

There When You Need Us

We are once again proud to present our annual water quality report covering all testing performed between January 1 and December 31, 2012. Over the years, we have dedicated ourselves to producing drinking water that meets all state and federal standards. We continually strive to adopt new methods for delivering the best quality drinking water to you. As new challenges to drinking water safety emerge, we remain vigilant in meeting the goals of source water protection, water conservation, and community education while continuing to serve the needs of all our water users.

Please remember that we are always available to assist you should you ever have any questions or concerns about your water.

QUESTIONS?

For more information about this report, or for any questions relating to your drinking water, please call Marc Viggiani, Acting Water Superintendent, at (401) 767-1411 or visit our website at www.ci.woonsocket.ri.us.

Where Does My Water Come From?

Woonsocket Water Division uses surface water from the Crookfall Brook and Harris Pond watersheds. The Crookfall Brook watershed extends over approximately 7.93 square miles. It is a protected, high quality, and primary source of supply for the Woonsocket Treatment Plant. Harris Pond has a watershed area of approximately 33.3 square miles. This source is used as a supplemental source as needed. Woonsocket Water maintains an active watershed protection program and closely monitors the watershed lands to protect water quality.

Substances That Could Be in Water

To ensure that tap water is safe to drink, the U.S. EPA prescribes regulations limiting the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that the water poses a health risk.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals, in some cases, radioactive material, and substances resulting from the presence of animals or from human activity. Substances that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, or wildlife;

Inorganic Contaminants, such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;

Pesticides and Herbicides, which may come from a variety of sources, such as agriculture, urban stormwater runoff, and residential uses;

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production and may also come from gas stations, urban stormwater runoff, and septic systems;

Radioactive Contaminants, which can be naturally occurring or may be the result of oil and gas production and mining activities.

For more information about contaminants and potential health effects, call the U.S. EPA's Safe Drinking Water Hotline at (800) 426-4791.

Lead in Home Plumbing

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high-quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/safewater/lead.

How Is My Water Treated and Purified?

The treatment process consists of a series of steps. First, raw water is drawn from our water source into the treatment plant. Chemicals are added to initiate the next process, called flocculation. The addition of these substances causes small particles to adhere to one another (called floc), making them heavy enough to settle to the bottom, from which sediment is removed. This process is called clarification, or sedimentation. The clear supernatant is then filtered through a deep-bed carbon filter that removes the smaller suspended particles. After filtration, the water undergoes disinfection, fluoride addition (to prevent tooth decay), corrosion inhibitor addition, and pH adjustment before it is pumped out into the distribution system.

Important Health Information

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. The U.S. EPA/CDC (Centers for Disease Control and Prevention) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791 or http://water.epa.gov/drink/hotline.

Public Meetings

For public comment on an ongoing basis, customers can contact the office of Mayor Leo T. Fontaine or attend the Woonsocket City Council meetings. The council holds hearings on budget and other financial matters, approves contracts, and considers ordinances that create or amend local laws. Some of these matters affect the operation of the Woonsocket Water Division. The council meets on the first and third Monday of every month at 7:00 pm in Harris Hall in City Hall, 169 Main Street, Woonsocket, RI. The meetings are televised live on Cox Cable channel 17. Public comment is welcome.

Information on the Internet

The U.S. EPA Office of Water (www.epa. gov/watrhome) and the Centers for Disease Control and Prevention (www.cdc.gov) websites provide a substantial amount of information on many issues relating to water resources, water conservation, and public health. Also, the Rhode Island Department of Health, Office of Drinking Water Quality, has a website (www.health.ri.gov/ environment/dwq/index.php) that provides complete and current information on water issues in Rhode Island, including valuable information about our watershed.

How Long Can I Store Drinking Water?

The disinfectant in drinking water will eventually dissipate, even in a closed container. If that container housed bacteria prior to filling up with the tap water, the bacteria may continue to grow once the disinfectant has dissipated. Some experts believe that water could be stored up to six months before needing to be replaced. Refrigeration will help slow the bacterial growth.

Tap vs. Bottled

Thanks in part to aggressive marketing, the bottled water industry has successfully convinced us all that water purchased in bottles is a healthier alternative to tap water. However, according to a four-year study conducted by the Natural Resources Defense Council, bottled water is not necessarily cleaner or safer than most tap water. In fact, about 25 percent of bottled water is actually just bottled tap water (40 percent according to government estimates).

The Food and Drug Administration is responsible for regulating bottled water, but these rules allow for less rigorous testing and purity standards than those required by the U.S. EPA for community tap water. For instance, the high mineral content of some bottled waters makes them unsuitable for babies and young children. Further, the FDA completely exempts bottled water that's packaged and sold within the same state, which accounts for about 70 percent of all bottled water sold in the United States.

People spend 10,000 times more per gallon for bottled water than they typically do for tap water. If you get your recommended eight glasses a day from bottled water, you could spend up to \$1,400 annually. The same amount of tap water would cost about 49 cents. Even if you installed a filter device on your tap, your annual expenditure would be far less than what you'd pay for bottled water.

For a detailed discussion on the NRDC study results, check out their website at www.nrdc.org/water/ drinking/bw/exesum.asp.

Water Main Flushing

Distribution mains (pipes) convey water to homes, businesses, and hydrants in your neighborhood. The water entering distribution mains is of very high quality; however, water quality can deteriorate in areas of the distribution mains over time. Water main flushing is the process of cleaning the interior of water distribution mains by sending a rapid flow of water through the mains.

Flushing maintains water quality in several ways. For example, flushing removes sediments like iron and manganese. Although iron and manganese do not pose health concerns, they can affect the taste, clarity, and color of the water. Additionally, sediments can shield microorganisms from the disinfecting power of chlorine, contributing to the growth of microorganisms within distribution mains. Flushing helps remove stale water and ensures the presence of fresh water with sufficient dissolved oxygen, disinfectant levels, and an acceptable taste and smell.

During flushing operations in your neighborhood, some short-term deterioration of water quality, though uncommon, is possible. You should avoid tap water for household uses at that time. If you do use the tap, allow your cold water to run for a few minutes at full velocity before use and avoid using hot water, to prevent sediment accumulation in your hot water tank.

Please contact us if you have any questions or if you would like more information on our water main flushing schedule.

Source Water Assessment

The RI Department of Health, in cooperation with other state and federal agencies, has assessed the threats to Woonsocket's water supply sources. The assessment considered the intensity of development, the presence of businesses and facilities that use, store, or generate potential contaminants, the ease with which contaminants can move through the soils in the Source Water Protection Area (SWPA), and the sampling history of the water.

Our monitoring program continues to ensure that the water delivered to your home is safe and wholesome. However, the assessment found that the water source is at moderate risk of contamination. This means that the water could one day become contaminated. Protection efforts are necessary to ensure continued water quality. The complete Source Water Assessment Report is available from Woonsocket Water Division at (401) 767-1411, or from HEALTH at (401) 222-6867.

What's a Cross-connection?

Cross-connections that contaminate drinking water distribution lines are a major concern. A cross-connection is formed at any point where a drinking water line connects to equipment (boilers), systems containing chemicals (air conditioning systems, fire sprinkler systems, irrigation systems), or water sources of questionable quality. Cross-connection contamination can occur when the pressure in the equipment or system is greater than the pressure inside the drinking water line (backpressure). Contamination can also occur when the pressure in the drinking water line drops due to fairly routine occurrences (main breaks, heavy water demand), causing contaminants to be sucked out from the equipment and into the drinking water line (backsiphonage).

Outside water taps and garden hoses tend to be the most common sources of cross-connection contamination at home. The garden hose creates a hazard when submerged in a swimming pool or when attached to a chemical sprayer for weed killing. Garden hoses that are left lying on the ground may be contaminated by fertilizers, cesspools, or garden chemicals. Improperly installed valves in your toilet could also be a source of cross-connection contamination.

Community water supplies are continuously jeopardized by cross-connections unless appropriate valves, known as backflow prevention devices, are installed and maintained. We have surveyed all industrial, commercial, and institutional facilities in the service area to make sure that all potential cross-connections are identified and eliminated or protected by a backflow preventer. We also inspect and test each backflow preventer to make sure that it is providing maximum protection.

For more information, review the Cross-Connection Control Manual from the U.S. EPA's website at http://water.epa.gov/infrastructure/drinkingwater/pws/crossconnectioncontrol/index. cfm. You can also call the Safe Drinking Water Hotline at (800) 426-4791.

Sampling Results

During the past year, we have taken hundreds of water samples in order to determine the presence of any radioactive, biological, inorganic, volatile organic, or synthetic organic organic organic. The table below shows only those contaminants that were detected in the water. The state requires us to monitor for certain substances less than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data are included, along with the year in which the sample was taken.

REGULATED SUBSTANCES									
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	MCL [MRDL]	MCLG [MRDLG]	AMOUNT DETECTED	RANGE LOW-HIGH	VIOLATION	TYPICAL SOURCE		
Barium (ppm)	2012	2	2	0.030	0.011-0.030	No	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits		
Chlorine (ppm)	2012	[4]	[4]	0.38	ND-1.20	No	Water additive used to control microbes		
Fluoride (ppm)	2012	4	4	0.75	0.13–1.00	No	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories		
Haloacetic Acids [HAA]–Stage 1 (ppb)	2012	60	NA	17.3	9.6–31.1	No	By-product of drinking water disinfection		
Nitrate (ppm)	2012	10	10	0.190	0.070-0.190	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits		
TTHMs [Total Trihalomethanes]–Stage 1 (ppb)	2012	80	NA	50.2	29.7–75.5	No	By-product of drinking water disinfection		
Total Coliform Bacteria (% positive samples)	2012	5% of monthly samples are positive	0	1%	NA	No	Naturally present in the environment		
Total Organic Carbon (ppm)	2012	ΤT	NA	1.7	0.70-2.1	No	Naturally present in the environment		
Turbidity ¹ (NTU)	2012	TT	NA	0.604	0.047-0.604	No	Soil runoff		
Turbidity (Lowest monthly percent of samples meeting limit)	2012	TT	NA	99.16	NA	No	Soil runoff		

Tap water samples were collected for lead and copper analyses from sample sites throughout the community

SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AL	MCLG	AMOUNT DETECTED (90TH%TILE)	SITES ABOVE AL/ TOTAL SITES	VIOLATION	TYPICAL SOURCE
Copper (ppm)	2011	1.3	1.3	0.020	0/30	No	Corrosion of household plumbing systems; Erosion of natural deposits
Lead (ppb)	2011	15	0	2	0/30	No	Corrosion of household plumbing systems; Erosion of natural deposits

UNREGULATED SUBSTANCES					
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AMOUNT DETECTED	RANGE LOW-HIGH	TYPICAL SOURCE	¹ Turbidity is a monitored be of the filtratio
Sodium (ppm)	2012	56.5	22.3–56.5	Sodium naturally found in plants, soil; Sodium compounds used for deicing roads	

Turbidity is a measure of the cloudiness of the water. It is monitored because it is a good indicator of the effectiveness of the filtration system.

Definitions

AL (Action Level): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum Residual Disinfectant Level): The highest

level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable.

ND (Not Detected): Indicates that the substance was not found by laboratory analysis.

NTU (Nephelometric Turbidity Units): Measurement of the clarity, or turbidity, of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

ppb (parts per billion): One part substance per billion parts water (or micrograms per liter).

ppm (parts per million): One part substance per million parts water (or milligrams per liter).

TT (Treatment Technique): A required process intended to reduce the level of a contaminant in drinking water.