-8 (located downgradient of the UST bunker) from 10 to 20 feet bgs.

Thirteen soil samples, including one blind duplicate, were submitted to the laboratory for testing; twelve samples (including one blind duplicate) were tested for volatile organic compounds (VOCs), PAHs, TPH, polychlorinated biphenyls (PCBs), PP-13 metals. The remaining sample was tested for TPH fingerprint only. I/C-DEC exceedences for metals and certain PAHs were noted in MW-3, MW-4,, B-3, B-5, B-6, B-7 and B-11 in samples collected from 0-5 feet and/or 5-10 feet bgs. TPH also exceeded the I/C-DEC and GB-Leachability Criteria in samples from MW-7 (10-15 feet), B-1 (5-10 feet) and B-10 (7.5-9 feet). MW-8 and B-1 are located immediately downgradient of the oil UST bunker.

One round of groundwater samples was collected from the four newly installed wells. Results showed exceedences of the GB Groundwater Objective for benzene and ethylbenzene in MW-8; concentrations were 3.41 and 14.5 mg/L, respectively. This well is located downgradient of the oil UST bunker. A VI screening indicates that VI risk may be present if a building were to be constructed onsite in the future; currently the VI pathway is incomplete, as no buildings are located at the Site.

d. Project Goal (site reuse plan)

The planned reuse for the Site is restricted residential or industrial/commercial. At this time the City does not have a specific reuse plan for the property.

II. Applicable Regulations and Cleanup Standards

a. Cleanup Oversight Responsibility (identify the entity, if any, that will oversee the cleanup, e.g., the state, Licensed Site Professional, other required certified professional)

The cleanup will be overseen by RIDEM. In addition, all documents prepared for this Site are submitted to the state environmental department under RIDEM Case No. SR-39-1211A&B.

b. Cleanup Standards for major contaminants (briefly summarize the standard for cleanup e.g., state standards for residential or industrial reuse)

The City currently anticipates that the RIDEM RDEC, GB Leachability Criteria and GB Groundwater Objectives will be used as the cleanup standards.

c. Laws & Regulations Applicable to the Cleanup (briefly summarize any federal, state, and local laws and regulations that apply to the cleanup)

Laws and regulations that are applicable to this cleanup include the Federal Small Business Liability Relief and Brownfields Revitalization Act, the Federal Davis-Bacon Act, Rhode Island environmental laws, and City by-laws. Federal, state, and local laws regarding procurement of contractors to conduct the cleanup will be followed.

In addition, all appropriate permits (*e.g.*, notify before you dig, wetlands/stormwater soil transport/disposal manifests) will be obtained prior to the work commencing.

III. Cleanup Alternatives

a. Cleanup Alternatives Considered (minimum two different alternatives plus No Action)

To address contamination at the Site, four different alternatives were considered, including: Alternative #1 - No Action; Alternative #2 - Institutional Controls; Alternative #3 - Limited Design Investigation, Oil UST Cleaning, Bio-vent System, Site Fencing, Institutional Controls and Long-Term Monitoring; and Alternative #4 Site Capping (as part of Site redevelopment), Limited Design Investigation, Oil UST Cleaning, Bio-vent System, Site Fencing, Institutional Controls and Long-Term Monitoring.

b. Evaluation of Cleanup Alternatives (brief discussion of the effectiveness, implementability and a preliminary cost estimate for each alternative)

To satisfy EPA requirements, the effectiveness, implementability, and cost of each alternative must be considered prior to selecting a recommended cleanup alternative.

Effectiveness – Including Climate Change Considerations

- Alternative #1: No Action is not effective in controlling or preventing the exposure of receptors to contamination at the Site.
- Alternative #2: Under this alternative, an ELUR could be placed on the property, prohibiting future groundwater use, requiring buildings constructed onsite to include a sub-slab depressurization system and limiting land use to industrial/commercial activities. However, this alternative would not address

VOC/TPH concentrations in groundwater, the presence of NAPL in soil (and potentially in groundwater) or direct exposure to soils exceeding the I/C DEC.

- Alternative #3: Limited Design Investigation, Oil UST Cleaning, Bio-vent System, Site Fencing, Institutional Controls and Long-Term Monitoring is an effective way to mitigate risk at the Site, since soil TPH contamination will be removed, Site access will be restricted and residential use/groundwater use on the property will be prohibited through institutional controls.
- Alternative #4: Site Capping (as part of Site redevelopment), Limited Design Investigation, Oil UST Cleaning, Bio-vent System, Site Fencing, Institutional Controls and Long-Term Monitoring is equally effective as Alternative #3

General Climate Consideration Notes:

Any future development of the Site will be completed in accordance with RIDEM stormwater regulations. Therefore, impacts from increased precipitation and stormwater discharge due to greater storm intensity is not expected to impact the Site with proper engineering, which is planned despite the selected remedial alternative.

Implementability

- Alternative #1: No Action is easy to implement since no actions will be conducted.
- Alternative #2: Institutional Controls is easy to implement as an ELUR can easily be filed on the property.
- Alternative #3: Limited Design Investigation, Oil UST Cleaning, Bio-vent System, Site Fencing, Institutional Controls and Long-Term Monitoring will be moderately difficult and costly to implement. Some excavation will be required during installation of the bio-vent system and long-term monitoring will be required. Work will be planned to minimize impacts to the local community. The bio-vent system will be constructed to avoid climate change impacts, i.e., potential increase flooding of the Blackstone River.
- Alternative #4: Site Capping (as part of Site redevelopment), Limited Design Investigation, Oil UST Cleaning, Bio-vent System, Site Fencing, Institutional Controls and Long-Term Monitoring will be moderately difficult and costly to implement. Excavation and Site grading will be required as part of Site capping. Work will be planned to minimize impacts to the local community. The proposed cap and any Site redevleopment will be constructed to avoid climate change impacts, i.e., potential increase flooding of the Blackstone River.

Cost

- There will be no costs under Alternative #1: No Action.
- It is estimated that Alternative #2: Institutional Controls will cost \$9,000.
- Alternative #3: Limited Design Investigation, Oil UST Cleaning, Bio-vent System, Site Fencing, Institutional Controls and Long-Term Monitoring is estimated to cost roughly \$440,000, including long term monitoring for five years.
- Alternative #4: Site Capping (as part of Site redevelopment), Limited Design Investigation, Oil UST Cleaning, Bio-vent System, Site Fencing, Institutional

Controls and Long-Term Monitoring is estimated to cost roughly between \$828,000 and \$1,300,000, long term monitoring for five years, depending on the type of cap/redevleopment (a solar array, recreation field and industrial redevelopment were considered).

c. Recommended Cleanup Alternative

The recommended cleanup alternative is Alternative #3: Limited Design Investigation, Oil UST Cleaning, Bio-vent System, Site Fencing, Institutional Controls and Long-Term Monitoring. Alternative #1: No Action and Alternative #2: Institutional Controls cannot be recommended since they do not fully address site risks. Alterative #3: Limited Design Investigation, Oil UST Cleaning, Bio-vent System, Site Fencing, Institutional Controls and Long-Term Monitoring will remediate observed TPH contamination and mitigate direct exposure risk until the Site is redeveloped. Alternative #4: Site Capping (as part of Site redevelopment), Limited Design Investigation, Oil UST Cleaning, Bio-vent System, Site Fencing, Institutional Controls and Long-Term Monitoring will remediate observed TPH contamination and mitigate long-term direct exposure risk. For these reasons, Alternative #4 is the recommended alternative.

Green and Sustainable Remediation Measures for Selected Alternative

To make the selected alternative greener, or more sustainable, several techniques are planned. The most recent Best Management Practices (BMPs) issued under ASTM Standard E-2893: *Standard Guide for Greener Cleanups* will be used as a reference in this effort. The City will require the cleanup contractor to follow an idle-reduction policy and use heavy equipment with advanced emissions controls operated on ultra-low sulfur diesel. The number of mobilizations to the Site would be minimized and erosion/sedimentation control measures will be used to minimize runoff into environmentally sensitive areas.

APPENDIX G

DRAFT ENVIRONMENTAL LANDUSE RESTRICTION AND SOIL MANAGEMENT PLAN

Appendix G ENVIRONMENTAL LAND USAGE RESTRICTION

This Declaration of Environmental Land Usage Restriction ("Restriction") is made on this ______ day of ______, 2020____ by [property owner]the City of Woonsocket, and its successors and/or assigns (hereinafter, the "Grantor").

WITNESSETH:

WHEREAS, the Grantor <u>(name)the Rhode Island</u> <u>Department of Environmental Management (RIDEM)</u> is the Owner in fee simple of certain real property identified as <u>Plat 6/Lot 117 [specify Plat, Lot(s), address and Town or City]</u> Rhode Island (the "Property"), more particularly described in Exhibit A (Legal Description) which is attached hereto and made a part hereof;

WHEREAS, the Property (or portion thereof identified in the Class I survey which is attached hereto as Exhibit 2A and is made a part hereof) has been determined to contain soil and/or groundwater which is contaminated with certain Hazardous Materials and /or petroleum at concentrations in excess of applicable Method 1 Residential Direct Exposure Criteria and GB Leachability Criteria [residential or industrial/commercial Direct Exposure Criteria, and/or applicable groundwater objective] criteria pursuant to the <u>Rules and Regulations for the</u> Investigation and Remediation of Hazardous Material Releases ("Remediation Regulations");

WHEREAS, the Grantor and the Department have determined that the environmental land use restrictions set forth below are consistent with the regulations adopted by the Rhode Island Department of Environmental Management ("Department") pursuant to R.I.G.L. § 23-19.14-1 and that this restriction shall be a Conservation Restriction pursuant to R.I.G.L. § 34-39-1 et. seq. and shall not be subject to the 30 year limitation provided in R.I.G.L. § 34-4-21;

WHEREAS, the Department's written approval of this Restriction is contained in the document entitled: <u>Remedial-Decision Approval Letter</u>, <u>Remedial Decision Letter/ Settlement</u> <u>Agreement/Order of Approval/Remedial Approval Letter</u>] issued pursuant to the <u>Remediation</u> <u>Regulations</u>;

WHEREAS, to prevent exposure to or migration of Hazardous Substances and to abate hazards to human health and/or the environment, and in accordance with the [Remedial Decision Letter/Remedial Agreement/Order of Approval/Remedial Approval Letter], Remedial Decision Letter, the Grantor desires to impose certain restrictions upon the use, occupancy, and activities of and at the [Property/Contaminated-Site]Property;

WHEREAS, the Grantor believes that this Restriction will effectively protect public health and the environment from such contamination; and

WHEREAS, the Grantor intends that such restrictions shall run with the land and be binding upon and enforceable against the Grantor and the Grantor's successors and assigns.

NOW, THEREFORE, Grantor agrees as follows:

A. Restrictions Applicable to the [Property/Contaminated-Site]Property: In accordance with the <u>Remedial Decision Letter</u>, [Remedial Decision Letter], Remedial Agreement/ Order of Approval/ Remedial Approval Letter], the use, occupancy and activity of and at the <u>Property[Property/Contaminated Site]</u> is restricted as follows:

- i. No residential use of the <u>Property [Property/Contaminated-Site]</u> shall be permitted that is contrary to Department approvals and restrictions contained herein;
- ii. No groundwater at the <u>Property</u>[Property/Contaminated-Site] shall be used as potable water;
- iii. No soil at the Property [Property/Contaminated-Site] shall be disturbed in any manner without written permission of the Department's Office of Waste Management, except as permitted in the Remedial Action Work Plan (RAWP) or Soil Management Plan (SMP) approved by the Department in a written approval letter dated (date) Exhibit B and attached hereto;
- [iv. Humans engaged in activities at the <u>Property</u>[Property/Contaminated-Site] shall not be exposed to soils containing Hazardous Materials and/or petroleum in concentrations exceeding the applicable Department approved Direct Exposure Criteria set forth in the <u>Remediation Regulations;</u>
- [v.Water at the [Property/Contaminated-Site] shall be prohibited from infiltrating soils containing Hazardous Materials and/or petroleum in concentrations exceeding the applicable Department approved leachability criteria set forth in the <u>Remediation</u> <u>Regulations</u>;
- [vi.[v.
 No-Construction of subsurface structures shall be constructed allowed on the Property [Property/Contaminated-Site] over groundwater containing Hazardous Materials and/or petroleum in concentrations exceeding the applicable Department approved GA or GB Groundwater Objectives set forth in the Remediation Regulations, provided the structures are equipped with proper engineered controls, *e.g.* passive subslab depressurization system, capable of being converted into an active sub-slab depressurization system; and

[vii.The engineered controls at the Property [Property/ Contaminated-Site] described in the [RAWP or SMP]SMP contained in Exhibit B attached hereto shall not be disturbed and shall be properly maintained to prevent humans engaged in [residential or industrial/commercial]residentialindustrial/commercial activity from being exposed to soils containing Hazardous Materials and/or petroleum in concentrations exceeding the applicable Department-approved residentialindustrial/commercial [residential or Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

industrial/commercial] Direct Exposure Criteria in accordance with the Remediation Regulations; and

[viii.[vi. ______The engineered controls at the [Property/ Contaminated-Site] described in the [RAWP or Soil Management Plan SMP] contained in Exhibit B attached hereto shall not be disturbed and shall be properly maintained so that water does not infiltrate soils containing Hazardous Materials and/or petroleum in concentrations exceeding the applicable Department-approved leachability criteria set forth in the Remediation Regulations.

B. No action shall be taken, allowed, suffered, or omitted at the [Property/ Contaminated-Site]Property- if such action or omission is reasonably likely to:

- i. Create a risk of migration of Hazardous Materials and/or petroleum;
- ii. Create a potential hazard to human health or the environment; or
- iii. Result in the disturbance of any engineering controls utilized at the <u>Property</u>[Property/Contaminated-Site], except as permitted in the Departmentapproved [RAWP or SMP]SMP contained in Exhibit B.
- **C. Emergencies:** In the event of any emergency which presents a significant risk to human health or to the environment, including but not limited to, maintenance and repair of utility lines or a response to emergencies such as fire or flood, the application of Paragraphs A (iii.viii.) and B above may be suspended, provided such risk cannot be abated without suspending such Paragraphs and the Grantor complies with the following:
 - Grantor shall notify the Department's Office of Waste Management in writing of the emergency as soon as possible but no more than three (3) business days after Grantor's having learned of the emergency. (This does not remove Grantor's obligation to notify any other necessary state, local or federal agencies.);
 - ii. Grantor shall limit both the extent and duration of the suspension to the minimum period reasonable and necessary to adequately respond to the emergency;
 - iii. Grantor shall implement reasonable measures necessary to prevent actual, potential, present and future risk to human health and the environment resulting from such suspension;
 - iv. Grantor shall communicate at the time of written notification to the Department its intention to conduct the Emergency Response Actions and provide a schedule to complete the Emergency Response Actions;
 - v. Grantor shall continue to implement the Emergency Response Actions, on the schedule submitted to the Department, to ensure that the <u>Property [Property/Contaminated-Site]</u> is remediated in accordance with the Remediation Regulations (or applicable variance) or restored to its condition prior to such emergency. Based upon information submitted to the Department at the time the ELUR was recorded

Formatted: Bullets and Numbering

pertaining to known environmental conditions at the <u>Property[Property/Contaminated-Site]</u>, emergency maintenance and repair of utility lines shall only require restoration of the <u>Property [Property/Contaminated-Site]</u> to its condition prior to the maintenance and repair of the utility lines; and

- vi. Grantor shall submit to the Department, within ten (10) days after the completion of the Emergency Response Action, a status report describing the emergency activities that have been completed.
- **D. Release of Restriction; Alterations of Subject Area:** The Grantor shall not make, or allow or suffer to be made, any alteration of any kind in, to, or about any portion of the <u>Property</u> [Property/Contaminated Site] inconsistent with this Restriction unless the Grantor has received the Department's prior written approval for such alteration. If the Department determines that the proposed alteration is significant, the Department may require the amendment of this Restriction. Alterations deemed insignificant by the Department will be approved via a letter from the Department. The Department shall not approve any such alteration and shall not release the <u>Property [Property/Contaminated Site]</u> from the provisions of this Restriction unless the Grantor demonstrates to the Department's satisfaction that Grantor has managed the <u>Property [Property/Contaminated Site]</u> in accordance with applicable regulations.
- E. Notice of Lessees and Other Holders of Interests in the Property[Property/Contaminated-Site]: The Grantor, or any future holder of any interest in the Property [Property/Contaminated Site], shall cause any lease, grant, or other transfer of any interest in the Property [Property/Contaminated-Site] to include a provision expressly requiring the lessee, grantee, or transferee to comply with this Restriction. The failure to include such provision shall not affect the validity or applicability of this Restriction to the Property/Contaminated-Site].
- **F. Enforceability:** If any court of competent jurisdiction determines that any provision of this Restriction is invalid or unenforceable, the Grantor shall notify the Department in writing within fourteen (14) days of such determination.
- **G. Binding Effect:** All of the terms, covenants, and conditions of this Restriction shall run with the land and shall be binding on the Grantor, its successors and assigns, and each Owner and any other party entitled to control, possession or use of the <u>Property</u> [Property/Contaminated-Site] during such period of Ownership or possession.
- H. Inspection & Non-Compliance: It shall be the obligation of the Grantor, or any future holder of any interest in the <u>Property[Property/Contaminated-Site]</u>, to provide for annual inspections of the <u>Property [Property/Contaminated-Site]</u> for compliance with the ELUR in accordance with Department requirements.

[An officer or Director of the company with direct knowledge of past and present conditions of the [Property/Contaminated Site]Property (the "Company Representative"), or] <u>A a</u> qualified environmental professional will, on behalf of the Grantor or future holder of any interest in the Property[Property/Contaminated Site], evaluate the compliance status of the

Property **Property/Contaminated-Site**] on an annual basis. Upon completion of the evaluation, the [Company Representative or] environmental professional will prepare and simultaneously submit to the Department and to the Grantor or future holder of any interest in the Property [Property/Contaminated-Site] an evaluation report detailing the findings of inspection , and noting any compliance the violations at the Property/Contaminated-Site]. If the Property/Contaminated-Site] is determined to be out of compliance with the terms of the ELUR, the Grantor or future holder of any interest in the Property [Property/Contaminated-Site] shall submit a corrective action plan in writing to the Department within ten (10) days of receipt of the evaluation report, indicating the plans to bring the Property [Property/Contaminated-Site] into compliance with the ELUR, including, at a minimum, a schedule for implementation of the plan.

In the event of any violation of the terms of this Restriction, which remains uncured more than ninety (90) days after written notice of violation, all Department approvals and agreements relating to the <u>Property [Property/Contaminated-Site]</u> may be voided at the sole discretion of the Department.

I. Terms Used Herein: The definitions of terms used herein shall be the same as the definitions contained in Section <u>1.4</u>? (DEFINITIONS) of the <u>Remediation Regulations</u>.

IN WITNESS WHEREOF, the Grantor has hereunto set (his/her) hand and seal on the day and year set forth above.

[Name of Person(s), company, LLC or LLP]Rhode Island Department of Environmental Management

By:

Grantor (signature)_____

____Grantor (typed name)

STATE OF RHODE ISLAND COUNTY OF _____

In (CITY/TOWN), in said County and State, on the _____ day of _____, 20___, before me Personally appeared ______, to me known and known by me to be the party executing the foregoing instrument and (he/she) acknowledged said instrument by (him/her) executed to be (his/her) free act and deed.

Notary Public:

My Comm. Expires: _____

Exhibits: A - Remedial Decision Letter B - Soil Management Plan **EXHIBIT C** (To the Environmental Land Use Restriction)

SOILS MANAGEMENT PLAN

Seville Dyeing Company 117 & 229 First Avenue Woonsocket, Rhode Island (RIDEM Case Nos. SR-39-1221A)

As part of RIDEM-approved remedial activities conducted by GZA at property identified as Plat 6 Lot 117 (the "Property"), an Environmental Land Use Restriction (ELUR) has been recorded to help prevent humans engaged in activities at the Property (as defined in the ELUR) from being exposed to soils containing hazardous substances in concentrations exceeding the applicable Department-approved Industrial/Commercial Direct Exposure Criteria and GB Leachability Criteria pursuant to the <u>Rules and Regulations for the Investigation and Remediation of Hazardous Material Releases</u> (Remediation Regulations). Specifically, the ELUR requires that the:

- Site use of the Property be limited to restricted residential uses;
- Groundwater at the Property shall not be used as drinking water; and
- This *Soil Management Plan* (recorded with the ELUR) will be implemented should disturbances of on-site soils be required on the Property, as shown on Figure 1.

This *Soils Management Plan* has been prepared to establish procedures that will be followed should future construction/maintenance activities at the Property require the need to manage the excavation of subsurface soils. The plan serves to supplement, and will be initiated by, the RIDEM notification requirement established by the ELUR for the Property.

Potential future construction/maintenance activities at the Property that could result in the excavation of subsurface soils may include the installation and/or maintenance of subsurface utilities, the construction of site structures, and/or surface pavement. Accordingly, this plan will be implemented whenever soils are disturbed within the Property.

A *Site Plan* depicting the relevant features of the Property is attached. In accordance with Section A iii of the ELUR, no soil at the Property is to be disturbed in any manner without prior permission of the Department's Office of Waste Management, except for emergencies; minor inspections; maintenance; and other activities if such other activities do not disturb the contaminated soil at the Property. As part of the notification process, the Property owner shall provide a brief written description of the anticipated activities involving soil excavation. The notification should be submitted to the Department no later than 30 days prior to the proposed initiation of the activities. The description shall include an estimate of the volume of soil to be excavated, a list of the known and anticipated contaminants of

concern, a site figure clearly identifying the proposed areas to be excavated/disturbed, the duration of the project and the proposed disposal location of the soil.

Following written Notification, the Department will determine the post-closure reporting requirements. Significant disturbances of regulated soil will require submission of a Closure Report for Department review documenting that the activities were performed in accordance with this SMP and the Department approved ELUR. Minor disturbances of regulated soil may be documented through the annual certification submitted in accordance with Section H (Inspection & Non-Compliance) of the Department approved ELUR. The Department will also make a determination regarding the necessity of performing Public Notice to abutting property owners/tenants concerning the proposed activities. Work associated with the Notification will not commence until written Department approval has been issued. Once Department approval has been issued, the Department will be notified a minimum of two (2) days prior to the start of activities at the Property. If any significant alterations to the Department approved plan are necessary, a written approval shall be granted prior to initiating such changes.

In accordance with the ELUR, emergency work/utility repairs which require disturbing Site soils can be performed without prior written notification to RIDEM. Such work is subject to the requirements outlined in Section C of the ELUR. In addition to the RIDEM notification requirements and environmental considerations presented in that section, it is important that the contractor performing the emergency work/utility repairs be made aware of the Site conditions and provided with a copy of this Soil Management Plan.

CONTAMINANTS OF CONCERN

Direct contact with onsite soil has been identified as a long-term exposure pathway of concern at the property. Soils at the site were found to contain certain constituents, i.e., Polycyclic Aromatic Hydrocarbons (PAHs), total petroleum hydrocarbon (TPH) and metals, at concentrations that exceed the Method 1 Industrial/Commercial Direct Exposure Criteria. In addition, groundwater at the site has been found to contain TPH at significant concentrations.

To address these conditions, a remedial program described in the Remedial Action Work Plan, involving a soil vapor extraction (SVE) system to address TPH contamination in unsaturated soils, erection of a 4-foot tall fence (height subject to change) to prevent exposure and Site capping as part of eventual Site redevelopment.

DESCRIPTION AND MAINTENANCE OF ENGINEERED CONTROLS

The engineered controls are an integral part of the ELUR and SMP and must be maintained to prevent potential human exposure to contaminated soils remaining at the Site. The engineered controls consist of:

- Asphalt parking lots, concrete building slabs, and sidewalks (minimum 4-inches thick);
- A geotextile warning barrier, overlain by 6 inches of crushed stone (or a RIDEM approved equal);
- A geotextile warning barrier, overlain by 12 inches of demonstrated clean backfill (common borrow and/or topsoil); and
- The onsite building was constructed with a passive sub-slab depressurization system, capable of being converted into an active system, to prevent vapor intrusion from residual TPH in soil and groundwater

If disturbance of the structural integrity of the engineered controls, or any other activity inconsistent with the requirements of the ELUR is required at the Site (e.g., utility maintenance and/or repair, emergencies, etc.), RIDEM will be notified in writing prior to scheduled maintenance or repair, or in the case of an emergency, as soon as possible but no more than three (3) business days after Owner/Operator learns of the emergency. As previously discussed, and stated in Paragraph C of the ELUR, in the case of an emergency, the restrictions detailed in Paragraphs A (items iii thru v) and B of the ELUR may be temporarily suspended without first notifying RIDEM. In the case of scheduled excavation and/or maintenance or repair of subsurface utilities; RIDEM will be notified in writing, and a construction plan will be provided, prior to the proposed work. The basic health and safety procedures outlined in this SMP will be followed for excavation work conducted within the ELUR area.

SOIL MANAGEMENT GUIDELINES

The following presents the course of action that will be followed should soil disturbance within the Property occur:

- 1. As part of the RIDEM notification, the Property owner will provide a brief written description of the anticipated activity(ies) involving soil excavation. The description will include an estimate of the volume of soil to be excavated/disturbed and the duration of the construction project.
- 2. The selected contractor will be provided with a copy of this *Soil Management Plan* to ensure proper soil management.
- 3. Prior to the initiation of soil excavation, the selected contractor or any other personnel performing subsurface work at the Property will contact DIGSAFE and appropriate utility companies to identify and mark the location of below grade utilities.
- 4. Persons involved in the excavation and handling of the contaminated soil on the Property are to take appropriate health and safety precautions. Workers should wear, at a minimum, Level D personal protection equipment (PPE), including gloves and eye protection. Workers should also wash their hands with soap and water prior to eating, drinking, smoking, or leaving the site. Worker's safety boots are required to be brushed with a stiff bristle brush or similar instrument to remove residual soil. Used and

disposable PPE is required to be disposed of according to applicable local, State and Federal Regulations. All vehicles utilized during work shall be properly decontaminated as appropriate prior to leaving the site.

- 5. In the event that an unexpected observation or situation arises (of an environmental nature) during the work, construction activities will immediately cease. Workers will not attempt to handle the situation themselves, but will contact an environmental professional for further evaluation and direction.
- 6. During all earthwork activities and dust suppression (e.g., watering, etc) proper techniques will be employed.
- 7. The stockpiling and disposal procedures detailed in this plan apply only to excess soil which cannot be used as backfill in the original excavation or elsewhere on the Property in an approved manner. Soil generated from an excavation conducted within the ELUR area may be placed back into its original excavation for backfill upon completion of the excavation. The original stratigraphy of soil will be maintained, to the extent practicable, upon backfilling excavations so that the corresponding depth and location of the backfilled materials resembles the depth and location at which the soil originally existed. Alternatively, soil generated from an excavation in the ELUR can be disposed of at an appropriate off-site disposal/treatment facility, as described below.
- 8. Excavated soils will be staged and temporarily stored in a designated area of the property. Within reason, the storage location will be selected to limit the unauthorized access to the materials (e.g., away from public roadways/walkways). No regulated soil will be stockpiled on-site for more than 60 days without prior RIDEM approval.
- 9. Excavated regulated soils will be either stockpiled on polyethylene sheeting, or stored in roll-off type containers. In either case, the material in storage will be covered with secured polyethylene sheeting at the end of each workday. Stockpiled materials will be maintained with appropriate controls to limit the loss of the cover and protect against rainfall runoff and stormwater erosion.
- 10. Soils excavated from the Property may not be used off-site for use as fill on residential properties. Excavated material will not be re-used off-site as fill on industrial/commercial properties unless it meets the Method 1 Residential Direct Exposure Criteria for all constituents listed in the RIDEM's Rules and Regulations for the Investigation and Remediation of Hazardous Material Releases, dated November 2011 (Remediation Regulations). Prior to leaving the Property, soil must be sampled by an environmental professional, at a frequency of one sample per 500 cubic yards for the following constituents:

Analyte	EPA Test Method
Total Petroleum Hydrocarbons	Method 8100M
Volatile Organic Compounds	Method 8260
Semi-Volatile organic compounds	Method 8270
Polychlorinated Biphenyls	Method 8081

Total RCRA Metals	Method 6010 & 7471A
Flashpoint	Method 1010M
Corrosivity (pH)	Method 9045C
Reactivity	Methods SW-846 7.3.3.2/9014 and SW-846 7.3.4.2/376.2

In the event that the soil does not meet these criteria, the material must be properly managed and disposed of off-site at an appropriately licensed facility. Copies of the laboratory analysis results will be maintained by the Property owner and included in the annual inspection report for the Property, or the Closure Report, if applicable.

11. All clean fill, including sub-grade material and loam from native sources, imported to the Property must be sampled and analyzed prior to delivery and placement. Clean fill and loam brought on to the Property must be subjected to the following analytical program:

Analyte	EPA Test Method
Total Petroleum Hydrocarbons	8100M
Volatile Organic Compounds	8260
Semi-Volatile Organic Compounds	8270
Priority Pollutant Metals (PP-13)	6010 & 7471A
PCBs	8082

The frequency of sampling and testing will be:

- Full suite of analysis for up to 2,000 cubic yards, with an additional full suite for each subsequent 2,000 cubic yards of material; and
- Arsenic each 500 cubic yards of material

All soil that is to be utilized on-site must meet the Residential Direct Exposure Criteria and the GB Leachability Criteria (as defined in the Remediation Regulations) for all constituents or be certified to be non-jurisdictional by an environmental professional. Also be advised that the *Closure Report/Annual Inspection Report* for the Property must include all original laboratory analytical data or a statement from the facility that provides the clean fill and/or loam attesting to the materials origin and suitability for use at the Site.

- 12. Best soil management practices should be employed at all times and regulated soils should be segregated into separate piles (or cells or containers) as appropriate based upon the results of analytical testing, when multiple reuse options are planned (e.g. reuse on-site, reuse at a Department approved Industrial/Commercial property, or reuse/disposal at a Department approved licensed facility). Best management practices also include the managing and minimizing of the migration and/or surface run-off of hazardous materials at the Property during the remedial and/or future disturbances. This should be achieved via the installation of hay bales, silt fencing and any other appropriate measures during the entire duration of the earthwork.
- 13. Following completion of the construction/earthwork project, a *Closure Report* will be prepared and submitted to RIDEM as required. The report will demonstrate that

following completion of construction activities, the Property is in compliance with the ELUR. Copies of the material shipping records, bills of lading and receiving facility receipts associated with the disposal of the excavated soil will be maintained by the Property owner and will be summarized in the *Closure Report* and in the annual property inspection reports to be completed by the Property Owner Representative and submitted to RIDEM.

GROUNDWATER MANAGEMENT GUILDLINES

As described above, groundwater at the site has been found to contain TPH at significant. Groundwater has been encountered at the Site between approximately 9 and 22 feet below ground surface. Accordingly, the following guidelines have been developed to address dewatering operations conducted at the Property should they become necessary.

- 1. Should any project require the need for dewatering and/or disturbance of impacted groundwater in support of excavation/construction, a RIDEM Notification will be issued to the Office of Water Resources and Office of Waste Management. The Notification will include a description of plans to manage, contain, treat (if necessary) and discharge or dispose of impacted groundwater. In addition, all appropriate regulatory approvals, including coverage under RIDEM's Remediation General Permit, related to the removal, handling, treatment and discharge of impacted groundwater will be in-place prior to the initiation of the project. Such plans will, at a minimum, include an evaluation of water quality, the method by which water will be treated, contained and/or discharged/disposed and the necessary regulatory approvals, permits, *etc.* Impacted, untreated groundwater will not be discharged directly to the ground surface, collection utilities, wetlands or water bodies.
- 2. Should any project require dewatering, all impacted fluids will either be properly treated for onsite injection, surface water discharge, Publically Owned Treatment Works (POTW) discharge, or containerized for off-site disposal. Any discharges will be performed consistent with all applicable regulations and permits. With respect to fluids to be disposed off-site, they will be properly transferred and containerized to prevent discharges or leaks, characterized per the requirements of the receiving facility, and subsequently transported to a fully licensed/permitted treatment/recycling facility.

BASIC HEALTH AND SAFETY PROCEDURES

The basic health and safety procedures outlined below will be implemented while performing excavation work at the Site. The procedures are intended as a general guideline for basic, short-term excavation and maintenance activities. The contractor conducting the work will be required to follow a health and safety plan developed for their specific activities and personnel in accordance with the OSHA requirements contained in 29 CFR Part 1910.120.

Based on the documented Site conditions, the potential routes of exposure to on-site excavation or utility repair workers include dermal contact (absorption), accidental ingestion

of impacted soil or dust inhalation. Utilization of the appropriate personal protective equipment (PPE) and the general safety guidelines provided below will minimize the potential for worker exposure while performing work within the Property.

Personal Protective Equipment (PPE)

In general, the level of protection that will be used by workers will be determined by the task that the person is performing; however, at a minimum Level D PPE will be worn at all times while performing excavation activities within the ELUR area. Level D PPE will, at a minimum, consist of the following PPE:

- 1. Steel-toe work boots with over-boots as needed;
- 2. Eye protection (safety glasses or chemical splash goggles);
- 3. Work gloves;
- 4. Hard hat; and
- 5. Work coveralls.

Site Operating Procedures/Safety Guidelines

Regardless of the level of PPE necessary to complete work in the ELUR area, the following general health and safety guidelines will be followed during the performance of any excavation activities conducted within the ELUR area. Adherence to these guidelines will reduce the potential for worker exposure to impacted media.

- 1. All work conducted on-site shall be coordinated through a designated employee responsible for the implementation of the requirements of this SMP (including all health and safety procedures);
- 2. The location of all utilities in the vicinity of the excavation will be established prior to beginning work;
- 3. All spectators will remain outside the designated Exclusion Zone (established as a 50 foot perimeter beyond the area of excavation);
- 4. A pre-work meeting will be conducted at the beginning of each day to discuss the health and safety procedures;
- 5. Practice contamination avoidance: never sit down or kneel in an excavation; never lay equipment on the ground; avoid obvious sources of contamination such as puddles; and avoid unnecessary contact with objects in an excavation;
- 6. Be alert to any unusual changes in your physical condition; never ignore warning signs. Notify the responsible employee as to suspected exposures;
- 7. All equipment used in an excavation will be properly cleaned and maintained in good working order. Equipment will be inspected for signs of defect and/or contamination before use and prior to demobilization from the Property;
- 8. Eating, drinking, chewing gum, and smoking are prohibited in active excavation areas; and
- 9. The discovery of any condition that would suggest the existence of a situation more hazardous than anticipated shall result in the evacuation of site personnel

from the excavation and the re-evaluation of the hazard and the required level of protection.

In Case of Serious Exposure or Injury

In the event of serious chemical exposure or worker injury, the responsible employee will immediately be alerted. This person will follow the steps indicated below:

- 1. Summon appropriate emergency response agency by using the emergency phone numbers provided below. Convey the following information:
 - a. Nature of emergency,
 - b. Location of victim,
 - c. Specific information about exposure or accident (gases, chemical, asphyxiation, etc.),
 - d. Length of exposure, and
 - e. Hazards which may be involved in rescue or treatment;
- 2. If taken to a hospital, notify the hospital of the background of the problem:
 - a. Potential for hospital contamination,
 - b. Any contaminated items and the nature of the contamination, and
 - c. Estimated arrival time.

Emergency Phone Numbers

Emergency telephone numbers and the directions to the nearest hospital are included below. User is cautioned that this information should be checked and updated, if necessary.

Response Agency	Phone Number
Ambulance	911 or (401) 726-2000
Police	911 or (401) 766-1212
Fire	911 or (401) 765-2500
RIDEM/Office of Compliance &	(401) 222-1360 or
Inspection/Emergency Response Program	(401) 222-3070 (non-business hours)
USEPA/Hazardous Materials Spills	(800) 424-8802
Poison Control Center	(800) 222-1222
Dig Safe (Utility Clearance)	1-888-DIGSAFE
Hospital	
Landmark Medical Center Emergency	(401) 769-4100
Department	
115 Cass Ave	
Woonsocket, RI 02895	
Route to Hospital	
Total Distance: 2.4 Miles	
Estimate Time: 9 Minutes	
Directions	Distance
1: Turn SOUTH on 1 st Ave toward Chestnut St	0.1 mi

2: Turn LEFT onto Fairmount St	0.3 mi
3: Turn RIGHT onto River St	0.5 mi
4: Turn LEFT onto Market Square	331 ft
5: Turn RIGHT onto Bernon St	249 ft
6: Turn LEFT onto Truman Dr	0.5 mi
7: Turn RIGHT at the 1 st cross street onto Clinton	0.4 mi
St	
8: Turn RIGHT onto Cumberland St	0.3 mi
9: Turn LEFT onto Cass Ave	0.2 mi
10: Turn RIGHT	154 ft

Attachments: Figure 1

 $\label{eq:scalar} $$J:\RIDEM TAC\34502.04.rac\Reports\RAWP\Appendix I -draft ELUR and $$SMP\ELUR\31257.14 Soil Management Plan 2018-DRAFT.docx$

Appendix G ENVIRONMENTAL LAND USAGE RESTRICTION

This Declaration of Environmental Land Usage Restriction ("Restriction") is made on this ______ day of ______, 2020____ by [property owner]the City of Woonsocket, and its successors and/or assigns (hereinafter, the "Grantor").

WITNESSETH:

WHEREAS, the Grantor <u>(name)the Rhode Island</u> <u>Department of Environmental Management (RIDEM)</u> is the Owner in fee simple of certain real property identified as <u>Plat 6/Lots 102 and 118[specify Plat, Lot(s), address and Town or City]</u> Rhode Island (the "Property"), more particularly described in Exhibit A (Legal Description) which is attached hereto and made a part hereof;

WHEREAS, the Property (or portion thereof identified in the Class I survey which is attached hereto as Exhibit 2A and is made a part hereof) has been determined to contain soil and/or groundwater which is contaminated with certain Hazardous Materials and _or petroleum at concentrations in excess of applicable Method 1 ResidentialIndustrial/Commercial Direct Exposure Criteria and GB Leachability Criteria [residential or industrial/commercial Direct Exposure Criteria, and/or applicable groundwater objective] - criteria pursuant to the <u>Rules</u> and Regulations for the Investigation and Remediation of Hazardous Material Releases ("Remediation Regulations");

WHEREAS, the Grantor and the Department have determined that the environmental land use restrictions set forth below are consistent with the regulations adopted by the Rhode Island Department of Environmental Management ("Department") pursuant to R.I.G.L. § 23-19.14-1 and that this restriction shall be a Conservation Restriction pursuant to R.I.G.L. § 34-39-1 et. seq. and shall not be subject to the 30 year limitation provided in R.I.G.L. § 34-4-21;

WHEREAS, the Department's written approval of this Restriction is contained in the document entitled: <u>Remedial ApprovalDecision Letter</u>, [Remedial Decision Letter/ Settlement Agreement/ Order of Approval/ Remedial Approval Letter] issued pursuant to the <u>Remediation Regulations</u>;

WHEREAS, to prevent exposure to or migration of Hazardous Substances and to abate hazards to human health and/or the environment, and in accordance with the [Remedial Decision Letter/Remedial Agreement/Order of Approval/Remedial Approval Letter], Remedial Decision Letter, the Grantor desires to impose certain restrictions upon the use, occupancy, and activities of and at the [Property/Contaminated-Site]Property;

WHEREAS, the Grantor believes that this Restriction will effectively protect public health and the environment from such contamination; and

WHEREAS, the Grantor intends that such restrictions shall run with the land and be binding upon and enforceable against the Grantor and the Grantor's successors and assigns.

NOW, THEREFORE, Grantor agrees as follows:

- A. Restrictions Applicable to the [Property/Contaminated-Site]Property: In accordance with the Remedial Decision Letter, [Remedial Decision Letter/ Remedial Agreement/ Order of Approval/ Remedial Approval Letter], the use, occupancy and activity of and at the Property[Property[Contaminated Site] is restricted as follows:
 - No residential use of the <u>Property[Property[Contaminated-Site]</u>-shall be permitted that is contrary to Department approvals and restrictions contained herein;
 - ii. No groundwater at the <u>Property</u>[Property/Contaminated-Site] shall be used as potable water;
 - iii. No soil at the <u>Property [Property/Contaminated-Site]</u> shall be disturbed in any manner without written permission of the Department's Office of Waste Management, except as permitted in the Remedial Action Work Plan (RAWP) or Soil Management Plan (SMP) approved by the Department in a written approval letter dated ______(date) Exhibit B and attached hereto;
 - [iv. Humans engaged in activities at the <u>Property</u>[Property/Contaminated-Site] shall not be exposed to soils containing Hazardous Materials and/or petroleum in concentrations exceeding the applicable Department approved Direct Exposure Criteria set forth in the <u>Remediation Regulations</u>;
 - [v.Water at the [**Property/Contaminated-Site**] shall be prohibited from infiltrating soils containing Hazardous Materials and/or petroleum in concentrations exceeding the applicable Department approved leachability criteria set forth in the <u>Remediation</u> <u>Regulations</u>;
 - [vi.[v. No-Construction of subsurface structures shall be constructed allowed on the Property [Property/Contaminated-Site] over groundwater containing Hazardous Materials and/or petroleum in concentrations exceeding the applicable Department approved GA or GB Groundwater Objectives set forth in the <u>Remediation Regulations</u>, provided the structures are equipped with proper engineered controls, *e.g.* passive subslab depressurization system, capable of being converted into an active sub-slab depressurization system; and
 - [vii. The engineered controls at the Property [Property/ Contaminated-Site] described in the [RAWP or SMP]SMP contained in Exhibit B attached hereto shall not be disturbed and shall be properly maintained to prevent humans engaged in [residential or industrial/commercial]residentialindustrial/commercial activity from being exposed to soils containing Hazardous Materials and/or petroleum in concentrations exceeding

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

the applicable Department-approved <u>residentialindustrial/commercial [residential or</u> <u>industrial/commercial]</u>Direct Exposure Criteria in accordance with the Remediation Regulations;<u>and</u>

B. No action shall be taken, allowed, suffered, or omitted at the [Property/ Contaminated-Site]Property- if such action or omission is reasonably likely to:

- i. Create a risk of migration of Hazardous Materials and/or petroleum;
- ii. Create a potential hazard to human health or the environment; or
- iii. Result in the disturbance of any engineering controls utilized at the <u>Property</u>[Property/Contaminated-Site], except as permitted in the Departmentapproved [RAWP or SMP]SMP contained in Exhibit B.
- **C. Emergencies:** In the event of any emergency which presents a significant risk to human health or to the environment, including but not limited to, maintenance and repair of utility lines or a response to emergencies such as fire or flood, the application of Paragraphs A (iii.viii.) and B above may be suspended, provided such risk cannot be abated without suspending such Paragraphs and the Grantor complies with the following:
 - Grantor shall notify the Department's Office of Waste Management in writing of the emergency as soon as possible but no more than three (3) business days after Grantor's having learned of the emergency. (This does not remove Grantor's obligation to notify any other necessary state, local or federal agencies.);
 - ii. Grantor shall limit both the extent and duration of the suspension to the minimum period reasonable and necessary to adequately respond to the emergency;
 - iii. Grantor shall implement reasonable measures necessary to prevent actual, potential, present and future risk to human health and the environment resulting from such suspension;
 - iv. Grantor shall communicate at the time of written notification to the Department its intention to conduct the Emergency Response Actions and provide a schedule to complete the Emergency Response Actions;
 - v. Grantor shall continue to implement the Emergency Response Actions, on the schedule submitted to the Department, to ensure that the <u>Property [Property/Contaminated-Site]</u>-is remediated in accordance with the Remediation Regulations (or applicable variance) or restored to its condition prior to such emergency. Based upon

Formatted: Bullets and Numbering

information submitted to the Department at the time the ELUR was recorded pertaining to known environmental conditions at the

Property/Property/Contaminated-Site], emergency maintenance and repair of utility lines shall only require restoration of the Property [Property/Contaminated-Site] to its condition prior to the maintenance and repair of the utility lines; and

- vi. Grantor shall submit to the Department, within ten (10) days after the completion of the Emergency Response Action, a status report describing the emergency activities that have been completed.
- D. Release of Restriction; Alterations of Subject Area: The Grantor shall not make, or allow or suffer to be made, any alteration of any kind in, to, or about any portion of the Property [Property/Contaminated Site] inconsistent with this Restriction unless the Grantor has received the Department's prior written approval for such alteration. If the Department determines that the proposed alteration is significant, the Department may require the amendment of this Restriction. Alterations deemed insignificant by the Department will be approved via a letter from the Department. The Department shall not approve any such alteration and shall not release the Property [Property/Contaminated Site] from the provisions of this Restriction unless the Grantor demonstrates to the Department's satisfaction that Grantor has managed the Property [Property/Contaminated Site] in accordance with applicable regulations.
- E. Notice Holders Interests of Lessees and Other of in the Property[Property/Contaminated-Site]: The Grantor, or any future holder of any interest in the Property[Property/Contaminated-Site], shall cause any lease, grant, or other transfer of any interest in the Property [Property/Contaminated-Site] to include a provision expressly requiring the lessee, grantee, or transferee to comply with this Restriction. The failure to include such provision shall not affect the validity or applicability of this Restriction to the Property/Contaminated-Site].
- **F. Enforceability:** If any court of competent jurisdiction determines that any provision of this Restriction is invalid or unenforceable, the Grantor shall notify the Department in writing within fourteen (14) days of such determination.
- **G. Binding Effect:** All of the terms, covenants, and conditions of this Restriction shall run with the land and shall be binding on the Grantor, its successors and assigns, and each Owner and any other party entitled to control, possession or use of the <u>Property</u> [Property/Contaminated-Site] during such period of Ownership or possession.
- H. Inspection & Non-Compliance: It shall be the obligation of the Grantor, or any future holder of any interest in the <u>Property[Property/Contaminated-Site]</u>, to provide for annual inspections of the <u>Property [Property/Contaminated-Site]</u> for compliance with the ELUR in accordance with Department requirements.

[An officer or Director of the company with direct knowledge of past and present conditions of the [Property/Contaminated Site]Property (the "Company Representative"), or] <u>A a</u> qualified environmental professional will, on behalf of the Grantor or future holder of any

interest in the Property (Property/Contaminated Site), evaluate the compliance status of the Property [Property/Contaminated-Site] on an annual basis. Upon completion of the evaluation, the [Company Representative or] environmental professional will prepare and simultaneously submit to the Department and to the Grantor or future holder of any interest in the Property [Property/Contaminated-Site] an evaluation report detailing the findings of inspection , and the noting any compliance violations at the Property/Contaminated-Site]. If the Property/Contaminated-Site] is determined to be out of compliance with the terms of the ELUR, the Grantor or future holder of any interest in the Property [Property/Contaminated-Site] shall submit a corrective action plan in writing to the Department within ten (10) days of receipt of the evaluation report, indicating the plans to bring the Property [Property/Contaminated-Site] into compliance with the ELUR, including, at a minimum, a schedule for implementation of the plan.

In the event of any violation of the terms of this Restriction, which remains uncured more than ninety (90) days after written notice of violation, all Department approvals and agreements relating to the <u>Property [Property/Contaminated-Site]</u> may be voided at the sole discretion of the Department.

I. Terms Used Herein: The definitions of terms used herein shall be the same as the definitions contained in Section 3 (DEFINITIONS) of the <u>Remediation Regulations</u>.

IN WITNESS WHEREOF, the Grantor has hereunto set (his/her) hand and seal on the day and year set forth above.

[Name of Person(s), company, LLC or LLP]Rhode Island Department of Environmental Management

By:

Grantor (signature)_____

__Grantor (typed name)

STATE OF RHODE ISLAND COUNTY OF _____

In (CITY/TOWN), in said County and State, on the _____ day of _____, 20____, before me Personally appeared ______, to me known and known by me to be the party executing the foregoing instrument and (he/she) acknowledged said instrument by (him/her) executed to be (his/her) free act and deed.

Notary Public: _____

My Comm. Expires: _____

Exhibits: <u>A - Remedial Decision Letter</u> <u>B - Soil Management Plan</u> **EXHIBIT C** (To the Environmental Land Use Restriction)

SOILS MANAGEMENT PLAN

Seville Dyeing Company 117 & 229 First Avenue Woonsocket, Rhode Island (RIDEM Case Nos. SR-39-1221A)

As part of RIDEM-approved remedial activities conducted by GZA at property identified as Plat 6 Lots 102 and 118 (the "Property"), an Environmental Land Use Restriction (ELUR) has been recorded to help prevent humans engaged in activities at the Property (as defined in the ELUR) from being exposed to soils containing hazardous substances in concentrations exceeding the applicable Department-approved Industrial/Commercial Direct Exposure Criteria and GB Leachability Criteria pursuant to the <u>Rules and Regulations for the</u> <u>Investigation and Remediation of Hazardous Material Releases</u> (Remediation Regulations). Specifically, the ELUR requires that the:

- Site use of the Property be limited to restricted residential uses;
- Groundwater at the Property shall not be used as drinking water; and
- This *Soil Management Plan* (recorded with the ELUR) will be implemented should disturbances of on-site soils be required on the Property, as shown on Figure 1.

This *Soils Management Plan* has been prepared to establish procedures that will be followed should future construction/maintenance activities at the Property require the need to manage the excavation of subsurface soils. The plan serves to supplement, and will be initiated by, the RIDEM notification requirement established by the ELUR for the Property.

Potential future construction/maintenance activities at the Property that could result in the excavation of subsurface soils may include the installation and/or maintenance of subsurface utilities, the construction of site structures, and/or surface pavement. Accordingly, this plan will be implemented whenever soils are disturbed within the Property.

A *Site Plan* depicting the relevant features of the Property is attached. In accordance with Section A iii of the ELUR, no soil at the Property is to be disturbed in any manner without prior permission of the Department's Office of Waste Management, except for emergencies; minor inspections; maintenance; and other activities if such other activities do not disturb the contaminated soil at the Property. As part of the notification process, the Property owner shall provide a brief written description of the anticipated activities involving soil excavation. The notification should be submitted to the Department no later than 30 days prior to the proposed initiation of the activities. The description shall include an estimate of the volume of soil to be excavated, a list of the known and anticipated contaminants of

concern, a site figure clearly identifying the proposed areas to be excavated/disturbed, the duration of the project and the proposed disposal location of the soil.

Following written Notification, the Department will determine the post-closure reporting requirements. Significant disturbances of regulated soil will require submission of a Closure Report for Department review documenting that the activities were performed in accordance with this SMP and the Department approved ELUR. Minor disturbances of regulated soil may be documented through the annual certification submitted in accordance with Section H (Inspection & Non-Compliance) of the Department approved ELUR. The Department will also make a determination regarding the necessity of performing Public Notice to abutting property owners/tenants concerning the proposed activities. Work associated with the Notification will not commence until written Department approval has been issued. Once Department approval has been issued, the Department will be notified a minimum of two (2) days prior to the start of activities at the Property. If any significant alterations to the Department approved plan are necessary, a written approval shall be granted prior to initiating such changes.

In accordance with the ELUR, emergency work/utility repairs which require disturbing Site soils can be performed without prior written notification to RIDEM. Such work is subject to the requirements outlined in Section C of the ELUR. In addition to the RIDEM notification requirements and environmental considerations presented in that section, it is important that the contractor performing the emergency work/utility repairs be made aware of the Site conditions and provided with a copy of this Soil Management Plan.

CONTAMINANTS OF CONCERN

Direct contact with onsite soil has been identified as a long-term exposure pathway of concern at the property. Soils at the site were found to contain certain constituents, i.e., Polycyclic Aromatic Hydrocarbons (PAHs), total petroleum hydrocarbon (TPH) and metals, at concentrations that exceed the Method 1 Industrial/Commercial Direct Exposure Criteria. In addition, groundwater at the site has been found to contain TPH at significant concentrations.

To address these conditions, a remedial program described in the Remedial Action Work Plan, involving a soil vapor extraction (SVE) system to address TPH contamination in unsaturated soils, erection of a 4-foot tall fence (height subject to change) to prevent exposure and Site capping as part of eventual Site redevelopment.

DESCRIPTION AND MAINTENANCE OF ENGINEERED CONTROLS

The engineered controls are an integral part of the ELUR and SMP and must be maintained to prevent potential human exposure to contaminated soils remaining at the Site. The engineered controls consist of:

- Asphalt parking lots, concrete building slabs, and sidewalks (minimum 4-inches thick);
- A geotextile warning barrier, overlain by 6 inches of crushed stone (or a RIDEM approved equal);
- A geotextile warning barrier, overlain by 12 inches of demonstrated clean backfill (common borrow and/or topsoil); and
- The onsite building was constructed with a passive sub-slab depressurization system, capable of being converted into an active system, to prevent vapor intrusion from residual TPH in soil and groundwater

If disturbance of the structural integrity of the engineered controls, or any other activity inconsistent with the requirements of the ELUR is required at the Site (e.g., utility maintenance and/or repair, emergencies, etc.), RIDEM will be notified in writing prior to scheduled maintenance or repair, or in the case of an emergency, as soon as possible but no more than three (3) business days after Owner/Operator learns of the emergency. As previously discussed, and stated in Paragraph C of the ELUR, in the case of an emergency, the restrictions detailed in Paragraphs A (items iii thru v) and B of the ELUR may be temporarily suspended without first notifying RIDEM. In the case of scheduled excavation and/or maintenance or repair of subsurface utilities; RIDEM will be notified in writing, and a construction plan will be provided, prior to the proposed work. The basic health and safety procedures outlined in this SMP will be followed for excavation work conducted within the ELUR area.

SOIL MANAGEMENT GUIDELINES

The following presents the course of action that will be followed should soil disturbance within the Property occur:

- 1. As part of the RIDEM notification, the Property owner will provide a brief written description of the anticipated activity(ies) involving soil excavation. The description will include an estimate of the volume of soil to be excavated/disturbed and the duration of the construction project.
- 2. The selected contractor will be provided with a copy of this *Soil Management Plan* to ensure proper soil management.
- 3. Prior to the initiation of soil excavation, the selected contractor or any other personnel performing subsurface work at the Property will contact DIGSAFE and appropriate utility companies to identify and mark the location of below grade utilities.
- 4. Persons involved in the excavation and handling of the contaminated soil on the Property are to take appropriate health and safety precautions. Workers should wear, at a minimum, Level D personal protection equipment (PPE), including gloves and eye protection. Workers should also wash their hands with soap and water prior to eating, drinking, smoking, or leaving the site. Worker's safety boots are required to be brushed with a stiff bristle brush or similar instrument to remove residual soil. Used and

disposable PPE is required to be disposed of according to applicable local, State and Federal Regulations. All vehicles utilized during work shall be properly decontaminated as appropriate prior to leaving the site.

- 5. In the event that an unexpected observation or situation arises (of an environmental nature) during the work, construction activities will immediately cease. Workers will not attempt to handle the situation themselves, but will contact an environmental professional for further evaluation and direction.
- 6. During all earthwork activities and dust suppression (e.g., watering, etc) proper techniques will be employed.
- 7. The stockpiling and disposal procedures detailed in this plan apply only to excess soil which cannot be used as backfill in the original excavation or elsewhere on the Property in an approved manner. Soil generated from an excavation conducted within the ELUR area may be placed back into its original excavation for backfill upon completion of the excavation. The original stratigraphy of soil will be maintained, to the extent practicable, upon backfilling excavations so that the corresponding depth and location of the backfilled materials resembles the depth and location at which the soil originally existed. Alternatively, soil generated from an excavation in the ELUR can be disposed of at an appropriate off-site disposal/treatment facility, as described below.
- 8. Excavated soils will be staged and temporarily stored in a designated area of the property. Within reason, the storage location will be selected to limit the unauthorized access to the materials (e.g., away from public roadways/walkways). No regulated soil will be stockpiled on-site for more than 60 days without prior RIDEM approval.
- 9. Excavated regulated soils will be either stockpiled on polyethylene sheeting, or stored in roll-off type containers. In either case, the material in storage will be covered with secured polyethylene sheeting at the end of each workday. Stockpiled materials will be maintained with appropriate controls to limit the loss of the cover and protect against rainfall runoff and stormwater erosion.
- 10. Soils excavated from the Property may not be used off-site for use as fill on residential properties. Excavated material will not be re-used off-site as fill on industrial/commercial properties unless it meets the Method 1 Residential Direct Exposure Criteria for all constituents listed in the RIDEM's Rules and Regulations for the Investigation and Remediation of Hazardous Material Releases, dated November 2011 (Remediation Regulations). Prior to leaving the Property, soil must be sampled by an environmental professional, at a frequency of one sample per 500 cubic yards for the following constituents:

Analyte	EPA Test Method
Total Petroleum Hydrocarbons	Method 8100M
Volatile Organic Compounds	Method 8260
Semi-Volatile organic compounds	Method 8270
Polychlorinated Biphenyls	Method 8081

Total RCRA Metals	Method 6010 & 7471A
Flashpoint	Method 1010M
Corrosivity (pH)	Method 9045C
Reactivity	Methods SW-846 7.3.3.2/9014 and SW-846 7.3.4.2/376.2

In the event that the soil does not meet these criteria, the material must be properly managed and disposed of off-site at an appropriately licensed facility. Copies of the laboratory analysis results will be maintained by the Property owner and included in the annual inspection report for the Property, or the Closure Report, if applicable.

11. All clean fill, including sub-grade material and loam from native sources, imported to the Property must be sampled and analyzed prior to delivery and placement. Clean fill and loam brought on to the Property must be subjected to the following analytical program:

Analyte	EPA Test Method
Total Petroleum Hydrocarbons	8100M
Volatile Organic Compounds	8260
Semi-Volatile Organic Compounds	8270
Priority Pollutant Metals (PP-13)	6010 & 7471A
PCBs	8082

The frequency of sampling and testing will be:

- Full suite of analysis for up to 2,000 cubic yards, with an additional full suite for each subsequent 2,000 cubic yards of material; and
- Arsenic each 500 cubic yards of material

All soil that is to be utilized on-site must meet the Residential Direct Exposure Criteria and the GB Leachability Criteria (as defined in the Remediation Regulations) for all constituents or be certified to be non-jurisdictional by an environmental professional. Also be advised that the *Closure Report/Annual Inspection Report* for the Property must include all original laboratory analytical data or a statement from the facility that provides the clean fill and/or loam attesting to the materials origin and suitability for use at the Site.

- 12. Best soil management practices should be employed at all times and regulated soils should be segregated into separate piles (or cells or containers) as appropriate based upon the results of analytical testing, when multiple reuse options are planned (e.g. reuse onsite, reuse at a Department approved Industrial/Commercial property, or reuse/disposal at a Department approved licensed facility). Best management practices also include the managing and minimizing of the migration and/or surface run-off of hazardous materials at the Property during the remedial and/or future disturbances. This should be achieved via the installation of hay bales, silt fencing and any other appropriate measures during the entire duration of the earthwork.
- 13. Following completion of the construction/earthwork project, a *Closure Report* will be prepared and submitted to RIDEM as required. The report will demonstrate that

following completion of construction activities, the Property is in compliance with the ELUR. Copies of the material shipping records, bills of lading and receiving facility receipts associated with the disposal of the excavated soil will be maintained by the Property owner and will be summarized in the *Closure Report* and in the annual property inspection reports to be completed by the Property Owner Representative and submitted to RIDEM.

GROUNDWATER MANAGEMENT GUILDLINES

As described above, groundwater at the site has been found to contain TPH at significant. Groundwater has been encountered at the Site between approximately 9 and 22 feet below ground surface. Accordingly, the following guidelines have been developed to address dewatering operations conducted at the Property should they become necessary.

- 1. Should any project require the need for dewatering and/or disturbance of impacted groundwater in support of excavation/construction, a RIDEM Notification will be issued to the Office of Water Resources and Office of Waste Management. The Notification will include a description of plans to manage, contain, treat (if necessary) and discharge or dispose of impacted groundwater. In addition, all appropriate regulatory approvals, including coverage under RIDEM's Remediation General Permit, related to the removal, handling, treatment and discharge of impacted groundwater will be in-place prior to the initiation of the project. Such plans will, at a minimum, include an evaluation of water quality, the method by which water will be treated, contained and/or discharged/disposed and the necessary regulatory approvals, permits, *etc.* Impacted, untreated groundwater will not be discharged directly to the ground surface, collection utilities, wetlands or water bodies.
- 2. Should any project require dewatering, all impacted fluids will either be properly treated for onsite injection, surface water discharge, Publically Owned Treatment Works (POTW) discharge, or containerized for off-site disposal. Any discharges will be performed consistent with all applicable regulations and permits. With respect to fluids to be disposed off-site, they will be properly transferred and containerized to prevent discharges or leaks, characterized per the requirements of the receiving facility, and subsequently transported to a fully licensed/permitted treatment/recycling facility.

BASIC HEALTH AND SAFETY PROCEDURES

The basic health and safety procedures outlined below will be implemented while performing excavation work at the Site. The procedures are intended as a general guideline for basic, short-term excavation and maintenance activities. The contractor conducting the work will be required to follow a health and safety plan developed for their specific activities and personnel in accordance with the OSHA requirements contained in 29 CFR Part 1910.120.

Based on the documented Site conditions, the potential routes of exposure to on-site excavation or utility repair workers include dermal contact (absorption), accidental ingestion

of impacted soil or dust inhalation. Utilization of the appropriate personal protective equipment (PPE) and the general safety guidelines provided below will minimize the potential for worker exposure while performing work within the Property.

Personal Protective Equipment (PPE)

In general, the level of protection that will be used by workers will be determined by the task that the person is performing; however, at a minimum Level D PPE will be worn at all times while performing excavation activities within the ELUR area. Level D PPE will, at a minimum, consist of the following PPE:

- 1. Steel-toe work boots with over-boots as needed;
- 2. Eye protection (safety glasses or chemical splash goggles);
- 3. Work gloves;
- 4. Hard hat; and
- 5. Work coveralls.

Site Operating Procedures/Safety Guidelines

Regardless of the level of PPE necessary to complete work in the ELUR area, the following general health and safety guidelines will be followed during the performance of any excavation activities conducted within the ELUR area. Adherence to these guidelines will reduce the potential for worker exposure to impacted media.

- 1. All work conducted on-site shall be coordinated through a designated employee responsible for the implementation of the requirements of this SMP (including all health and safety procedures);
- 2. The location of all utilities in the vicinity of the excavation will be established prior to beginning work;
- 3. All spectators will remain outside the designated Exclusion Zone (established as a 50 foot perimeter beyond the area of excavation);
- 4. A pre-work meeting will be conducted at the beginning of each day to discuss the health and safety procedures;
- 5. Practice contamination avoidance: never sit down or kneel in an excavation; never lay equipment on the ground; avoid obvious sources of contamination such as puddles; and avoid unnecessary contact with objects in an excavation;
- 6. Be alert to any unusual changes in your physical condition; never ignore warning signs. Notify the responsible employee as to suspected exposures;
- 7. All equipment used in an excavation will be properly cleaned and maintained in good working order. Equipment will be inspected for signs of defect and/or contamination before use and prior to demobilization from the Property;
- 8. Eating, drinking, chewing gum, and smoking are prohibited in active excavation areas; and
- 9. The discovery of any condition that would suggest the existence of a situation more hazardous than anticipated shall result in the evacuation of site personnel

from the excavation and the re-evaluation of the hazard and the required level of protection.

In Case of Serious Exposure or Injury

In the event of serious chemical exposure or worker injury, the responsible employee will immediately be alerted. This person will follow the steps indicated below:

- 1. Summon appropriate emergency response agency by using the emergency phone numbers provided below. Convey the following information:
 - a. Nature of emergency,
 - b. Location of victim,
 - c. Specific information about exposure or accident (gases, chemical, asphyxiation, etc.),
 - d. Length of exposure, and
 - e. Hazards which may be involved in rescue or treatment;
- 2. If taken to a hospital, notify the hospital of the background of the problem:
 - a. Potential for hospital contamination,
 - b. Any contaminated items and the nature of the contamination, and
 - c. Estimated arrival time.

Emergency Phone Numbers

Emergency telephone numbers and the directions to the nearest hospital are included below. User is cautioned that this information should be checked and updated, if necessary.

Response Agency	Phone Number
Ambulance	911 or (401) 726-2000
Police	911 or (401) 766-1212
Fire	911 or (401) 765-2500
RIDEM/Office of Compliance &	(401) 222-1360 or
Inspection/Emergency Response Program	(401) 222-3070 (non-business hours)
USEPA/Hazardous Materials Spills	(800) 424-8802
Poison Control Center	(800) 222-1222
Dig Safe (Utility Clearance)	1-888-DIGSAFE
Hospital	
Landmark Medical Center Emergency	(401) 769-4100
Department	
115 Cass Ave	
Woonsocket, RI 02895	
Route to Hospital	
Total Distance: 2.4 Miles	
Estimate Time: 9 Minutes	
Directions	Distance
1: Turn SOUTH on 1 st Ave toward Chestnut St	0.1 mi

2: Turn LEFT onto Fairmount St	0.3 mi
3: Turn RIGHT onto River St	0.5 mi
4: Turn LEFT onto Market Square	331 ft
5: Turn RIGHT onto Bernon St	249 ft
6: Turn LEFT onto Truman Dr	0.5 mi
7: Turn RIGHT at the 1 st cross street onto Clinton	0.4 mi
St	
8: Turn RIGHT onto Cumberland St	0.3 mi
9: Turn LEFT onto Cass Ave	0.2 mi
10: Turn RIGHT	154 ft

Attachments: Figure 1

 $\label{eq:scalar} $$J:\RIDEM TAC\34502.04.rac\Reports\RAWP\Appendix I -draft ELUR and $$SMP\ELUR\31257.14 Soil Management Plan 2018-DRAFT.docx$

GZA GeoEnvironmental, Inc.